
Second harmonic generation in one-dimensional nonlinear photonic crystals solved
by the transfer matrix method

Jing-Juan Li, Zhi-Yuan Li,* and Dao-Zhong Zhang
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100080, China

�Received 23 October 2006; revised manuscript received 6 February 2007; published 9 May 2007�

The transfer matrix method has been widely used to calculate the scattering of electromagnetic waves. In this
paper, we develop the conventional transfer matrix method to analyze the problem of second harmonic gen-
eration in a one-dimensional multilayer nonlinear optical structure. In the designed nonlinear photonic crystal
structure, the linear and nonlinear optical parameters are both periodically modulated. We have taken into
account the multiple reflection and interference effects of both the linear and nonlinear optical waves during
the construction of the transfer matrix for each composite layer. Application of this method to multilayer
nonlinear photonic crystal structures with different refractive indices indicates that the proposed method is an
exact approach and can simulate the generation of the second harmonic field precisely. In an optimum struc-
ture, the second harmonic generation efficiency can be several orders of magnitude larger than in a conven-
tional quasi-phase-matched nonlinear structure with the same sample length. The reason is that, due to the
presence of photonic band gap edges, the density of states of the electromagnetic fields is large, the group
velocity is small, and the local field is enhanced. All three factors contribute to significant enhancement of the
nonlinear optical interactions.
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I. INTRODUCTION

Since the concept of photonic crystals, materials with a
periodic modulation of the refractive index that can give rise
to photonic band gaps, was introduced, numerous theoretical
approaches have been developed to study photonic crystal
structures. These include the plane-wave expansion method
�1–3�, the transfer matrix method �TMM� �4–7�, the finite-
difference time-domain method �8,9�, and so on. Among
them, the TMM, which uses a transfer matrix to connect the
electromagnetic �e.m.� fields among different layers, has
been widely used to calculate the photonic band structure
and transmission and reflection spectra of one-, two-, and
three-dimensional photonic crystal structures.

During recent years, periodically poled ferroelectric crys-
tals have attracted much attention because of their unique
properties in compensating for the phase mismatch in non-
linear optical interaction processes. Second-order nonlinear
optical interactions, such as second harmonic generation
�SHG� and the optical parametric oscillator, have been inves-
tigated extensively in periodically poled LiNbO3, LiTaO3,
KTiOPO4, and strontium barium niobate, respectively
�10–14�. However, high-power nonlinear radiation is always
a problem difficult to deal with because of limitations such
as optical damage. Increase of the nonlinear conversion effi-
ciency is a long-standing goal for periodically poled ferro-
electric crystals. Recently, an enhancement by several orders
of magnitude of second-order nonlinear interactions in pho-
tonic crystals has been reported �15–20�. The enhancement is
ascribed to the combination of a high electromagnetic mode
density of states and a slowing down of the optical wave at
frequencies near the photonic band gap edge, which is in-
duced by multiple reflection and interference. Theoretical

analysis of harmonic generation in layered devices also has
gained considerable attention �21–26�. However, up to now,
the unique properties of the photonic band gap edge have not
been employed in periodically poled materials. Here, we in-
vestigate the SH generation in a periodically poled nonlinear
crystal with different refractive indices by the transfer matrix
method. Because new SH waves generated inside the struc-
ture grow as the propagation length increases, the matrix
describing the SH wave propagation will be related to the
distribution of the pump field of the fundamental waves in-
side the structure, and must be very complex. So it is difficult
to get the matrix describing the SH signal accurately in a
multilayered nonlinear optical material.

To reduce the complexity and difficulty of the nonlinear
optical problems in an inhomogeneous medium for both the
fundamental and SH waves, most existent TMMs that have
been adopted to handle nonlinear media have made some
kind of approximation and are not thus perfectly accurate. In
Ref. �18� the authors used a transfer matrix method to carry
out numerical integrations of Maxwell’s equations. They as-
sumed a resonant second harmonic field and only a forward-
propagating pump wave. They did not consider pump wave
reflections because the pump wave was assumed to be tuned
away from any resonance and from the band gap edge. This
neglect is not valid in the case of deep-grating photonic crys-
tal structures with remarkable modulation of the refractive
index of the multilayered composite materials. Reference
�22� proposed a transfer matrix method to analyze optical
wave interactions through layered nonlinear media. It took
into account the internal multiple reflections but
neglected the interferences between the forward- and
backward-propagating waves. However, it is worth noting
that constructive or destructive interferences can greatly
change the observed total intensity of fundamental and SH
waves, so the approximate approach appears to be problem-
atic, and a more exact theoretical approach is needed.*Email address: lizy@aphy.iphy.ac.cn
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In this paper, we propose a transfer matrix method that
can efficiently and accurately deal with a SHG problem
where plane-wave fundamental beams are incident upon a
multilayered nonlinear medium in which both the linear and
nonlinear optical parameters are periodically modulated. The
method is free of the aforementioned approximations made
in the previous literature. Nevertheless, the current method is
also subject to the major limitation that the nonlinear process
is assumed to be weak in the sense that the fundamental
pump waves are essentially unaffected by the nonlinear pro-
cesses. Using this approach, we calculate not only the SH
energy output but also the distribution of pump and SH fields
inside the structure. In our calculation, we make no approxi-
mation except for the nondepleted pump wave approxima-
tion, and all interferences between all propagating compo-
nents �including forward- and backward-propagating waves
induced by multiple reflections when optical waves propa-
gate through periodic dielectric structures� are included. Our
results are different from those for the traditional quasi-
phase-matched �QPM� bulk medium and we discuss the rea-
son for this.

II. TMM FOR SHG IN MULTILAYERED STRUCTURES

In this section, we consider a layered periodical nonlinear
material with periodically modulated linear and nonlinear
optical parameters. The characteristic spatial scales of the
variation of the linear refractive index and nonlinear suscep-
tibility are the same. The structure can be divided into N
segments of length d, and each segment consists of two ho-
mogeneous sections, as depicted in Fig. 1. The length and
linear and nonlinear optical parameters for section I are, re-
spectively, d1, n1

�m�, and ��2�, while those for section II are d2,
n2

�m�, and −��2�, where m=1,2 denotes the fundamental field
�m=1� and second harmonic field �m=2�. Because of the
mismatch between the refractive indices n1

�m� and n2
�m�, there

will be reflection at each layer interface, and interference will
occur. Now, we begin to study the SHG process in this struc-
ture, where e.m. waves of angular frequency � propagate
through the media and new second harmonic waves of fre-
quency 2� are generated. In our TMM, we simplify the pro-
cess of SHG into three dependent processes. First, the fun-
damental field �FF� propagates in the medium and makes the
medium polarized; macroscopic polarization is created. Sec-
ond, the second nonlinear polarization PNL induced by the
nonlinear medium radiates a second harmonic �SH� field.

Third, the SH field created inside the medium propagates in
the structure and radiates from the medium as SH signals.

Now, we analyze the propagation of the FF. We suppose a
plane e.m. wave with frequency � is incident from the left-
hand side of the structure. Let the wave propagate along the
z-axis direction and the polarization of the electric field be
along the x axis. The fundamental-wave electric field in each
homogeneous medium can be written as

Ei
�1��z,t� = �i

+ exp�i�ki
�1��z − zi−1� − �t��

+ �i
− exp�− i�ki

�1��z − zi−1� − �t�� , �1�

where z0 is set as 0, zi=zi−1+di, ki
�1�=ni

�1�k10, and k10=� /c. c
is the light speed in vacuum. �i

± is the complex electric-field
amplitude at the interface and the sign +�−� denotes the
forward- �backward-�propagating wave. Using the continuity
condition of the E and H fields at the layer boundary, we can
get the following relationship between the amplitudes of the
E field across the odd-even interface:

��2i–1
+

�2i–1
− � =

1

2n1
�1��n1

�1� + n2
�1� n1

�1� − n2
�1�

n1
�1� − n2

�1� n1
�1� + n2

�1� ���2i
+

�2i
− � = T12��2i

+

�2i
− � .

�2�

Defining D1= � 1 1

n1
�1� −n1

�1� � and D2= � 1 1

n2
�1� −n2

�1� � we can write T12 as

T12 = D1
−1D2.

Similarly, we can get the relationship between the amplitudes
of the E field across the even-odd interface:

T21 = D2
−1D1.

The phase and amplitude changes in the fields from the left-
hand side to the right-hand side of a homogeneous layer can
be described as

Pj = �exp�ikj
�1�dj� 0

0 exp�− ikj
�1�dj�

� ,

j = 1,2 denoting the odd and even layer, respectively.

The overall transfer matrix of the multilayer structure is
obtained from the cascading product of the successive indi-
vidual transfer matrices of each layer:

T = D0
−1�D2P2D2

−1D1P1D1
−1�ND0, �3�

where D0= � 1 1
n0 −n0

�, and n0 is the refractive index of the air
background. The FFs in the right and left sides of the struc-
ture are related by this matrix:

��t
+

�t
− � = T��0

+

�0
− � . �4�

From this equation one can solve for the reflection and trans-
mission coefficients ��0

− and �t
+� under a given incident

wave coefficient ��0
+�. Then, the relative amplitudes �i

± of
every layer can be completely determined from the incident,
reflection, and transmission coefficients:
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FIG. 1. Schematic diagram of multilayered nonlinear medium.
The arrows inside the crystal indicate the direction of spontaneous
polarization.
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��2i–1
+

�2i–1
− � = D2i–1

−1 �D2P2D2
−1D1P1D1

−1�i−1D0��0
+

�0
− � , �5�

��2i
+

�2i
− � = D2i

−1D1P1D1
−1�D2P2D2

−1D1P1D1
−1�i−1D0��0

+

�0
− � .

�6�

Now that we have obtained the distribution of the FF
everywhere within the nonlinear optical medium, we have
accomplished the first process in our TMM. Let us move on
to the second process, where the solution of the SH field
within every composite layer is the central task. The nonlin-
ear polarization induced by the FF inside each layer is di-
rectly related to the fundamental field as

Pi
NL�z,t� = �0�i

�2��Ei
�1��z��2 exp�− i2�t� . �7�

In the solution to the propagation equation of the SH field,
we retain all second-order spatial derivatives, and our result
is free from the usual slowly-varying-amplitude approxima-
tion. The propagation equation for the SH field is

�2E2��z�
�z2 + k2

2E2��z� = �
�2PNL�z,t�

�t2 . �8�

In each layer of the composite structure Eq. �8� becomes

�2Ei
�2��z�

�z2 + ki
�2�2Ei

�2��z�

= − ��0�i
�2�4�2���i

+�2 exp�2iki
�1��z − zi�� + 2�i

+�i
−

+ ��i
−�2 exp�− 2iki

�1��z − zi��� , �9�

where ki
�2� and ki

�1� are the wave vectors of the SH field and
FF in the ith layer, respectively, and ki

�2�=ni
�2�k20, k20=2� /c.

By solving Eq. �9�, we can get the electric field distribu-
tion of the SH wave. In the ith layer, it can be expressed as

Ei
�2��z� = Ei

�2�+ exp�iki
�2��z − zi−1�� + Ei

�2�− exp�− iki
�2��z − zi−1��

+ Ai��i
+�2 exp�i2ki

�1��z − zi−1��

+ Ai��i
−�2 exp�− i2ki

�1��z − zi−1�� + 2Ci�i
+�i

−, �10�

where Ei
�2�+ and Ei

�2�− represent the amplitudes of the forward

and backward SH waves, and Ai=
−4��0�i

�2��2

ki
�2�2−4ki

�1�2 , Ci=
−4��0�i

�2��2

ki
�2�2 .

Using the Maxwell equations, we can write the magnetic
field H in the ith layer as

Hi
�2��z� =

1

ik20
�� � Ei

�2��z��

= ni
�2��Ei

�2�+ exp�iki
�2��z − zi−1��

− Ei
�2�− exp�− iki

�2��z − zi−1���

+
2k10ni

�1�

k20
Ai���i

+�2 exp�i2ki
�1��z − zi−1��

− ��i
−�2 exp�− i2ki

�1��z − zi−1��� , �11�

where k10=� /c and k20=2� /c are the wave vectors of the
FF and SH waves in the air, respectively.

After we get the electric �Eq. �10�� and magnetic �Eq.
�11�� fields of the SH within every layer, it is time to deal
with the last process, namely, to study the propagation of the
SH. For the sake of convenience we make the following
definitions:

Ei
�2�+�z� = Ei

�2�+ exp�iki
�2��z − zi−1�� ,

Ei
�2�−�z� = Ei

�2�− exp�− iki
�2��z − zi−1�� ,

��i
+�2�z� = ��i

+�2 exp�i2ki
�1��z − zi−1�� ,

��i
−�2�z� = ��i

−�2 exp�− i2ki
�1��z − zi−1�� .

Then Eqs. �10� and �11� can be written in the form of a
matrix as

�Ei
�2��z�

Hi
�2��z�

� = � 1 1

ni
�2� − ni

�2� ��Ei
�2�+�z�

Ei
�2�−�z�

�
+ 	 1 1

2ni
�1�k10

k20
−

2ni
�1�k10

k20

�Ai��i

+�2�z�
Ai��i

−�2�z�
�

+ �1

0
�Ci�i

+�i
−. �12�

In Eq. �12�, the first part on the right side of the equation
denotes the free-wave amplitudes of the SH e.m. fields, the
second part denotes the bound-wave amplitudes of the SH
fields just created by the forward and backward FFs in this
layer, and the third part denotes the influence of interference
between the forward and backward FFs on the SH fields.

For convenience, we define several matrices as

G0 = � 1 1

n20 − n20
�, G1 = � 1 1

n1
�2� − n1

�2� � ,

G2 = � 1 1

n2
�2� − n2

�2� �, B1 = 	 1 1

2n1
�1�k10

k20
−

2n1
�1�k10

k20

 ,

B2 = 	 1 1

2n2
�1�k10

k20
−

2n2
�1�k10

k20

 .

We will now determine the values of the free-wave ampli-
tudes Ei

�2�+ and Ei
�2�−. Considering the continuous condition

of the electric and magnetic fields at the interfaces Z
=Z2�j−1�, Z=Z2j−1, and Z=Z2j, we get the relation of the SH
field through the jth segment �j=1,2 , . . . ,N�:
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�Ej
�2�+

Ej
�2�− � = G0

−1SG0�Ej−1
�2�+

Ej−1
�2�− � + G0

−1�N2B1F1 − SB1�

��A1��2j−1
+ �2

A1��2j−1
− �2 � + G0

−1�N2 − S��1

0
�C1�2j−1

+ �2j−1
−

+ G0
−1�B2F2 − N2B2��A2��2j

+ �2

A2��2j
− �2 � + G0

−1�1 − N2�

��1

0
�C2�2j

+ �2j
− , �13�

where S=G2Q2G2
−1G1Q1G1

−1, N2=G2�Q2G2
−1,

Q1 = �exp�ik1
�2�d1� 0

0 exp�− ik1
�2�d1�

� ,

Q2 = �exp�ik2
�2�d2� 0

0 exp�− ik2
�2�d2�

� ,

F1 = �exp�i2k1
�1�d1� 0

0 exp�− i2k1
�1�d1�

� ,

F2 = �exp�i2k2
�1�d2� 0

0 exp�− i2k2
�1�d2�

� .

As a recursive equation, Eq. �13� serves as the unit transfer
matrix of the SH field for the jth segment. From this equa-
tion we can get the overall transfer matrix of the SH signal
for the whole nonlinear structure. Considering the periodicity
of the structure, we get the SH fields radiated from the left
and right sides of the multilayered nonlinear structure com-
posed of N segments by recursion:

�Et
�2�+

0
� = G0

−1SNG0� 0

E0
�2�− �

+ �
i=1

N

G0
−1SN−i��N2B1F1 − SB1��A1��2i−1

+ �2

A1��2i−1
− �2 �

+ �N2 − S��1

0
�C1�2i−1

+ �2i−1
− + �B2F2 − N2B2�

��A2��2i
+ �2

A2��2i
− �2 � + �1 − N2��1

0
�C2�2i

+ �2i
−  . �14�

From Eq. �14� we can calculate E0
�2�− �the SH field radiated

from the left side� and Et
�2�+ �the SH field radiated from the

right side�. Using the same method we can also get the SH
field distribution inside the structure.

III. RESULTS AND DISCUSSION

In the following calculation, we assume that the multilay-
ered media are composed of periodically poled strontium
barium niobate �SBN� crystal, whose nonlinear susceptibility
is ��2�=27.2 pm/V. The refractive index for SBN is given by
the following dispersion formula:

n2 = a +
b

�2 − c
+ d� ,

where a=4.78+0.38x, b=1.02�105+1.48�104x, c=4.72
�104+2.67�104x, d=−2.14�10−5x, and x=0.75. The
wavelength � is in units of nanometers.

Periodically poled ferroelectric crystals are characterized
by modulations of the nonlinear susceptibilities. In order to
introduce photonic band gaps, we use the electro-optical ef-
fect of this crystal to realize the modulation of the refractive
index. If an electric field E is applied along the optical axis
the new refractive index is

n1 = n + �n1 = n −
1

2
n3r33E ,

where r33 is the electro-optic coefficient of the material and
E is the electric field amplitude. Similar to the nonlinear
optical coefficient, the electro-optic coefficient also has dif-
ferent signs in different domains. Therefore, in the reversed
domains, the electro-optic coefficient changes sign and the
refractive index can be written as

n2 = n + �n2 = n +
1

2
n3r33E .

It is obvious that a modulated linear susceptibility occurs due
to the presence of an external strong electric field based on
the electro-optical effect. As a result, photonic band gaps
may become available in periodically poled ferroelectric
crystals.

If there is only a modulation of nonlinear susceptibility
while the linear refractive indices are uniform, the conver-
sion efficiency will be modulated by the phase difference
between the FF and SH field. The maximal conversion effi-
ciency will be achieved when the quasi-phase-matched con-
dition is satisfied. But when there are large refractive index
discontinuities, the phase of the transmitted plane-wave field
will undergo a shift at the boundary. The wave vectors are
also strongly modified because of the appearance of photonic
band gaps. As a result, the original QPM condition is vio-
lated and the conventional QPM mechanism must be rewrit-
ten in the new nonlinear photonic crystal structures. Al-
though a Bloch wave can be defined in this structure, which
has a periodic refractive index modulation �27�, and with the
nondepleted pump wave approximation the FF can be repre-
sented by the Bloch wave, yet for the generated SH wave, a
Bloch wave representation is inappropriate for several rea-
sons. First, the forward Bloch wave is subject to reflection at
the sample surface. More importantly, the SH wave radiated
from the nonlinear polarization created by the Bloch wave
will encounter significant multiple reflection within the re-
markably modulated photonic crystal structure. Finally, the
SH wave is also subject to reflection at the sample surface. It
is then clear that a Bloch wave is not the most appropriate
tool to accurately describe the nonlinear optical interactions
in the current structure. It is very difficult to extract an ex-
plicit expression for the phase match condition from such a
picture.
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It can be seen clearly from the rather messy mathematical
derivation in Sec. II that the existence of a strong light scat-
tering effect in the nonlinear photonic crystal structure has
greatly complicated the analysis of the SHG problem. It is
obvious that the conventional analytical solution used in the
usual QPM problem is no longer valid. Because of this, we
directly carry out numerical simulations to establish the
QPM condition of the structure by tuning the thickness of the
two composite domains. The optimum structure is judged by
occurrence of the maximum SH conversion efficiency. In
Fig. 2 we plot the SH conversion efficiency as a function of
the thickness of each segment d, when the thickness of the
positive domain is set to d1=3363.162 nm. The structure is
composed of 50 layer-pair stacks, and we choose the funda-
mental light wavelength as 848.0 nm. For this wavelength,
the refractive indices in the positive and negative domains
are n1

�1�=1.617 and n2
�1�=2.955, respectively, after applying

an external electric field whose intensity is of the order of
tens of kV/mm. The refractive indices of the SH wave in the
positive and negative domains are n1

�2�=1.68 and n2
�2�

=3.245, respectively. A smaller electric field will lead to
shallower modulation of the refractive index. However, the
design principle is the same. We note from Fig. 2 that the
maximum SH conversion efficiency occurs when d
=4094.33 nm and the maximum value of conversion effi-
ciency is about 10%. This is quite remarkable considering
the fact that the total length of the structure is only about
205 �m. In the structure described above, a minimization of
the phase difference between the FF and SH waves must be
reached. Otherwise, if the phase is totally mismatched, the
SH field cannot constructively grow in the whole length of
the structure and the efficiencies are often of the order of
magnitude of 10−5.

It is well known that the SH conversion efficiency is de-
termined not only by the power of the pump light, but also
by the intensity of the pump light inside the media. So, ex-
cept for the QPM condition, the properties of photonic band
edges contribute much to the enhancement of SH conversion
efficiency. Figure 3�a� plots the SH conversion efficiency as
a function of pump field intensity. The conversion efficiency
is defined as the ratio between the light intensities of the SH
and fundamental pump waves. As a comparison, the SH con-
version efficiency from a QPM SBN crystal of equivalent

length is shown in Fig. 3�b�. The conversion efficiency in
Fig. 3�b� is just on the order of 10−3, which is lower by two
orders of magnitude than the value of the designed structure
as discussed in Fig. 2. Figure 4 illustrates the calculated
transmittance spectrum for d=4094.33 nm. Material disper-
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FIG. 2. Conversion efficiency of second harmonic wave vs
thickness of each segment, d. the maximum conversion efficiency
occurs when d=4094.33 nm and d1=3363.162 nm. The wavelength
of the pump wave is �=848.0 nm.
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FIG. 3. Second harmonic wave conversion efficiency vs pump
light intensity: �a� the optimized layered structure with periodic
poling; �b� QPM uniform bulk crystal. The squares represent calcu-
lated values and the solid line is a linear fit. The structure of �a� is
the same as that of Fig. 2.
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ond harmonic field wavelengths when d=4094.33 nm, which is the
optimized structure to generate the second harmonic waves ob-
tained through Fig. 2.
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sion has been considered in the numerical calculation. The
result suggests that this choice of parameters has resulted in
a situation where the FF and SH signals are all located at the
photonic band gap edges, where the density of electromag-
netic field modes is large and the group velocity is low.
Therefore, the field amplitude may be enhanced by one order
of magnitude or more, and the nonlinear interaction time
becomes much longer. The combination of these several
factors is ultimately responsible for the greatly enhanced
efficiencies.

Figure 5 plots the calculation results of the SHG effi-
ciency when detuning the pump wave around 848.0 nm. The
nonlinear optical structure is identical to that in Fig. 4. The
left and right curves denote the forward and backward output
intensity, respectively. Each vertical axis scale is defined on
each side of the figure. The amplitude in the figure has been
normalized to unity. It can be seen from Fig. 5 that the struc-
ture proposed here radiates significantly in both directions.
The intensity of the backward SH signal is large and approxi-
mately equal to that of the forward SH signal, while in the
case of an equivalent length of a bulk QPM nonlinear optical
medium, the backward signal is lower by one or more orders
of magnitude than the forward signal. It is so weak that it is
often neglected. The multiple reflection effects induced by
large index discontinuity generate the large backward signals
as well as the enhanced SH conversion efficiency. The maxi-
mum SH signal in this figure corresponds to the band gap
edge in Fig. 4, and the ripples near the radiation peak are
induced by the multiple reflection effect at the two surfaces
of the nonlinear structure.

In order to look straightforwardly at the distribution of
fields inside the structure, we plot in Fig. 6 the intensity of
the pump field and SH field inside the structure calculated by

the proposed TMM. From the figure we can see that the
intensity of the pump field is oscillating inside the structure
because of the interference induced by multiple reflections.
The maximum intensity is enhanced by more than one order
of magnitude compared to the incident field amplitude. The
enhancement magnitude at different wavelengths is different
and is consistent with the transmission spectrum of the pump
field as illustrated in Fig. 7, which records the maximum
value of the pump intensity inside the structure. The en-
hancement factor at �=848.0 nm is maximal because this
wavelength is located at the band gap edge as can be found
in Fig. 4. Each wavelength corresponding to the transmission
resonance peak in Fig. 4 will have a peak in Fig. 7. However,
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FIG. 5. SH output �normalized� vs wavelength of pump waves.
The parameters of the nonlinear optical structure are the same as
those in Fig. 4.
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the farther away the pump wavelength from the band edge,
the smaller the peak value of the SH efficiency.

IV. CONCLUSIONS

In summary, we have developed a transfer matrix method
to analyze the SHG problem in multilayered nonlinear opti-
cal media. Multiple reflection and interference effects are
taken into account while deriving the transfer matrix for both
the fundamental and SH waves. The proposed method is free
from the several major approximations made in the previous
literature that handled the harmonic generation problem in
conventional QPM nonlinear optical media. To this extent, it
is an exact approach and can give accurate results Using the
method, we have investigated the radiation of SH waves
from both sides of a nonlinear optical sample and the distri-
bution of SH fields within the structure. As an example, we
have investigated SHG in a one-dimensional SBN nonlinear
photonic crystal. Comparison has been made between the
current designed and the conventional QPM structure. It is

found that, in an optimum structure, the second harmonic
generation efficiency can be several orders of magnitude
larger than in a conventional QPM nonlinear structure with
the same sample length. The reason is that, due to the pres-
ence of photonic band gap edges, the density of states of the
electromagnetic fields is large, the group velocity is small,
and the local field is enhanced. All three factors contribute to
the significant enhancement of nonlinear optical interactions.
In addition to the usual SHG from the forward direction of
the pump wave, the SHG from the backward direction is also
strong due to the large scattering effect by the nonlinear pho-
tonic crystal.
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