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We discuss some problems encountered in inference of directionality of coupling, or, in the case of two
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can lead to either decreased test sensitivity or false detections and propose ways to cope with them in order to
perform tests with high sensitivity and a low rate of false positive results.
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I. INTRODUCTION

Cooperative behavior of coupled complex systems has re-
cently attracted considerable interest from theoreticians as
well as experimentalists �see, e.g., the monograph �1��, since
synchronization and related phenomena have been observed
not only in physical but also in many biological systems.
Examples include cardiorespiratory interactions �2–5� and
synchronization of neural signals �6–10�. In such systems it
is important not only to detect synchronized states, but also
to identify drive-response relationships between the systems
studied. This problem is a special case of the general ques-
tion of causality or causal relations between systems, pro-
cesses, or phenomena. The mathematical formulation of cau-
sality in measurable terms of predictability was given by
Wiener �11�. Granger �12� introduced a specific notion of
causality into time series analysis by evaluation of predict-
ability in bivariate autoregressive models. This linear frame-
work for measuring and testing causality has been widely
applied in economy and finance �see Geweke �13� for a com-
prehensive survey of the literature�, but also in different sci-
ences such as climatology �see �14� and references therein�
or neurophysiology, where specific problems of multichannel
electroencephalogram �EEG� recordings were solved by gen-
eralizing the Granger causality concept to multivariate cases
�15,16�. Nevertheless, the limitation of the Granger causality
concept to linear relations required further generalizations,
which emerged especially in the intensively developing field
of synchronization of complex systems. Considering the task
of identification of drive-response relationships, a number of
asymmetric dependence measures have been proposed
�6,7,9,10,17–22� and applied in diverse scientific areas such
as laser physics �23�, climatology �24,25�, cardiovascular
physiology �22,24�, neurophysiology �6,7,9,10,26–28�, and
finance �29�. In spite of these widespread applications of
various coupling asymmetry measures, the task of correct
inference of coupling asymmetry, i.e., the identification of
the driving and driven systems from experimental time se-

ries, is far from resolved. In this paper we identify some
problems encountered in this task and give some practical
advice for avoiding false detections of coupling asymmetry
or causality. We will consider two interacting systems, pos-
sibly one of them driving the other. Then the coupling asym-
metry, or, as it is called, the directionality of coupling, also
identifies causality, or causal relations between the studied
systems. The problem of distinguishing the true causality
from indirect influences in interactions of three or more sys-
tems is beyond the scope of this paper and will be addressed
elsewhere.

In Sec. II we introduce three examples of unidirectionally
coupled chaotic systems and analyze their coupling using
three already published measures. In this way we demon-
strate the importance of choice of an appropriate measure
with known properties and a solid mathematical background.
In Sec. III we review basic measures defined in information
theory and specify applications of conditional mutual infor-
mation �CMI� for detection of causality. Section IV intro-
duces multidimensional conditional mutual information ap-
plicable to amplitudes of dynamical systems or stochastic
processes, and a version of CMI for evaluation of coupling
asymmetry using instantaneous phases of coupled oscillatory
systems. Then, in Sec. V, we study bias and variance of CMI
estimates and discuss statistical evaluation of the estimated
CMI in order to assure correct inference of causality and/or
coupling asymmetry from experimental time series. Further
factors influencing the bias in the CMI estimates are dis-
cussed in Sec. VI, where also an example of assessing the
direction of coupling in cardiorespiratory interaction is pre-
sented. The discussed topics are summarized and conclusions
given in Sec. VII. Finally, the Appendix proves the equiva-
lence of the conditional mutual information and the transfer
entropy introduced by Schreiber �18�.

II. ASYMMETRY IN COUPLING:
SYSTEMS AND MEASURES

As the first example, let us consider the unidirectionally
coupled Rössler and Lorenz systems, also studied in Refs.
�7,9,19�, described by the equations

ẋ1 = − ��x2 + x3� ,

ẋ2 = ��x1 + 0.2x2� ,
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ẋ3 = ��0.2 + x3�x1 − 5.7�� �1�

for the autonomous Rössler system, and

ẏ1 = 10�− y1 + y2� ,

ẏ2 = 28y1 − y2 − y1y3 + �x2
�,

ẏ3 = y1y2 −
8

3
y3 �2�

for the driven Lorenz system, in which the equation for ẏ2 is
augmented by a driving term involving x2. We will analyze
the case with �=6 and �=2.

For the second example we will use the unidirectionally
coupled Hénon maps, also studied in Refs. �6,9,19�, with
equations

x1� = 1.4 − x1
2 + b1x2,

x2� = x1 �3�

for the driving system �X�, and

y1� = 1.4 − ��x1y1 + �1 − ��y1
2� + b2y2,

y2� = y1 �4�

for the response system �Y�. Here we will study identical
systems with b1=b2=0.3.

Our third example will be the unidirectionally coupled
Rössler systems given by the equations

ẋ1 = − �1x2 − x3,

ẋ2 = �1x1 + a1x2,

ẋ3 = b1 + x3�x1 − c1� �5�

for the autonomous system, and

ẏ1 = − �2y2 − y3 + ��x1 − y1�

ẏ2 = �2y1 + a2y2

ẏ3 = b2 + y3�y1 − c2� �6�

for the response system. In this section we will use param-
eters a1=a2=0.15, b1=b2=0.2, c1=c2=10.0, and frequencies
�1=1.015 and �2=0.985.

The data from continuous nonlinear dynamical systems
were generated by numerical integration based on the adap-
tive Bulirsch-Stoer method �30� using the sampling interval
0.026 17 for the systems �1� and �2�, and 0.1256 for the
systems �5� and �6�. In the latter case this gives 17–21
samples per one period. When Rössler systems with different
frequencies were used, the sampling was updated in order to
keep 19–20 samples per period of the faster system �Secs. V
and VI�.

In all the cases, we denote the driving, autonomous sys-
tem by �X�, and the driven, response system by �Y�. For each
of the above three examples we define a set of coupling

strength parameters � increasing from �=0 to an � value
before the synchronization threshold. As Paluš et al. �9� ex-
plain, the direction of coupling can be inferred from experi-
mental data only when the underlying systems are coupled,
but not yet synchronized. In the numerical examples, the
synchronization threshold can be determined using the plot
of Lyapunov exponents �LEs� of the coupled systems as the
function of the coupling strength �. With increasing �, the
positive Lyapunov exponent of the response system �also
known as the conditional Lyapunov exponent �31�� de-
creases, and it becomes negative just at the � value giving the
synchronization threshold. The plots of the Lyapunov expo-
nents for the Rössler-Lorenz systems �1� and �2� can be
found in Refs. �9,19�, the LE plots for the coupled Hénon
systems �3� and �4� in Refs. �6,9,19�, while further study of
the coupled Rössler systems �5� and �6�, including their LE
plot, can be found in Sec. IV.

For each value of � from the predefined range we numeri-
cally generate time series �xi� and �yi� as outputs of the sys-
tems �X� and �Y�, obtained by recording the components x1

and y1, respectively, and analyze them by using the following
three methods.

Two different methods exploit the approach suggested by
Rulkov et al. �32� based on the assumption of the existence
of a smooth map between the trajectories of �X� and �Y�. If
such a smooth map exists then closeness of points in the state
space X of the system �X� implies a closeness of points in the
state space Y of the system �Y�.

One of the methods due to Le Van Quyen et al. �7� is
based on cross prediction using the well-known idea of mu-
tual neighbors. A known or reconstructed state space �e.g.,
using a time-delay embedding �33� Xn= �xn ,xn−� ,xn−2� , . . . ��
must be available. However, instead of using k nearest neigh-
bors, a neighborhood size � is preselected. Considering a
map from X to Y, a prediction is made for the value of yn+1
one step ahead using the following formula:

ŷn+1 =
1

�V��Xn�� �
j:Xj�V��Xn�

yj+1. �7�

The volume V��Xn�= �Xn� : �Xn�−Xn���� is the � neighbor-
hood of Xn and �V��Xn�� denotes the number of points con-
tained in the neighborhood. Using data rescaled to zero mean
and unit variance, the authors define a cross-predictability
index by subtracting the root-mean-square prediction error
from 1

P�X → Y� = 1 −	 1

N
�
n=1

N

�ŷn+1 − yn+1�2, �8�

which should measure how the system �X� influences the
evolution of the system �Y�. The cross-predictability index
P�Y →X� in the opposite direction, characterizing the ability
of the system �Y� to influence the evolution of the system
�X�, is defined in full analogy.

The second approach, proposed by Arnhold et al. �17� and
analyzed by Quian Quiroga et al. �19�, uses mean square
distances instead of the cross predictions in order to quantify
the closeness of points in both spaces. We use the implemen-
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tation according to Refs. �19,34� in which a time-delay em-
bedding �33� is first constructed in order to obtain state space
vectors X and Y for both time series �xi� and �yi�, respec-
tively; then the mean squared distance to k nearest neighbors
is defined for each X as

Rn
�k��X� =

1

k
�
j=1

k

�Xn − Xrn,j
�2, �9�

where rn,j denotes the index of the jth nearest neighbor of
Xn. The Y-conditioned squared mean distance is defined by
replacing the nearest neighbors of Xn by the equal time part-
ners of the nearest neighbors of Yn as

Rn
�k��X�Y� =

1

k
�
j=1

k

�Xn − Xsn,j
�2, �10�

where sn,j denotes the index of the jth nearest neighbor of
Yn. Then the asymmetric measure

S�k��X�Y� =
1

N
�
n=1

N
Rn

�k��X�
Rn

�k��X�Y�
�11�

should reflect interdependence in the sense that closeness of
the points in Y implies closeness of their equal time partners
in X and the values of S�k��X �Y� approach 1, while, in the
case of X independent of Y, S�k��X �Y��1. The quantity
S�k��Y �X� measuring the influence of �X� on �Y� is defined in
full analogy.

The third measure, used in this section, the coarse-grained
transinformation rate i�X→Y�, is the average rate of the net
amount of information “transferred” from the process �X� to
the process �Y�, or, in other words, the average rate of net
information flow by which the process �X� influences the
process �Y�. The coarse-grained transinformation rate
�CTIR�, introduced by Paluš et al. �9�, is based on the con-
ditional mutual information and will be briefly reviewed in
Sec. III.

The above three measures as functions of the coupling
strength � for the Rössler system �1� driving the Lorenz sys-
tem �2� are plotted in Fig. 1. With the exception of the weak-
est coupling ��	0.6� the cross predictability of the system
�Y� by the system �X� �the solid line in Fig. 1�a�� is greater
than the cross predictability of the system �X� by the system
�Y� �the dashed line in Fig. 1�a��. Our result in Fig. 1�a�
agrees with that of Le Van Quyen et al. �7�, who interpret the
relation P�X→Y�
 P�Y →X� by the fact, that the autono-
mous Rössler system �X� drives the response Lorenz system
�Y�, and therefore the prediction of �Y� from �X� is better
than the prediction in the opposite direction.

In a similar way, with a few exceptions, the relative aver-
age distance of the mutual nearest neighbors S�k��Y �X�

S�k��X �Y� �Fig. 1�b�� agrees with the results in �19�, sug-
gesting that the state of the response system �Y� depends
more on the state of the driver system �X� than vice versa, as
also claimed by Arnhold et al. �17�. �Note that the condition-
ing X �Y reflects the influence Y →X, and vice versa.� The
same conclusion about �X� driving �Y� can be drawn from
the CTIR i�X→Y�
 i�Y →X� �Fig. 1�c��. The latter inequal-

ity holds for all positive values of � but the � values ap-
proaching the synchronization threshold which emerges for �
slightly above 2 �9,19�.

The same analyses as in Fig. 1, but for the unidirection-
ally coupled Hénon system �3� and �4�, are presented in Fig.
2. One can immediately see that in this case P�X→Y�
� P�Y →X� �Fig. 2�a��. This result agrees with that of Ref.
�6�. Schiff et al. �6� offer an interpretation based on the Tak-
ens embedding theorem �33�: From the time series �xi� only
the system �X� can be reconstructed, while from the time
series �yi� the whole system consisting of the coupled sys-
tems �X� and �Y� can be reconstructed, and therefore one can
predict the driving system from the response system and not
vice versa �6�. Also, the relation of the second interde-
pendence measure reverses: In this case the inequality
S�k��Y �X��S�k��X �Y� holds �Fig. 2�b��. Again, our result
agrees with that of Ref. �19�. Quian Quiroga et al. �19� ex-
plain that the higher-dimensional system �obtained by the
reconstruction from the time series �yi� which bears informa-
tion about both the coupled systems� is “more active” than
the lower-dimensional �autonomous, driving� system. Only
the CTIR gives the same relation as in the previous case:
i�X→Y�
 i�Y →X� �Fig. 2�c�� suggesting the fact that �X�
influences �Y�, while �X� evolves autonomously.

Figure 3 presents the analysis of the unidirectionally
coupled Rössler systems �5� and �6�. We can see that the
results are qualitatively the same as in the case of the
coupled Hénon systems �Fig. 2�, although these systems are
more similar to the first example of the coupled Rössler-
Lorenz systems. We can see that neither the cross predict-
ability nor the mutual nearest neighbors statistics give con-
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FIG. 1. �a� Cross predictability P�X→Y� �solid line� and P�Y
→X� �dashed line�, �b� relative average distance of the mutual near-
est neighbors S�k��Y �X� �solid line� and S�k��X �Y� �dashed line�,
and �c� coarse-grained transinformation rate i�X→Y� �solid line�
and i�Y →X� �dashed line� for the Rössler system �1� driving the
Lorenz system �2�, as functions of the coupling strength �.
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sistent results when using three different examples of
unidirectionally coupled systems. Only the coarse-grained
transinformation rate correctly identifies the direction of the
causal influence in the above three examples, as well as in
many other systems of different origins tested by the authors.

In the above examples of unidirectionally coupled sys-
tems, we could see that the used measures are generally non-
zero in both directions even before the systems become syn-
chronized and comparison of the values of such measures
does not always reflect the true causality given by the unidi-
rectional coupling of the studied systems. The intuitively un-
derstandable implication lower prediction error
�better predictability�⇒stronger dependence cannot gener-
ally be applied for nonlinear systems. When the coupling of
the systems is weaker than that necessary for the emergence
of synchronization, as used in the above examples, no
smooth deterministic function between the states of the sys-
tems exists yet. However, there is already some statistical
relation valid on the coarse-grained description level. Al-
though the deterministic quantities are based on the existence
of a smooth functional relation, when estimated with finite
precision they usually give nonzero values influenced not
only by the existing statistical dependence but also by prop-
erties of the systems other than the coupling. It is therefore
necessary to use quantities proposed for measuring statistical
dependence, such as information-theoretic measures, which
have solid mathematical background and whose properties
have been thoroughly studied since their introduction in
1948 �35�.

III. DEPENDENCE MEASURES FROM INFORMATION
THEORY

In this section we review basic measures from informa-
tion theory that we will need in further considerations. More
details can be found, e.g., in Refs. �35,36�. Then we will
describe how these measures can help in inference of causal
relations or directionality of coupling.

Consider discrete random variables X and Y with sets of
values � and �, respectively, and probability distribution
functions �PDFs� p�x�, p�y� and joint PDF p�x ,y�. The en-
tropy H�X� of a single variable, say X, is defined as

H�X� = − �
x��

p�x�log p�x� , �12�

and the joint entropy H�X ,Y� of X and Y is

H�X,Y� = − �
x��

�
y��

p�x,y�log p�x,y� . �13�

The conditional entropy H�Y �X� of Y given X is

H�Y�X� = − �
x��

�
y��

p�x,y�log p�y�x� . �14�

The average amount of common information, contained in
the variables X and Y, is quantified by the mutual informa-
tion I�X ;Y�, defined as

I�X;Y� = H�X� + H�Y� − H�X,Y� . �15�

The mutual information normalized as
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FIG. 2. �a� Cross predictability P�X→Y� �solid line� and P�Y
→X� �dashed line�, �b� relative average distance of the mutual near-
est neighbors S�k��Y �X� �solid line� and S�k��X �Y� �dashed line�,
and �c� coarse-grained transinformation rate i�X→Y� �solid line�
and i�Y →X� �dashed line� for the unidirectionally coupled Hénon
system �3� and �4�, as functions of the coupling strength �.
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FIG. 3. �a� Cross predictability P�X→Y� �solid line� and P�Y
→X� �dashed line�, �b� relative average distance of the mutual near-
est neighbors S�k��Y �X� �solid line� and S�k��X �Y� �dashed line�,
and �c� coarse-grained transinformation rate i�X→Y� �solid line�
and i�Y →X� �dashed line� for the unidirectionally coupled Rössler
systems �5� and �6�, as functions of the coupling strength �.
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�X;Y� =
I�X;Y�

max„H�X�,H�Y�…
�16�

attains values between 0 and 1, and can be used to define a
distance measure d�X ,Y� as

d�X,Y� = 1 − �X;Y� , �17�

which has all mathematical properties of a distance in the
space of random variables �37�. Thus d�. , . � defines a metric
based on the strength of dependence. Independent variables
have the maximum distance �d�. , . �=1�; functionally related
variables have a zero distance.

The conditional mutual information I�X ;Y �Z� of the vari-
ables X, Y given the variable Z is given as

I�X;Y�Z� = H�X�Z� + H�Y�Z� − H�X,Y�Z� . �18�

For Z independent of X and Y we have

I�X;Y�Z� = I�X;Y� . �19�

By a simple manipulation we obtain

I�X;Y�Z� = I�X;Y ;Z� − I�X;Z� − I�Y ;Z� . �20�

Thus the conditional mutual information I�X ;Y �Z� character-
izes the net dependence between X and Y without the pos-
sible influence of another variable, Z.

The entropy and information are usually measured in bits
if the base of the logarithms in their definitions is 2; here we
use the natural logarithm and therefore the units are called
nats.

Let �x�t�� and �y�t�� be time series considered as realiza-
tions of stationary and ergodic stochastic processes �X�t��
and �Y�t��, respectively, t=1,2 ,3 , . . .. In the following we
will mark x�t� as x and x�t+�� as x�, and the same notation
holds for the series �y�t��.

The mutual information I�y ;x�� measures the average
amount of information contained in the process �Y� about the
process �X� in its future � time units ahead ��-future thereaf-
ter�. This measure, however, could also contain information
about the �-future of the process �X� contained in this pro-
cess itself if the processes �X� and �Y� are not independent,
i.e., if I�x ;y�
0. In order to obtain the net information about
the �-future of the process �X� contained in the process �Y�
we need the conditional mutual information I�y ;x� �x�. Using
the latter measure Paluš et al. �9� defined the coarse-grained
transinformation rate as

i�Y → X� =
1

�max
�
�=1

�max

I�y ;x��x� −
1

2�max
�

�=−�max

�max;��0

I�y ;x�� .

�21�

In practical evaluation we do not use I�y ;x� �x� for a particu-
lar time lag �, but an average over a range of time lags.
Theoretical reasons for this averaging are explained in detail
in Ref. �38� and briefly reviewed in Ref. �9�. Here we stress
only the practical point of view: Evaluation of I�y ;x� �x� as
an average over a number of time lags decreases the variance
of the estimate. In the following, all results of various forms
of the conditional mutual information will be obtained by

averaging over time lags �=1, . . . ,50 samples.
In the original definition of the CTIR �9�, also used in our

examples in Sec. II, a symmetric dependence term is sub-
tracted from the asymmetric conditional mutual information.
Note that this subtraction does not change the relation be-
tween i�Y →X� and i�X→Y� since

�
�=−�max

�max;��0

I�y ;x�� = �
�=−�max

�max;��0

I�x;y�� .

IV. AMPLITUDES, PHASES, AND THE COURSE
OF DIMENSIONALITY

In the standard statistical language we considered the time
series �x�t�� and �y�t�� as realizations of stochastic processes
�X�t�� and �Y�t��. If the processes �X�t�� and �Y�t�� are sub-
stituted by dynamical systems evolving in measurable spaces
of dimensions m and n, respectively, the variables x and y in
I�y ;x� �x� and I�x ;y� �y� should be considered as n- and
m-dimensional vectors. In experimental practice, however,
usually only one observable is recorded for each system.

Then, instead of the original components of the vectors X� �t�
and Y� �t�, the time-delay embedding vectors according to
Takens �33� are used. Then, back in time-series representa-
tion, we have

I�Y� �t�;X� �t + ���X� �t��

= I„�y�t�,y�t − ��, . . . ,y„t − �m − 1��…�;x�t

+ ����x�t�,x�t − ��, . . . ,x„t − �n − 1���…… , �22�

where � and � are time lags used for the embedding of

trajectories X� �t� and Y� �t�, respectively. For simplicity, only
information about one component x�t+�� in the �-future of

the system �X� is used. The opposite CMI I(X� �t� ;Y� �t
+�� �Y� �t�) is defined in full analogy. Exactly the same formu-
lation can be used for Markov processes of finite orders m
and n. Based on the idea of finite-order Markov processes,
Schreiber �18� has proposed a “transfer entropy” which is in
fact an equivalent expression for the conditional mutual in-
formation �22�—see the Appendix.

Let us return to the unidirectionally coupled Rössler sys-
tems �5� and �6�. The dependence of their Lyapunov expo-
nents �all but the two that are negative in the uncoupled case�
on the coupling strength � is plotted in Fig. 4�a�. The change
of the positive LE of the response system �Y� to negative
values slightly under �=0.12 gives the synchronization
threshold for these systems. If we evaluate the simple CMI
I�y ;x� �x� and I�x ;y� �y�, without subtracting the symmetric
term in �21�, the CMI’s in both direction are positive and
increasing with the increasing coupling strength �Fig. 4�b��.
Before the synchronization threshold, the inequality
I�x ;y� �y�
 I�y ;x� �x� indicates the correct direction of cou-
pling; however, as we will see in the next section, for reliable
inference in general it is desirable to obtain a zero value in
the uncoupled direction Y →X. This can be attained by a
proper conditioning—the conditioning variable should con-
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tain full information about future values of the system or
processes generating this variable in the uncoupled case. So
it should be a three-dimensional vector X� or Y� for the studied
Rössler systems. On the other hand, it is sufficient to have
just one component of each vector variable for establishing
the presence of coupling, i.e., the appropriate measures for
inference of coupling directions are the CMI’s I�x ;y� �Y� � and

I�y ;x� �X� �. Evaluation of the latter quantities brings a five-
dimensional estimation problem, which might be hard to
solve with a limited amount of available data, not to speak
about the seven or nine dimensions if the formal definition
�22� is used.

The CMI’s I�x ;y� �Y� � and I�y ;x� �X� � where for the condi-

tioning vectors X� and Y� the original components x1�t�, x2�t�,
x3�t� and y1�t�, y2�t�, y3�t�, respectively, were used, are dis-

played in Fig. 4�c�. We can see that I�y ;x� �X� � in the un-
coupled direction stays at the zero value up to � close to the

synchronization threshold, while I�x ;y� �Y� � is distinctly posi-

tive �Fig. 4�c��. The CMI’s I�x ;y� �Y� � and I�y ;x� �X� � with the

conditioning vectors X� and Y� obtained as time-delay embed-
ding �33� from the components x1�t� and y1�t�, respectively,
are displayed in Fig. 5�a�. We can see a quite good agreement
of the results in Figs. 4�c� and 5�a�.

Many interesting processes in physics and biology can be
modeled by weakly coupled oscillators and their interactions

can be inferred by analyzing the dynamics of their instanta-
neous phases �1,20,21�. The instantaneous phase of a signal
s�t� can be determined by using the analytic signal concept
of Gabor �39�, recently introduced into the field of nonlinear
dynamics within the context of phase synchronization
�40,41�. The analytic signal ��t� is a complex function of
time defined as

��t� = s�t� + jŝ�t� = A�t�ej��t�. �23�

Usually, the imaginary part ŝ�t� of the analytic signal ��t�
can be obtained by using the Hilbert transform of s�t�

ŝ�t� =
1

�
P


−�

� s���
t − �

d� . �24�

�P means that the integral is taken in the sense of the Cauchy
principal value.� A�t� is the instantaneous amplitude and the
instantaneous phase ��t� of the signal s�t� is

��t� = arctan
ŝ�t�
s�t�

. �25�

Since in this paper we are not interested in the instantaneous
amplitude A�t�, we reserve the word “amplitude” for the
“raw” signal �time series� s�t�, as opposed to the instanta-
neous phase ��t�.
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�constant lines� and the response �Y� �decreasing lines�, �b� aver-
aged conditional mutual information I�x ;y� �y� �solid line� and

I�y ;x� �x� �dashed line�, and �c� averaged CMI I�x ;y� �Y� � �solid line�
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original components of the integrated systems, for the unidirection-
ally coupled Rössler systems �5� and �6�, as functions of the cou-
pling strength �. The Lyapunov exponents are measured in nats per
a time unit; the conditional mutual information in all figures is
measured in units of nats.
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Y� , �b� averaged CMI I(�1�t� ;�2�t+�� ��2�t�) �solid line� and
I(�2�t� ;�1�t+�� ��1�t�) �dashed line�, and �c� averaged CMI
I��1 ;���2 ��2� �solid line� and I��2 ;���1 ��1� �dashed line�, for
the unidirectionally coupled Rössler systems �5� and �6�, as func-
tions of the coupling strength �.
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Paluš and Stefanovska �22� have shown that the condi-
tional mutual information can be applied also in inference of
coupling of systems from their instantaneous phases, con-
fined in interval �0,2�� or �−� ,�� �so-called wrapped
phases�. Thus we can come back to the time series �x�t�� and
�y�t�� generated by the unidirectionally coupled Rössler sys-
tems �5� and �6� and compute their instantaneous phases
�1�t� and �2�t�, respectively, according to Eqs. �24� and �25�.
Then we evaluate the conditional mutual information
I(�1�t� ;�2�t+�� ��2�t�) and I(�2�t� ;�1�t+�� ��1�t�) and plot
the results in Fig. 5�b�. We can see that the CMI evaluated
from the phases again distinguishes the driving from the
driven system. Moreover, the application of the phase dy-
namics decreases the dimensionality of the problem—
already I(�2�t� ;�1�t+�� ��1�t�) with the one-dimensional
condition is zero in the uncoupled direction. Even better dis-
tinction �Fig. 5�c�� can be obtained when we study depen-
dence between the phase of one system and the phase incre-
ment

���1,2�t� = �1,2�t + �� − �1,2�t� �26�

of the second system instead of the dependence between
�1,2�t� and �2,1�t+��; so that we evaluate the condi-
tional mutual information I(�1�t� ;���2�t� ��2�t�) and
I(�2�t� ;���1�t� ��1�t�); in a shorter notation I��1 ;���2 ��2�
and I��2 ;���1 ��1�, respectively. A different approach to de-
tection of coupling direction from the instantaneous phase
has been introduced by Rosenblum et al. �20,21�. The two
approaches are compared in Refs. �22,42�.

V. ESTIMATION FROM DATA: BIAS, VARIANCE,
AND INFERENCE

Every quantity descriptive of the state of a system or pro-
cess under study suffers from bias and variance when esti-
mated from noisy, nonstationary experimental data. Using
limited, relatively short time series, estimates of complicated
quantities such as the conditional mutual information can
have non-negligible bias and variance even if evaluated from
noise-free, stationary model data. It is necessary to know the
behavior of the used estimator of any measure before it is
applied in analysis of real data. In order to study the bias and
variance of the CMI estimates, we choose a particular cou-
pling strength ��=0.05� and evaluate I��1 ;���2 ��2� and
I��2 ;���1 ��1� from 1000 realizations of the unidirectionally
coupled Rössler systems �5� and �6�, starting in different ini-
tial conditions, for various time series length.

In this study we evaluate the CMI using a simple box-
counting algorithm based on marginal equiquantization
�38,43,44�, i.e., a partition is generated adaptively in one
dimension �for each variable� so that the marginal bins be-
come equiprobable. This means that the marginal boxes are
not defined equidistantly but so that there is approximately
the same number of data points in each marginal bin. The
only parameter of this method is the number Q of the mar-
ginal bins. Paluš �43� proposed that computing mutual infor-
mation of n variables, the number of marginal bins should
not exceed the �n+1�st root of the number of the data

samples, i.e., Q	
n+1	N. Cellucci et al. �45�, who use the same

binning procedure, determine the number of bins using the
minimum description length criterion. In this paper we use a
simple pragmatic choice Q=8 in all computations.

The equiquantization method effectively transforms each
variable into a uniform distribution, i.e., the individual �mar-
ginal� entropies are maximized. This type of mutual informa-
tion estimate, even its coarse-grained version, is invariant
against any monotonous �possibly nonlinear� transformation
of data �38�.

Histograms obtained from the 1000 CMI estimates, using
the series length N=1024 samples, are plotted in Fig. 6�a�.
We can see the relatively large variance of the estimates and
the clear bias of I��2 ;���1 ��1� in the uncoupled direction;
however, the distinction between the coupled and the un-
coupled directions is still clear. When we use the time series
length N=512 samples �Fig. 6�c��, not only does the variance
increase, but the bias in the uncoupled direction rises, so that
the values of I��1 ;���2 ��2� �solid lines� and I��2 ;���1 ��1�
�dashed lines� partially overlap. It is clear that we need some
statistical approach to establish critical values of the CMI
estimates from which we could infer that the CMI is nonzero
due to a coupling and not due to the estimator bias. In other
words, we need to find out what bias and variance we can
expect from our data, if there is no coupling. For this purpose
we use so-called surrogate data �43,46�, i.e., artificially gen-
erated data that preserve statistical properties of the original
data but are randomized so that any possible coupling is
removed. Since we evaluate the CMI from the instantaneous
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FIG. 6. Histograms of estimates of I��1 ;���2 ��2� �solid lines�
and I��2 ;���1 ��1� �dashed lines� from 1000 realizations of �a� the
unidirectionally coupled Rössler systems �5� and �6�, the coupling
strength �=0.05, and the number of samples N=1024; �b� fast Fou-
rier transform �FFT� surrogate data for the data used in �a�, N
=1024; �c� the same as in �a�, but the number of samples N=512;
and �d� FFT surrogate data for the data used in �c�, N=512.
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phases, derivation of which gives instantaneous frequencies,
as the surrogate data we construct time series with the same
frequency distribution as the series under study. The surro-
gate data with the same sample spectrum as the tested time
series can be constructed using the fast Fourier transform
�FFT�. The FFT of the series is computed, the magnitudes of
the �complex� Fourier coefficients are kept unchanged, but
their phases are randomized. The surrogate series is then
obtained by computing the inverse transform into the time
domain. Different realizations of the process are obtained
using different sets of the random Fourier phases. In this
study, we obtained perfectly consistent results when we ei-
ther constructed one surrogate realization for each of the
1000 realizations of the coupled Rössler series, or con-
structed 1000 surrogate realizations using just one realization
of the coupled Rössler series.

The FFT surrogates were originally proposed for testing
nonlinearity, and in addition to preserving the spectrum also
the preservation of the histogram is usually solved �43,46�.
As noted above, our CMI estimator is invariant against in-
vertible nonlinear transformations, including histogram
transformations. Therefore, we use the simple FFT surro-
gates without any amplitude adjustment. The two time series
�x�t�� and �y�t�� are randomized independently.

Histograms of estimates of I��1 ;���2 ��2� �solid lines�
and I��2 ;���1 ��1� �dashed lines� from the FFT surrogate
data using series lengths N=1024 and N=512 samples are
plotted in Figs. 6�b� and 6�d�, respectively. We can see that
the average bias of the CMI I��2 ;���1 ��1� in the direction
Y →X in the surrogate data is even larger than in the original
data �cf. Figs. 6�a� and 6�b��. This fact helps us to avoid false
detections of causality �positive information flow� in the un-
coupled direction: Even though I��2 ;���1 ��1� from the data
gains positive values, these values are not greater than the
values from the �uncoupled� surrogates, and thus such posi-
tive CMI values cannot be considered as evidence for cau-
sality, nor for a directional interaction. In order to translate
these considerations into a statistical test, we integrate the
histogram of the surrogate CMI values into a cumulative
histogram and find the CMI value �known as the critical
value� giving 95% of the CMI distribution, counting from
the left side. If a CMI value from the tested data is greater
than this critical value, we say that this result is significant at
the level �=0.05. The meaning of the statistical significance
is that the positive value of CMI was obtained by chance �for
other reasons than true causality� with probability p�0.05.
Of course, one can use a stricter test by setting the nominal
level to, e.g., �=0.01.

Using the cumulative histograms obtained from the 1000
surrogate realizations and having set the nominal value for
the significance, �=0.05, leading to a critical value for each
test, we can use the 1000 realizations of the data from the
Rössler systems �5� and �6� for the evaluation of the perfor-
mance of our test. Comparing the values of I��2 ;���1 ��1�
in the uncoupled direction with their critical values we obtain
the rate of false positive results, while using I��1 ;���2 ��2�
in the coupled, causal direction we count the rate of correctly
positive results, so that we evaluate the sensitivity of the test.
The distribution of I��1 ;���2 ��2� from the surrogate data

with N=1024 �Fig. 6�b�, solid line� allows 100% sensitivity,
i.e., values of I��1 ;���2 ��2� from all 1000 realizations of
the original Rössler time series were correctly detected as
significant, reflecting truly nonzero causal information flow
from �X� to �Y�. In the opposite direction �cf. the histograms
plotted by the dashed lines in Figs. 6�a� and 6�b�� we have
eight false detections from 1000 realization, i.e., the false
detection rate is 0.008, still well under the nominal �=0.05.
Using N=512 samples the sensitivity is worse, giving the
value 0.866, i.e., 134 realizations from 1000 were not recog-
nized by the test. The false detection rate, however, was
0.001. With insufficient amount of data the sensitivity of the
test could be lowered; however, the surrogate test prevents
false detections very well.

Even though there is no coupling in our surrogate data,
we can see in Fig. 6�b� that the CMI in the opposite direc-
tions, estimated from 1024 samples, have different biases.
The only difference between the original Rössler systems �5�
and �6� is the small mismatch in their frequencies �1
=1.015, �2=0.985. Now, let us study the same systems, but
with �1=0.5 and �2=2.515, i.e., with the approximate fre-
quency ratio 1:5. Such frequency ratios are typical in studies
of cardiorespiratory interactions. We find that in such case
the problem of the correct inference of causality is tougher:
With the series length N=1024 the CMI estimates in the
opposite directions overlap �Fig. 7�a�� and the surrogate data
�Fig. 7�b�� cannot help to distinguish the coupled from the
uncoupled direction. The surrogate data, however, prevent
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FIG. 7. Histograms of estimates of I��1 ;���2 ��2� �solid lines�
and I��2 ;���1 ��1� �dashed lines� from 1000 realizations of �a� the
unidirectionally coupled Rössler systems �5� and �6� with the fre-
quency ratio 1:5, the coupling strength �=0.1, and the number of
samples N=1024; �b� FFT surrogate data for the data used in �a�,
N=1024; �c� the uncoupled Rössler systems �5� and �6� with the
frequency ratio 1:5, �=0, N=1024; �d� the uncoupled Rössler sys-
tems �5� and �6� with the frequency ratio 1.015:0.985, N=1024. In
all the cases a1=a2=0.15.
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the false detection of causality �cf. Figs. 7�a� and 7�b��. In
order to demonstrate the “pure” bias, we integrate the sys-
tems with the frequency ratio 1:5 without coupling, i.e., set-
ting �=0. We can see that the bias is larger in the direction
from the system with �2=2.515 to the system with �1=0.5
�Fig. 7�c��. The surrogate data obtained from the uncoupled
systems give results similar to the surrogate data for the
coupled case �Fig. 7�b��, and again they prevent the false
detection of causality in both directions. It seems that the
bias is larger in the direction from the faster system ��2

=2.515� to the slower system ��1=0.5�. Is this a general
rule? Let us return to the previous example of the systems
with the approximate frequency ratio 1:1 and analyze them
in the uncoupled case ��=0�. Here we obtain a larger bias in
the direction from the system with �2=0.985 to the system
with �1=1.015 �Fig. 7�d��, i.e., from the slightly slower to
the slightly faster system. Let us return to Fig. 4�a� and no-
tice that the system with �2=0.985 in the uncoupled case
��=0� is not chaotic �its largest Lyapunov exponent �1�0�
and only becomes chaotic due to a weak coupling with the
chaotic system with �1=1.015. Then, with increasing cou-
pling, its largest Lyapunov exponent �1 decreases to negative
values at the synchronization threshold. The behavior of the
Rössler systems with �1=0.5 and �2=2.515 is quite similar.
The autonomous system with �=0.5 is chaotic, while the
autonomous system with �2=2.515 is again quasiperiodic.
From these examples we can conclude that the larger bias in
the CMI estimates can be observed in the direction from less
complex �periodic, quasiperiodic� systems to systems with
more complex dynamics.

VI. VARIABILITY OF BIAS, INFLUENCE OF NOISE,
AND INFERENCE IN REAL DATA

We attributed the positive departures of the CMI values
from zero, in the cases when no information flow existed, to
the bias due to insufficient amounts of data. In order to sup-
port this statement and to demonstrate that in the uncoupled
direction the CMI asymptotically vanishes, we plot the mean
CMI estimate �the mean from the 1000 realizations of either
the Rössler series or the surrogate data� as a function of the
time series length in Fig. 8. In Fig. 8�a� we can see that the
convergence to zero of the I��2 ;���1 ��1� estimates in the
uncoupled direction of the unidirectionally coupled systems
�the thick dotted line for the case of the frequency ratio 1:5,
and the thick solid line for the case 5:1� is quite similar to
that of the uncoupled systems �thin solid and dashed lines� in
the same direction, considering the frequencies �1 and �2 of
the systems. Specifically, the bias is larger and the conver-
gence to zero slower in the direction from the system with
�=2.515 to the system with �=0.5. The latter behavior is
preserved in the surrogate data �Fig. 8�b��: the �overlapping�
dashed and dotted lines show the slower convergence to zero
of I��2 ;���1 ��1� in the direction from the faster to the
slower system, in comparison with I��1 ;���2 ��2� in the op-
posite direction �solid lines�. Above we have noted that in
these cases the property leading to different biases is not the
frequency, but the complexity of dynamics of the two sys-
tems. In order to study the possible influence of different

frequencies in the case of systems with comparable complex-
ity, we have found that for �=2.515 the autonomous Rössler
system has a suitable chaotic solution ��1=0.12� when the
parameter a is set to a=0.72. The autonomous Rössler sys-
tem with �=0.5 and the “standard” a=0.15 gives �1=0.10.
Using these two systems with comparable “chaoticity” we
repeated the same convergence studies as presented in Figs.
8�a� and 8�b� and, using the same line codes, we present the
results in Figs. 8�c� and 8�d�. We can see that, when the two
systems have comparable complexity of dynamics, the bias
is determined by the main system frequency, and, typically,
the bias is larger and the convergence to zero in the un-
coupled direction is slower in the direction from the slower
to the faster system. We have observed this phenomenon also
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FIG. 8. �a� Convergence with the time series length of mean
CMI estimates for I��1 ;���2 ��2� �thin solid line� and
I��2 ;���1 ��1� �thin dashed line� for the uncoupled Rössler sys-
tems �5� and �6� with the frequency ratio 1:5, a2=0.15;
I��2 ;���1 ��1� �thick dotted line� for the same systems with the
frequency ratio 1:5 and the coupling strength �=0.1 and
I��2 ;���1 ��1� �thick solid line� for the systems with the frequency
ratio 5:1, a1=0.15 and �=0.1. �b� Convergence of the CMI means
for the FFT surrogate data of the Rössler systems �5� and �6� with
the frequency ratio 1:5, a2=0.15 and the coupled ��=0.1, thick
lines� and the uncoupled ��=0, thin lines� cases, I��1 ;���2 ��2�
�solid lines�, and I��2 ;���1 ��1� �dashed or dotted lines�. �c� Con-
vergence with the time series length of mean CMI estimates for
I��1 ;���2 ��2� �thin solid line� and I��2 ;���1 ��1� �thin dashed
line� for the uncoupled Rössler systems �5� and �6� with the fre-
quency ratio 1:5, a2=0.72; I��2 ;���1 ��1� �thick dotted line� for
the same systems with the frequency ratio 1:5 and the coupling
strength �=0.11 and I��2 ;���1 ��1� �thick solid line� for the sys-
tems with the frequency ratio 5:1, a1=0.72 and �=0.11. �d� Con-
vergence of the CMI means for the FFT surrogate data of the
Rössler systems �5� and �6� with the frequency ratio 1:5, a2=0.72,
and the coupled ��=0.11, thick lines� and uncoupled ��=0, thin
lines� cases, I��1 ;���2 ��2� �solid lines�, and I��2 ;���1 ��1�
�dashed or dotted lines�.
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in studies of noisy periodic oscillators or simple noisy phase
oscillators �such as Eq. �3� in �22�� with different frequen-
cies.

Do the different biases influence the performance of the
tests for the inference of the causal direction? The sensitivity
of the tests, based on evaluation of I��1 ;���2 ��2�, as a
function of the time series length N is illustrated in Fig. 9. As
already mentioned above, the rate of the detection of the
causal direction for the data from the Rössler systems �5� and
�6� with the frequency ratio 1:1 was 0.87 for the series length
N=512. For shorter time series, the test completely loses its
sensitivity, while for N=1024 and more the test has 100%
sensitivity �Fig. 9�a�, dash-dotted line partially overlaping
with the solid line�, while the false detection rate is in the
range from 0.001 to 0.008, well under the nominal �=0.05.
Analyzing the data from the Rössler systems �5� and �6� with
the frequency ratio 1:5 and a1=a2=0.15, the sensitivity is
still close to zero for N=1024, and rises to 100% from N
=2048 �Fig. 9�a�, dashed line�, while the rate of false posi-
tives ranges from 0.001 to 0.05. Setting the frequency ratio
to 5:1, the sensitivity �Fig. 9�a�, solid line� behaves similarly
to that of the system with the frequency ratio 1:1, while the
rate of false positives is always zero. In the case 5:1 the bias
is in the same direction as the true causality, so the test has
slightly better performance than in the case 1:1, while in the

case 1:5 the bias is directed in the opposite direction than the
true causality and the test requires more data for the reliable
detection of the true causality.

Estimation of the test critical values from the empirical
cumulative histograms, as we have done above, is a gener-
ally correct approach, independent of the actual distribution
of the CMI �or other quantity� values. This approach, how-
ever, requires a large number �1000 in this study� of the
surrogate realizations. In many published applications of sur-
rogate tests, authors evaluate their test statistics from a small
number of surrogate realizations and express the difference
between the tested values and the surrogate mean in the
number of standard deviations of the surrogates. Then, for
assessing significance of the result, they use the critical val-
ues theoretically derived from the normal distribution. As we
have seen in the above Figs. 6 and 7, the surrogate distribu-
tion may be quite different from the normal one. Comparing
the two approaches, we have found that once we had enough
data to obtain 100% sensitivity of the test �N�1024 for the
cases 1:1 and 5:1�, both approaches gave equivalent results,
even using so few as 30 surrogate realizations in the test
based on the normal distribution. The difference is important
when the test is done “on the edge” of its sensitivity, i.e.,
with N=512 in this case. Then we had the sensitivity 0.86
using the histogram approach and 1000 surrogate realiza-
tions. The normal distribution approach gives the sensitivity
0.48 using all 1000 surrogate realizations and only 0.29
when 30 surrogate realizations were used for estimating the
surrogate mean and standard deviation. One must keep in
mind that this “edge” amount of data increases when the
studied systems have different dynamics or the analyzed data
are contaminated by noise, as is demonstrated below.

The above used “Hilbert” phases �25�, i.e., the instanta-
neous phases obtained by using the Hilbert transform �24�
from continuous signals, are not always available in experi-
mental practice. In studies of cardiorespiratory interactions
usually the instantaneous phases of the cardiac and respira-
tory oscillations are computed by the so-called marked
events method: Let tk and tk+1 be the times of two consecu-
tive events, here peaks in the signal �ECG or respiratory
signal�. The instantaneous phases are then linearly interpo-
lated as �5�

��t� = 2�
t − tk

tk+1 − tk
, tk 	 t � tk+1. �27�

Using such phases in the CMI estimation, especially consid-
ering the distribution of the phase increments �26�, could
certainly influence the performance of the above causality
tests. Therefore we integrated the above studied Rössler sys-
tems �5� and �6� with ten times higher sampling and defined
the marked events as times when the coordinate x1 or y1
passed the Poincaré section given by x1=0 or y1=0, respec-
tively. Then we generated the marked events phases �27� and
subsampled them in order to have the same sampling as
when using the Hilbert phases. In the marked event phases
the only information about the underlying dynamics is the
duration of individual cycles, while the intracycle dynamics
is lost. This information reduction leads to a decrease of the
CMI values in the coupled direction and, consequently, to
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FIG. 9. �a� Sensitivity as function of time series length N for the
tests using the coupled Rössler systems �5� and �6� with the fre-
quency ratio 1:1 �dash-dotted line�, 5:1 �solid line�, and 1:5 �dashed
line� for a1=a2=0.15. The Hilbert phases were used. �b� Sensitivity
of the tests for the coupled Rössler systems �5� and �6� with the
frequency ratio 5:1 �solid line� and 1:5 �dashed line� for a1=a2

=0.15, as a function of the series length N. The marked event
phases were used. �c� Sensitivity as function of time series length N
for the tests using the coupled Rössler systems �5� and �6� with the
frequency ratio 5:1, a1=0.72, a2=0.15 �solid line�, and 1:5, a1

=0.15, a2=0.72 �dashed line�. The Hilbert phases were used. �d�
The same as in �c�, but the marked event phases were used.
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decreased sensitivity of the causality tests. In other words,
for a test with the sensitivity of 100%, we need more data
when we use the marked event phases than using the Hilbert
phases �cf. Figs. 9�a� and 9�b��. The same conclusion can be
drawn for the case when both the systems are chaotic, i.e.,
having the frequency ratio 5:1 and a1=0.72, a2=0.15 �the
solid line�; and 1:5, a1=0.15, a2=0.72 �the dashed line in
Fig. 9�c� for the Hilbert phases and Fig. 9�d� for the marked
event phases�. Especially in the latter case �Fig. 9�d�� there is
a difference in sensitivities caused by different biases due to
different system main frequencies. In systems with compa-
rable complexity �chaoticity�, the bias is larger in the direc-
tion from the slower to the faster system. Therefore, in the
case 5:1, the bias is oriented against the true causality in the
direction from the faster to the slower system, and the test in
this direction requires at least N=16 384 data samples in
order to gain 100% sensitivity �Fig. 9�d�, the solid line�.

In applications of the marked event phases, the only avail-
able data are the event times . . . , tk , tk+1 , . . ., or the interevent
intervals . . . , tk+1− tk , . . .. Then a simple way to construct sur-
rogate data is random permutation of the interevent intervals
before the surrogate marked event phases are computed ac-
cording to �27�. This type of surrogate data was used with the
marked event phases for the above Rössler systems, as well
as in the real data example presented at the end of this sec-
tion.

Considering applications to real data, influence of noise
on the presented test should also be evaluated. Gaussian
noise has been added to the raw data from the coupled
Rössler systems �5� and �6� with the frequency ratio 1:1 �ex-
actly 1.015:0.985�. The amount of added noise is character-
ized by the noise standard deviation �SD� expressed as a
percentage of the SD of the original data, e.g., 10% of noise,
means that SD�noise�=0.1�SD�data�, or 100% of noise
means SD�noise�=SD�data�. The noisy data were processed
and tested in the same way as the noise-free data above. The
test sensitivity, i.e., the rate of true positive detections of
causality, as well as the rate of false positives, i.e., the rate of
formal detections of causality in uncoupled directions, as
functions of time series length N are illustrated in Fig. 10.
The higher the amount of noise in the data, the more data
samples are required in order to obtain 100% sensitivity of
the test �Fig. 10�a��. For moderate amounts of noise, the rate
of false positives remains well under or about the nominal
value �=0.05 �Fig. 10�b��. With large amounts of noise,
however, the attainment of the 100% sensitivity is followed
by an increase of the rate of false positives. With 100% of
noise in the data, the rate of false positives goes to 1 �i.e., to
100%� even before the sensitivity rises from 0 to 1, i.e., the
detection ability of the test is completely lost. For amounts
from 50% of noise there is a bounded range of time series
lengths for which the test is reliable, e.g., from 8192 to
32 768 samples for 50%, but only around 16 384 samples for
70% of noise. The applicability of the test is limited when
the data are contaminated by a large amount of noise. An
improvement is possible not only by preprocessing and de-
noising of the data, but potentially also by considering alter-
native approaches in the three stages of the test: the phase
estimation, the surrogate data construction, and the condi-
tional mutual information estimation. Various approaches to
the latter will be discussed separately.

In order to demonstrate how the discussed approach can
be applied to real data, we use cardiac and respiratory data
from an animal experiment described in �5�. Detailed ac-
count of the causality analysis in the cardiorespiratory inter-
actions of anesthetized rats will be given elsewhere �42�.
Using the interbeat and interbreath intervals, we construct
the marked event phases �C, �R for the cardiac and respira-
tory dynamics, respectively. We estimated I��C ;���R ��R�
and I��R ;���C ��C� from 33-min recordings which gave, af-
ter subsampling to 40 Hz, the series length N=80 000
samples. Thus we can expect a good performance of the tests
using the marked event phases from experimental, possibly
noisy data. In the first test, presented in Figs. 11�a� and 11�b�
we tried to evaluate the bias and the ability of the surrogate
data to prevent possible false detections. For this test we
used the cardiac data from one animal and the respiratory
data from another animal, so true causality cannot exist in
this case. The CMI estimates are positive �although small,
but this is typical using the marked events phases� in both the
directions and the value of I��R ;���C ��C� �Fig. 11�b�� re-
flecting the influence of the �slower� respiratory rhythm on
the �faster� cardiac dynamics is larger than I��C ;���R ��R�
�Fig. 11�a�� in the opposite direction. Both values from the
tested data, however, lie inside the surrogate histograms. The
latter result means that the CMI values are not significantly
larger than zero and no causality, or no information flow,
exists in either direction, as we expected using the data from
two different animals. The situation is different when analyz-
ing data from a single animal. While there is no significant
influence of the cardiac dynamics on the respiration �Fig.
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FIG. 10. Sensitivity �a�,�c� and the rate of false positives �b�,�d�
as functions of time series length N for the tests using the coupled
Rössler systems �5� and �6� with the frequency ratio 1:1 for differ-
ent amounts of noise in the data. The portions of noise are in �a�,�b�
0% �dotted line�, 10% �dashed line�, 20% �dash-dotted line�, and
30% �solid line�; in �c�,�d� 50% �dashed line�, 70% �dash-dotted
line�, and 100% �solid line�.
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11�c��, the influence of the respiratory rhythm on the cardiac
dynamics is clearly significant, since I��R ;���C ��C� from
the tested data lies outside the surrogate distribution �Fig.
11�d�� and thus even this small value I��R ;���C ��C�
=0.0033 nat is significantly positive.

In order to assure reliable tests, we used a large amount of
data. Due to the anesthetized state we can expect an accept-
able level of stationarity in this case. In other applications,
however, only shorter data series are available. It is therefore
necessary to find out how to improve the performance of the
tests. One way is to use more sophisticated estimators of the
dependence measure. The behavior of several different esti-
mators of the conditional mutual information will be dis-
cussed in a separate presentation. Another way is the appli-
cation of different randomization schemes for the interevents
intervals, or better, to prefer the “continuous” Hilbert phases
and more sophisticated surrogate data, such as the recurrence
�twin� surrogates �47�.

VII. CONCLUSION

Inference of direction of coupling, or causality, as we can
say when we consider two possibly coupled systems, is not a
trivial problem. In this paper we identified some problems
that could lead to incorrect inference of causality from ex-
perimental bivariate time series. Let us summarize the basic
problems and ways of coping with them.

A. Dependence measures

As noted by Paluš et al. �9�, the direction of coupling can
be inferred when two systems are coupled, but not yet fully

synchronized. This can be understood by considering the ex-
ample of identical synchronization. Once the �identical� sys-
tems are synchronized, they produce identical time series,
and there is no way to infer the correct causality relation just
from the measured data. In the case of generalized synchro-
nization, there is a one-to-one relation between the states of
the systems. Time series �x�t�� can be predicted from time
series �y�t��, and vice versa. Although some dependence
measures, including those based on prediction errors, can
give different values for the relations x→y and y→x, these
values are not given by the causality relations but rather by
properties of the functional relation between the states of the
systems, e.g., by its Jacobian. The causal relation can be
inferred only when coupling is weaker than that necessary
for emergence of synchronization, or when the synchronized
state is frequently perturbed by variability in coupling or by
internal or external noise driving the systems out of the syn-
chronized state. Then the relation between the system states
is not deterministic, but probabilistic, and can be measured
by measures of statistical dependence, such as the above in-
troduced information-theoretic measures.

B. Asymmetric dependence measures in uncoupled direction

As we observed above, asymmetric measures of depen-
dence can have nonzero values even in the uncoupled direc-
tion in cases of unidirectional coupling. This holds for both
probabilistic and deterministic measures. Even though no de-
terministic relation exists before the systems are synchro-
nized, the deterministic measures, estimated in a coarse-
grained approximation, reflect the statistical dependence that
occurs in both direction even in the case of unidirectional
coupling. Mutual comparison of these positive values or the
positivity/�negativity� of their difference �sometimes rescaled
to some “directionality indices”� does not necessarily indi-
cate the correct causal direction. For a correct inference of
causality it is desirable to have a measure that vanishes in the
uncoupled direction in the case of unidirectional coupling, so
that we can identify the causal direction by its statistically
significant digression from zero, while in the uncoupled di-
rection the measure does not cross the borders of a “statisti-
cal zero.” The latter is given by the range obtained from
appropriate surrogate data, separately for each direction. As a
measure satisfying this requirement we introduced the con-
ditional mutual information.

C. Amplitudes, phases, and the course of dimensionality

The proper conditioning which assures vanishing CMI in
the uncoupled direction should contain full information
about the future in the uncoupled state of the system, the
influence on which is evaluated. This means that in a case of
m-dimensional dynamical system, or a variable which can be
modeled by a �possibly nonlinear� autoregressive process of
order m, the proper condition is an m-dimensional vector.
The order m should be estimated from studied data before
causality tests are applied. Then the estimation of the �m
+2�-dimensional probability distribution functional can also
be a nontrivial problem. It can be helpful if the studied cou-
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FIG. 11. Tests of causal influences of cardiac oscillations on
respiratory oscillations measured by I��C ;���R ��R� �a�,�c� and of
the influence of the respiratory rhythm on the cardiac oscillations
given by I��R ;���C ��C� �b�,�d�. Values from the tested data are
marked by the vertical lines, the surrogate ranges are illustrated by
the histograms obtained from 2500 surrogate realizations. �a�,�b�
The test of bias using data from two animals; �c�,�d� a real test for
one of the animals.
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pling can be reflected in the dynamics of instantaneous
phases, since, in the case of phase dynamics, one-
dimensional conditioning is sufficient in many cases.

D. Estimator bias and significance testing

Having an appropriate asymmetric dependence measure,
asymptotically vanishing in the uncoupled direction, the in-
ference of causality can be complicated by a bias in estima-
tion from a limited amount of possibly noisy data. Therefore
we need to establish a statistical significance of the obtained
result, e.g., by the application of the surrogate data testing
approach. The surrogate data, however, should reflect statis-
tical and dynamical properties of the tested data, since those
can be the source of bias. It is necessary to test that the
surrogate data preserve the frequency distribution of the
original data, which might be more important than the am-
plitude distribution. For instance, it might be entirely incor-
rect to make tests against white noise surrogates, obtained by
random permutation of amplitude time series, even though
they preserve amplitude distributions. Exceptional care must
be applied when we study relations between systems that
have different main frequencies, or different complexity of
dynamics, or even different variability.

E. Test critical values

In many applications of surrogate data, the significance of
the departure of the tested values from the surrogate range is
based on the �not always explicitly stated� assumption of a
normal distribution of the test measure estimated from the
surrogate data. As we have observed, it is necessary to study
the surrogate distributions from large enough surrogate en-
sembles in order to establish the critical test values indepen-
dently of the form of the distribution and compare them with
the critical values based on the normal distribution and esti-
mated from a small number of surrogate realizations.

F. Test performance and data amounts

Before real data applications, it is always useful to assess
the performance of any test using appropriate model data in
order to estimate the amount of data necessary for reliable
inference. Subsampled data can cause problems, while in-
creasing the data amount by oversampling does not improve
the test performance. Inference of causality usually requires
more data than detection of synchronization.

G. Reliable inference of causality

In this paper we have discussed several problems encoun-
tered in inference of causal relations between two systems,
i.e., in the identification of the driving and driven systems
from experimental time series. We have summarized our ex-
tensive experience from development of a reliable causality
test, suitable for practical applications. We hope that the
above information will help other authors to avoid interpret-
ing numerical and statistical artifacts as causality and to de-
tect true directional interactions.
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APPENDIX

Using the idea of finite-order Markov processes,
Schreiber �18� introduced a measure quantifying causal in-
formation transfer between systems evolving in time, based
on appropriately conditioned transition probabilities. Assum-
ing that the system under study can be approximated by a
stationary Markov process of order k, the transition prob-
abilities describing the evolution of the system are
p�in+1 � in , . . . , in−k+1�. If two processes I and J are indepen-
dent, then the generalized Markov property

p�in+1�in, . . . ,in−k+1� = p�in+1�in
�k�, jn

�l�� �A1�

holds, where in
�k�= �in , . . . , in−k+1� and jn

�l�= �jn , . . . , jn−l+1� and l
is the number of conditioning states from process J.
Schreiber �18� proposed using the Kullback-Leibler diver-
gence to measure the deviation of the transition probabilities
from the generalized Markov property �A1�. This results in
the definition

TJ→I = � p�in+1,in
�k�, jn

�l��log
p�in+1�in

�k�, jn
�l��

p�in+1�in
�k��

, �A2�

denoted the transfer entropy. The transfer entropy can be
understood as the excess amount of bits that must be used to
encode information on the state of the process by errone-
ously assuming that the actual transition probability distribu-
tion function is p�in+1 � in

�k��, instead of p�in+1 � i�k� , jn
�l��.

Let us do a few simple manipulations with the conditional
probabilities in �A2�:

TJ→I = � p�in+1,in
�k�, jn

�l��log
p�in+1,in

�k�, jn
�l��

p�in+1�in
�k��p�in

�k�, jn
�l��

= � p�in+1,in
�k�, jn

�l��log
p�in+1,in

�k�, jn
�l��

p�in+1�in
�k��p�in

�k�, jn
�l��

p�in
�k��

p�in
�k��

=� p�in+1,in
�k�, jn

�l��log
p�in+1, jn

�l��in
�k��

p�in+1�in
�k��p�jn

�l����in
�k��

.

Finally,

TJ→I = � p�in+1,in
�k�, jn

�l��log p�in+1, jn
�l��in

�k��

− � p�in+1,in
�k��log p�in+1�in

�k��

− � p�in
�k�, jn

�l��log p�jn
�l����in

�k�� . �A3�
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Now, considering Eq. �18�, let us go back to the expression for conditional mutual information �22� and express it using
conditional entropies as

I�Y� �t�;X� �t + ���X� �t�� = H„�y�t�,y�t − ��, . . . ,y„t − �m − 1��…���x�t�,x�t − ��, . . . ,x„t − �n − 1��…�…

+ H„x�t + ����x�t�,x�t − ��, . . . ,x„t − �n − 1��…�…

− H„�y�t�,y�t − ��, . . . ,y„t − �m − 1��…�,x�t + ����x�t�,x�t − ��, . . . ,x„t − �n − 1��…�… . �A4�

Next, let us express the conditional entropies using the probability distributions; however, let us change our notations accord-
ing to Schreiber �18� by equating I��X�t��, m=k, and J��Y�t��, n= l, substituting t for n, and setting �=�=�=1. We can see
that we obtain the same expression as Eq. �A3� for the transfer entropy. Thus the transfer entropy is an equivalent expression
for the conditional mutual information �22�.
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