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Recently we proposed a phase field model to describe Marangoni convection in a compressible fluid of van
der Waals type far from criticality �Eur. Phys. J. B 44, 101 �2005��. The model previously developed for a
two-layer geometry is now extended to drops and bubbles. A randomly distributed initial density evolves
towards phase separation and single droplet formation. For a two-component liquid-liquid system we report on
numerical simulations for drop Marangoni migration in a vertical thermal gradient.
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Drops and bubbles are encountered in our everyday life.
They appear in many industrial situations involving material
processing, manufacturing, boiling, storage, and manage-
ment of liquids. The word drop represents an object which
contains liquid and the word bubble is used to designate an
object which contains gas or vapor. In experiments carried
out in reduced gravity the gravitational force acting on par-
ticles, drops, or bubbles becomes very small or completely
vanishes. This is the motivation for studying the motion of
these objects due to forces other than gravity. One can imag-
ine few mechanisms independent of gravity that will cause
the motion of a droplet �drop or bubble�. For example, an
electric or magnetic field can be used to move an object. The
most common mechanism that has been used is, however, the
application of a temperature gradient, because it is easy to
produce temperature variations in a fluid. Such gradients also
occur naturally in many material processing applications, be-
cause of the use of heating or cooling as an integral part of
the process. A droplet placed in a temperature gradient tends
to move towards the hotter wall, “attracted” by hot objects.
This is the motion of the droplet relative to the shearing
Marangoni flow induced along its surface by surface tension
gradients. This phenomenon is called thermocapillary migra-
tion or Marangoni migration and has been experimentally
discovered by Young et al. in 1959 �1�. It has been widely
theoretically investigated, using classical models, for quasis-
tationary states of incompressible spherical droplets �see
Refs. �2–6�, and references therein�. The classical models
consider the hydrodynamic basis equations �energy and
Navier-Stokes equations� for each phase, shear stress balance
�Marangoni condition� and continuity of the heat fluxes
along the droplet interface.

The purpose of this paper is to examine the same phenom-
enon using a phase field model. Here, one introduces an ad-
ditional field to the usual set of state variables to distinguish
between the different phases. With the help of this phase
field all the system parameters can be expressed as functions
varying continuously from one medium to the other. There-
fore, the problem is treated like an entire one phase problem
and the interface conditions will be substituted by some extra
terms in the Navier-Stokes equation. Because they reduce the

system of equations �they don’t need different equations for
each medium� and eliminate the explicit interface conditions,
the phase field models are suitable for problems with com-
plex geometries and are very attractive in view of their nu-
merical simplicity.

The present work extends the phase field model previ-
ously elaborated for describing Marangoni convection in
two-layer systems �7–11� to drops and bubbles and presents
some phase field simulations for Marangoni migration in
two-component fluids. We first study an isothermal system
without gravity—a liquid in equilibrium with its own
vapor—a situation for which the most natural phase field
variable is the density �, scaled by the liquid density. So �
=1 designates the liquid phase and ��0 the vapor bulk. For
a two-phase system with diffuse interface and without evapo-
ration phenomena the Helmoltz free-energy functional is
given by �12,13�

F��� = �
V

� f��� +
K��� ��2

2
�dV , �1�

where the first term in Eq. �1� represents the free-energy
density for the homogeneous phases and the second term is
associated with variations of density and contributes to free-
energy excess of the interface

� = �
−�

+�

K��� ��2dz .

As already shown in Refs. �7,8�, minimizing the free-energy
functional �1� one can derive the nonclassical phase field
terms which has to be included in the Navier-Stokes equation
for assuring the shear stress balance at the droplet interface

�
dv�

dt
= − �� p + ��� ��� · �K�� ��� + �� · ���� v�� + �� ���� · v��

+ �g� , � �
�

3
. �2�
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��

�t
+ �� · ��v�� = 0, �3�

so that the mass conservation is fulfilled. For a system in
equilibrium and without interfacial mass exchange the free-
energy density has to be a symmetrical double-well potential
with two minima corresponding to the two alternative
phases: �=1 for the liquid and �=0 for the vapor state. We
choose the free-energy density given by

f��� =
C

2
�2�� − 1�2. �4�

If one represents the thermodynamical pressure p���=�
�f
��

− f��� against the unit volume 1/� for the free-energy density
�4� one observes a curve of van der Waals type �see Fig. 1�.
With Eq. �4�, the Navier-Stokes equation �2� admits an ana-
lytical solution for the stationary state

�0�z� = 1	�1 + exp
�z − 1�

l
�, l � 
K/C .

The above parameter l describes the thickness of the inter-
face. For small enough values of l this solution describes two
superposed liquid-vapor layers with the liquid boundary at
z=0, the vapor boundary at z=2, and the diffuse interface
around z=1. Thermocapillary convection in two planar lay-
ers vertically heated was investigated in Refs. �9,11� in the
frame of the phase field model. A linear stability analysis and
a comparison with the classical models were done in Ref.
�9�. The fully nonlinear evolution for the same problem with
evaporation was described in Ref. �11�.

Now we wish to use the Eqs. �2� and �3� to treat drops and
bubbles. For this new geometry one has no analytical solu-
tion for the stationary state and no linear stability analysis
can be done. Instead, one can solve the problem numerically
starting from an initial noise density

�initial�x,z� = Cm��x,z� , �5�

where Cm is the noise intensity and � is a random distribution
between 0 and 1. The constant Cm controls the total mass of
the system. Depending on its value, the asymptotically stable

state of lowest free energy corresponds to a single liquid
drop in a vapor atmosphere �small Cm� or a gas bubble in a
liquid �large Cm�. The noise character of Eq. �5� may act as
seeds for phase separation in the unstable or metastable re-
gime of Fig. 1. In the latter, drops or bubbles are found by
nucleation and need a finite initial disturbance. In both cases,
the dynamical process is dominated by coarsening and re-
laxes towards one of the “fixed points” described above.

The material parameters �, �, 	 and c are considered
linearly coupled to the density. For numerical simulations we
developed a numerical code in two spatial dimensions based
on a finite difference method with 200
200 mesh points for
water-vapor parameters �14�. The interface is about 3% from
the length of the box, that means a resolution around 7 points
in the diffuse interface. No-slip conditions for the velocity
field were imposed at the wall boundaries �v� =0�.

For low total mass small liquid drops are coalescing form-
ing larger and larger drops as the time evolves. Figure 2
displays time series for an average density �̄=0.27 �the time
indicated in the labels is scaled by d2 /� where d is the length
of the box and �=	 /�c is the liquid thermal diffusivity�. The
density distributions are emphasized in a grey scale, where
the white regions describe the maxima of fluid density, the
dark regions the minima. When the saturation state is
reached �t�5000� a single liquid drop remains in the vapor
system. Increasing in the following the mass of the system
the final drop becomes bigger and bigger till an intermediate
situation appears, represented in Fig. 3 for �̄=0.56. For
0.42
�̄
0.81 the system hardly decides between drops and
bubbles and therefore a planar liquid-vapor system may per-
sist for very long times. For �̄�0.82 the formation of a va-
por bubble in a liquid is energetically favorable, as shown in
Fig. 4. We have to remark that the boundary conditions for
the density field at the solid walls play an important role for
the contact angle at the solid surface and determine the po-
sition of the droplet. In our model we have controlled the
contact angle through the density at the solid boundary. The
influence of the boundary conditions on the droplet contact
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FIG. 1. The pressure corresponding to the free-energy density
�5� as function of v=1/�. The unit volumes for liquid and vapor
phase are vl=1 and vv=�, respectively.
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FIG. 2. Time series in �x ,z� plane for the formation of a liquid
drop in a vapor atmosphere for a system without gravity and with-
out external heating ��̄=0.27�.
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angle will be described in more detail elsewhere.
Next we concentrate on a two-component system in a

gravitational field heated from above. We simulate quantita-
tively the experimental results given by Savino et al. in Ref.
�4�, concerning Marangoni migration on Fluorinert FC43
drops in a silicone oil �3 Cs�. Fluorinert FC43 and silicone
oil are two liquids with the densities 1.88 g/cm3 and
0.89 g/cm3, respectively. A complete list of the physical
properties of the two investigated liquids is given in Ref. �4�.
We scale the density to the heavier liquid density. So �=1
designates now the Fluorinert FC43 and �=0.47 the silicon
oil. Under these conditions the bulk potential �4� takes the
form

f��� =
C

2
�� − 0.47�2�� − 1�2.

No interfacial mass exchange appears between the two liq-
uids, therefore we can again use the free energy functional
�1�.

As in the one-component system presented above, de-
pending on the total mass, one can have either a Fluorinert
drop in silicone oil or a silicon oil drop in Fluorinert. We
focus on the formation of a Fluorinert droplet under the
gravitational field. One obtains a drop falling down under a
sedimentation force, which is the resultant between the grav-
ity and the Archimedian force �see Fig. 5�a��. Additionally
we apply an external heating at the upper wall. In order to
describe thermocapillary convection in the frame of the
phase field model we have to consider the generalized sur-
face tension coefficient K weakly depending on temperature
K=K0−KTT�KT�0�. The temperature field from Eq. �2� is
described by the energy equation

�c� �T

�t
+ �v� · �� �T� = �� · �	�� T� + q �6�

with c as the specific heat capacity, 	 as the thermal conduc-
tivity, and q as the internal heat generation rate per unit vol-
ume. In our system without interfacial mass exchange, no
evaporation or condensation phenomena appear, and the dis-
sipative heat production can surely be neglected. That means,
we can assume q=0.

We consider a Fluorinert drop of diameter D�0.13 mm
inside a box 0.25 mm
0.25 mm filled with silicone oil. The
temperature differences top-bottom are about �T��2
−10� K. The temperature gradient generates a surface ten-
sion gradient along the droplet interface. The lowering of
surface tension at its leading pole—hotter than the rear
pole—induces Marangoni flows inside and outside of the
drop �see the streamlines plotted in Fig. 6�b��. Shearing
around the droplet surface creates a net force on the drop, a

Marangoni pushing force F� M directed upwards, towards the
hotter wall. This force is the resultant between the viscosity
and the pressure forces along the drop �4�:

�FM�i = �
S

nj�ijdS − �
S

pnidS

�� is the viscous stress tensor�.
For a sufficiently high temperature gradient �sufficient

Marangoni stress� the Marangoni pushing force F� M can bal-
ance the sedimentation force caused by the gravitational
field. Hence in the steady state a floating liquid drop can

occur, as depicted in Fig. 5�b� for �T=2 K. If 
�� T
 increases
further, the drop moves up and finds its equilibrium at a
higher position �see in Fig. 5�c� the droplet position at �T
=9 K�.

Recent studies on Marangoni migration in one-component
fluids show that, latent heat released or absorbed at the inter-
face drastically changes the hydrodynamic flow around the
droplet �6�. As result the temperature becomes almost

� � � � � � � � �
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FIG. 3. Time series in �x ,z� plane for the formation of a planar
liquid-vapor system ��̄=0.56� under microgravity conditions.
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FIG. 4. Time series in �x ,z� plane for the formation of a vapor
bubble in a liquid ��̄=0.83�. The boundary conditions for the den-
sity field at the solid walls favor the bubble to be in contact with the
solid surface.
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homogeneous inside the droplet and the Marangoni effect
arising from the surface tension gradient is much suppressed.
For example, for a liquid droplet in CO2 the droplet velocity
is much decelerated and completely vanishes for large
enough droplets. We plan to extend our phase field modelling
to one-component systems with interfacial mass exchange

and to examine the latent heat effects close to water drops in
vapor atmosphere at usual room temperatures.

Summarizing, we developed a scheme to study drops and
bubbles using the phase field formalism. A randomly distrib-
uted initial density evolves to phase separation and single
droplet formation. For two-component liquid-liquid systems
we have performed numerical simulations for Marangoni mi-

� � �

� � �

� � �

FIG. 5. Position of Fluorinert FC43 droplet �D=0.13 mm� in 3
Cs silicon oil 3 in �x ,z� plane �0.25 mm
0.25 mm�: �a� isothermal
conditions, �b� �T=2 K, �c� �T=9 K.
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FIG. 6. The balance between Marangoni and gravity effects
leads to a floating Fluorinert droplet in silicone oil �d=0.25 mm,
D=0.13 mm, �T=9 K�. Frame �a� shows the profile of temperature
in �x ,z� coordinates �the system is heated from above�, �b� the
streamlines, and �c� the density.

RODICA BORCIA AND MICHAEL BESTEHORN PHYSICAL REVIEW E 75, 056309 �2007�

056309-4



gration in a vertical temperature gradient in the presence of a
gravitational field. A good agreement between our phase field
simulations and the experiments done by Savino et al. in
Ref. �4� is obtained.

Simple, flexible and elegant, the actual model can become
a useful tool for describing different phenomena with large
applications in material and chemical engineering as Ma-
rangoni migration, chemically driven running drops, drop

spreading on a solid surface, drop motion on an inclined
substrate under gravity effects, or oscillatory thermocapillary
convection around bubbles heated from above at very large
Marangoni numbers.
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