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Localized traveling waves in vertical-cavity surface-emitting lasers with frequency-selective
optical feedback
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Spatially self-localized states have been found in a model of vertical-cavity surface-emitting lasers with
frequency-selective optical feedback. The structures obtained differ from most known dissipative solitons in
optics in that they are localized traveling waves. The results suggest a route to realization of a cavity soliton

laser using standard semiconductor laser designs.
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I. INTRODUCTION

Localized structures or solitary wave packets have been
found in numerous dissipative nonequilibrium systems of
different natures and have attracted a lot of interest in recent
years (see, e.g., [1,2] for reviews). Nonlinear optical systems,
where they are often referred to as cavity solitons, present
attractive opportunities to investigate the properties of such
localized structures (see, e.g., [2-10]). Moreover, due to their
bistable nature and motility these structures may find practi-
cal implementation for communication technologies and in-
formation processing, especially if realized in fast and com-
pact devices such as semiconductor microcavities [7].

In most nonlinear optical systems where cavity solitons
have been investigated, they are sustained against losses by
an injected holding beam of high spatial and temporal coher-
ence [3,7,11,12]. This has several disadvantages for applica-
tions. Here we investigate a system which requires no hold-
ing beam, namely, a vertical-cavity surface-emitting laser
(VCSEL) with frequency-selective feedback (FSF) from an
external grating. In such a “cavity soliton laser” [4,6,13] the
emission could be completely sustained by means of a
simple and inexpensive incoherent pumping mechanism,
namely, current injection. Optical bistability (OB) between
the off state and the lasing external cavity mode has been
found in such a system, but with a small-area VCSEL
[14,15]. OB is often an indicator that pattern formation and
localized states can be found in an analogous broad-area de-
vice, where transverse degrees of freedom come into play.

Broad-area VCSELSs, when the peak gain is blue detuned
from the longitudinal cavity resonance, exhibit tilted-wave
emission [16], in which the transverse component of the
wave vector compensates for the detuning. Typically, several
(or many) tilted waves are excited, and the spatial structure
of the laser emission is usually quite complex. Channeling
the emission into a single tilted wave, with a soliton-type
envelope, would be attractive for applications. Our approach
to this goal is based on using an external cavity to provide
the necessary frequency and wave vector selectivity.

In the present work we develop a model of a broad-area
VCSEL with FSF and demonstrate that it supports grating-
controlled transverse traveling-wave modes. We find a pa-
rameter range in which such modes coexist with a stable
trivial solution (laser “off”), which is a necessary condition
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for soliton existence. Numerical simulations, however, typi-
cally show complex dynamics, because a large number of
tilted waves can be excited and compete with each other. We
therefore introduce an annular spatial filter into the feedback
path. We then find winner-take-all competition between the
tilted waves on the annulus, leading asymptotically to a
single dominant transverse traveling wave. We next show
that this system does indeed support cavity solitons in the
form of localized traveling waves (LTWs) on a stable dark
(nonlasing) background. These LTWs are stable over long
integration times, and pass standard tests for dissipative soli-
tons, such as exponential decay in the transverse direction
(i.e., boundary independence). Further, several LTWs can ex-
ist at different transverse locations, with no significant inter-
action (if the distances between them are sufficiently large),
perhaps the most desirable property of a cavity soliton laser
[6,13]. Because of azimuthal symmetry, these LTWs form a
whole family, with different orientations. In addition, we find
a cylindrically symmetric localized structure, which we term
a localized standing wave.

Compared to other approaches to a cavity soliton laser
(see, e.g., [4,6] for nonsemiconductor materials and [17] for
a proposed semiconductor-based device) relying on the inte-
gration of a gain medium and a saturable absorber within the
cavity, our approach has the attractive feature that it can be
implemented using standard VCSEL structures and off-the-
shelf optical components.

The paper is organized as follows. We begin by describing
the VCSEL FSF system, and formulate a set of delay-
differential equations to describe its spatiotemporal behavior.
Initially considering the case of a flat (or very broad) gain
spectrum, we solve these equations analytically for trans-
verse traveling-wave solutions. For on-axis modes, we dem-
onstrate how FSF introduces a band of grating-controlled
modes with current thresholds below, and split off from,
those of the solitary laser, with bistability between lasing and
nonlasing states for current values in the gap. Next, we show
that off-axis traveling-wave modes usually close this gap, but
that phase-amplitude coupling allows it to reopen for appro-
priate detuning between the grating and cavity resonances.
We then introduce spatial filtering to limit the wave vector
spectrum, and also take account of finite gain bandwidth. We
next present numerical results for this final model: the emer-
gence from noise of a single dominant traveling-wave mode,
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FIG. 1. (Color online) The scheme of the system. F is the focal
length of the first lens, and F, that of the second lens.

and then of a stable LTW from an initial condition compris-
ing a finite disk of this dominant mode. Results of several
tests follow, showing that this LTW is solitonic. We conclude
with a summary of our results, and a discussion of the ex-
perimental and applications prospects of this interesting type
of cavity soliton.

II. SYSTEM AND MODEL

The scheme of the proposed system is depicted in Fig. 1,
where a VCSEL is coupled to an external cavity formed by
an afocal telescope and closed by a diffraction grating. Due
to the self-imaging configuration, effectively no diffraction
takes place in the external cavity. For one particular fre-
quency, which can be adjusted by turning the grating, the
grating behaves as a normal mirror and closed paths exist for
all wave vectors after one round trip in the external cavity.
For a wave detuned from this frequency, rays still arrive at
the original position but at a different angle, i.e., with a re-
duced amplitude at the original transverse wave vector. The
shifted components are rejected by the VCSEL cavity due to
the angular selectivity of the resonance. The grating thus
provides a frequency filtering mechanism (with a sinc-
shaped spectrum). Evidence for frequency selection was
found in an experimental configuration similar to that of
Fig. 1 [18] (see also [15]). For simplicity, we are going to
assume here that the feedback efficiency is the same for all
wave vectors and depends only on the frequency detuning.
The results are not expected to be sensitive to the profile of
the filter function in frequency space as long as it is a well-
behaved single-hump function, and similar results can be ex-
pected in other configurations with frequency-filtered feed-
back [19].

Several models have been used to analyze spatial struc-
ture in free-running VCSELs [20-23]. For the purpose of
describing spontaneous pattern formation in broad-area de-
vices, that used in Ref. [21] is particularly well suited, and is
the basis of the model used here. The dynamics of a VCSEL
should in general be described by vectorial equations [24].
However, we will study the case of strongly anisotropic feed-
back, where the y component of the field is absorbed and
feedback exists only for the x component. Moreover, the sys-
tem is operated below the threshold of the solitary VCSEL,
and hence only x-polarized emission can be excited.
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We write the x component of the intracavity optical field
as E,=F exp(iw )+c.c., where w, is a reference frequency,
chosen to be that of the longitudinal cavity resonance at
threshold. Our model is then based on an equation for the
slowly varying amplitude E, coupled to a real equation for
the carrier inversion density N:

oE A

E:—K(l+ia)E+ k(1 +ia)NLE —iaA |E+F,
N 5 A
E=—N+/.L—NE,CE. (1)

The variable N is normalized such that N=0 at transparency,
and N=1 at the threshold of the solitary VCSEL, at
which the normalized injection current u=1. Time is nor-
malized to the carrier relaxation time (expected to be around
1 ns) and «>1 is the mean decay rate of the field in the
cavity. « is the linewidth enhancement factor describing

phase-amplitude coupling, and the operator L describes the
gain spectrum, assumed Lorentzian in frequency space,
L=1/{1+[(6-)T,]*}, where =w,~w, is the detuning of
the gain peak from the frequency of the axial mode, and 1/T),
is its linewidth. A | =7/ x>+ ¢/ dy” is the transverse Laplac-
ian describing diffraction, with a the transverse spatial scale
parameter. We define a “transverse frequency” of tilted
waves by | =ak® . We will mainly use this Q| as a conve-
nient measure of the transverse wave vector, avoiding the
need for an explicit spatial scale.

Finally, in (1) the term F describes the feedback effect. In
integral form, it is given by

-7
F(t) — o dt/E(t/)giwm(t—T—t/) (2)
t—-m2T

where o is the feedback strength, 7 the delay time in the
feedback loop, w,, the detuning of the central maximum of
the diffraction grating reflection from w., and 27 the time
spread of the diffraction grating. The integral relation (2) can
be transformed into a differential equation with delayed ar-
gument [14,19,25,26]:

a _ o Diw, Tr(y _ .
s 2T[E(t T —e E(t—7-21)]+iw,F(t). (3)
We use the differential description (3) for our numerical
modeling.

As described above, the transmission through the FSF
does not depend directly on wave number. Hence, spatial
operators are not included in Egs. (2) and (3).

III. ANALYSIS

For any monochromatic field E=Eye', it follows from

(2) or (3) that F is proportional to E:
F = Re'’E = gsinc(A)e ™ ME. (4)

Here A=(w-w,,)T, so the sinc term in (4) evidently de-
scribes the width and shape of the frequency selectivity of
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FIG. 2. (Color online) On-axis mode properties for flat gain
spectrum. (a) The amplitudes Q of the steady states versus pump
current w. Points A, B, C are described in the text. Parameters: o
=60.0, k=300.0, a=5.0, 7=5.0, T=0.1845, w,,=-250.0. (b) Circles
are the amplitudes Q versus frequency for u=1 [vertical line in (a)].
Solid curve, relative amplitude of grating feedback function.

the grating feedback. Substitution of F from (4) into (1)
shows that the cavity loss rate « is modulated by the feed-
back, thus modulating the lasing threshold with a maximum
range of |0 sinc(A)|/ k. The term e~ means that the relative
phase of F and E is a rapidly varying function of frequency,
ensuring that there are many lowered-threshold external-
cavity modes under the main peak of the sinc function.

We now obtain monochromatic traveling-wave solutions,
of the form E=Qe® K170 where we can assume Q real
and positive. These solutions can be referred to as steady
states, because the time dependence is trivial: the absolute

value of E is constant and, since E is an eigenstate of ﬁ, the
corresponding value of N is also constant.

In order to understand better the properties of the system,
we consider first the case of flat gain, i.e., 7,=0 (and thus

ﬁ:l). From Egs. (1), (3), and (4) we can obtain equations
for the frequencies and amplitudes of the traveling waves:

-0, =R sin(¢p) — aR cos(¢), (5)
20 kp
o= Kk — R cos(@) L ©

where () | is the above-defined transverse frequency, and the
magnitude R and phase ¢ of F/E are given by (4). Note that
the dispersion relation (5) is wholly determined by external
cavity parameters, and in particular is independent of the
current . Solutions to (5) are only physical for Q? positive,
however, so that each has a threshold current at which the
right side of (6) is zero. Since R becomes small for frequen-
cies well detuned from w,,, the threshold current for such
modes is close to u=1, i.e., there is effectively no feedback.
Modes close to w,,, in contrast, can have thresholds as low as
u=1-|al/k.

We first examine on-axis modes, for which (), is zero.
On-axis emission should be favored for negative w,,, and so
we set w,,=—250.0. For this case, the dependence of the
amplitude of on-axis modes on pump current u, for fixed
values of the other parameters, is plotted in Fig. 2(a). We
choose 0=60 and =300, so that lasing begins at ©=0.8,
well below the solitary laser threshold. At A in Fig. 2(a) the
first mode of a family with frequencies close to w,, reaches
threshold. The amplitudes of these modes then increase with
current. At point B the trivial solution becomes stable again,
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FIG. 3. (Color online) Thresholds of transverse modes in the
(Q |, p) plane for different phase-amplitude couplings in the system
with flat gain. (Every mode remains active for all current levels
above its threshold.) w,,=250.0; other parameters as in Fig. 2. The
gray (cyan) regions correspond to instabilities of the trivial solution
determined mainly by FSF, the black to those determined mainly by
the solitary VCSEL. a=(a) 0.0; (b) 5.0 (the meaning of the rect-
angle is described in the caption of Fig. 4); (c) —5.0.

as the last mode of this grating-controlled family crosses the
threshold. At the point C, a second mode family reaches
threshold. These modes have frequencies close to zero [cf.
Fig. 2(b)], and thresholds close to u=1, and so can be re-
garded as modes of the solitary VCSEL, with negligible
feedback. It is clear from Fig. 2 that between points B and C
we have a region where the trivial solution and on-axis
external-cavity modes coexist.

We now consider modes with finite transverse wave vec-
tor, which corresponds to allowing finite (but necess-
arily positive) | in (5). For the moment we retain flat gain
(T,=0), so that the threshold of the solitary VCSEL is
m=1 for every wave number and there is no internal pattern
selection mechanism. Here we choose w,, positive (=250.0)
to favor off-axis modes.

For zero phase-amplitude coupling [Fig. 3(a)] the trans-
verse frequencies with lowest thresholds are identical to the
grating frequency, but a finite linewidth enhancement factor
a shifts the minimum threshold away from Q, =w,, [e.g.,
a=5.0, Fig. 3(b) and —5.0, Fig. 3(c)]. From (1) it is apparent
that the longitudinal resonance of the VCSEL cavity shifts by
|ax| between N=0 and 1, and hence the threshold reduction
due to feedback is accompanied by a frequency shift [14]. As
a result, the oscillation frequency of any particular off-axis
wave shifts with N, and hence with current. The cigar shapes
in Figs. 3(b) and 3(c) essentially follow this shift, so as to
maintain the grating resonance condition w= w,,.

It is apparent from Fig. 3 that, beyond the minimum
threshold at w=0.79, the trivial solution is always unstable
to some wave vector. Thus there is no bistability between off
and on states of the laser (and hence there can be no local-
ized lasing states). Note, however, that R, which determines
the threshold envelope, is invariant if both w,, and €}, are
shifted by equal amounts. Thus, by appropriate choice of the
grating frequency w,,, it may be possible to make all the
troublesome transverse frequencies negative, and thus un-

056208-3



PAULAU et al.

0 50 100 150 200
QJ_

FIG. 4. (Color online) (a) Identical to the part of Fig. 3(b)
enclosed by the rectangle, but shifted to the left because here
,,=—250. The points A, B, C are identical to the equivalent points
in Fig. 2(a). (b) Stability boundaries for system with spatially fil-
tered feedback and finite gain bandwidth. The black line corre-
sponds to solitary VCSEL modes, the light-gray (cyan) region to the
modes controlled by FSF with spatial filtering. The trivial solution
is unstable between lines A, B and stable between lines B, C. (¢)
Dependence on transverse frequency of the relative feedback
strength [gray (red) curve] and gain (black curve). Parameters as in
(a) except for 0=100.0, 74=0.06, 5,=50.0, T,=0.01. The gain spec-
trum in (c) primarily affects the solitary VCSEL modes, for which it
corresponds to 6=50.0.

physical. This requires w,, to be sufficiently negative, as in
Fig. 4(a), which is identical to the dashed rectangle in Fig.
3(b). In Fig. 4(a) points A, B, C are identical to the equiva-
lent points in Fig. 2(a), and all tilted-wave mode thresholds
lie below point B.

While the trivial solution is stable for current values in the
range (B,C), simulations show very complex dynamics in
this region, and no stable localized states were found. To
reduce the complexity, a spatial filter is introduced in the
feedback equation, which works as a narrow-pass filter for a
band of transverse frequencies (a ring in k, space)

o

1+[(85- Q)T

Q)= (7)

Oy determines the band center of the filter and 7 its width.
Such a filter might be implemented experimentally by plac-
ing an annular aperture in the back focal plane of the first
lens (F in Fig. 1).

The filter should suppress all tilted waves outside its
bandpass, while still allowing enough bandwidth to support
tilted waves with slow spatial variations of their amplitudes
(and, in particular, localized states). The traveling-wave so-
lutions (5) and (6) remain valid for o(£),), and Fig. 4(b)
depicts the same kind of information as Fig. 4(a), but with
spatial filtering and a slightly higher feedback strength. The
parameters were adjusted such that there is bistability be-
tween a stable trivial solution and off-axis modes in a sub-
stantial interval of pump current (between the lines B and C),
within which range localized states may exist.

In this figure, we have also included the effects of finite
gain bandwidth [Fig. 4(b)]. In (1) the Lorentzian operator
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FIG. 5. Evolution of optical field E for parameters of Fig. 4(b)
and pump current u=0.8, for which E=0 is an unstable state. (a)
Snapshot of the real part of the field during the transient stage; (b)
far-field intensity during the transient stage; (c) snapshot of the real
part of the field in the asymptotic regime; (d) far field in the
asymptotic regime.

L=1/{1+[(5- o)T,]*} describes the gain spectrum. It has
been shown [16] that the output frequency of a broad-area
VCSEL obeys w=w,+{) |, i.e., is selected by tilted-wave
resonance [27,28]. We assume that similar slaving applies to
our system, and thus that the gain spectrum can be consid-
ered a function of wave vector, rather than frequency, which
is much more convenient for simulations. As expected, the
minimum thresholds occur when the gain maximum coin-
cides with the filter maximum, as in Fig. 4(c). The gain line-
width is set much smaller than in a real VCSEL, in order to
show its main effect in this context, which is to warp the
threshold curves in Fig. 4(b) for solitary VCSEL modes. In
fact, even this unrealistically narrow gain bandwidth only
weakly perturbs the strong frequency and wave vector selec-
tion imposed by the cavity, grating, and spatial filter.

IV. SIMULATIONS

We have performed numerical simulations of the system
of equations (1) and (3) using a split-step Runge-Kutta
method with fixed step size. Polynomial interpolation was
used to calculate the value of the field at intermediate times
inside the delay interval. The spatial operators were evalu-
ated in Fourier space. The calculations were performed using
a cluster of parallel processors with large shared-access
memory because of the need to store all the spatial data
throughout the delay interval.

For values of the pump current within the dark-gray (red)
region in Fig. 4(a), modes with wave numbers in the pass-
band emerge from noise, leading to a ring in the far field and
irregular structures in the near field [Figs. 5(a) and 5(b)]. The
radius of the far-field ring corresponds to k= V 6fla as ex-
pected. After this transient stage, however, the field evolves
through winner-take-all mode competition toward a single
traveling wave [Figs. 5(c) and 5(d)], as expected for an infi-
nitely extended laser [29]. In this case, the field amplitude is
homogeneous, but its real part shows stripes and there is a
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FIG. 6. Snapshots of localized lasing states for the same param-
eters as in Fig. 5, except u=0.9, for which E=0 is stable. (a), (d)
are the real part of the field, (b), (e) are the intensities of the field
(|E|?), and (c), (f) are the far-field intensity distributions. (a), (b), (c)
correspond to a localized traveling wave, (d), (e), (f) correspond to
a localized standing wave (LSW). The different structures are ex-
cited using different initial conditions; see text.

single spot in the far field which lies on the ring of unstable
modes [see Fig. 5(b)]. Increasing the pump current into the
range where the trivial solution regains stability [above line
B but below C in Fig. 4(a)], the traveling wave (TW) re-
mains stable. Hence there is coexistence between an ex-
tended, spatially nontrivial solution (here the TW) and the
trivial solution, which is known to provide favorable condi-
tions for localized structures [2,30].

In order to excite a localized structure, the system is ini-
tialized with the trivial solution, except for a disk in the
center of the transverse section, which is initialized with the
coexistent TW. A stable localized structure evolves, which
looks like part of a TW [Figs. 6(a)-6(c)]. In particular the far
field [Fig. 6(c)] is off center and asymmetric, so we term this
a localized traveling wave. The amplitude |E(x,y)| of the
field is constant in time, while the real part performs regular
oscillations (at any fixed point) with a frequency close to w,,.
The stationary envelope of the LTW overlies a traveling
wave which propagates through it with phase velocity
~w,,/ky. It is interesting to note that similar LTW structures
have been found in hydrodynamical systems [31,32].

Detailed numerical analysis of LTW structures confirms
that they possess key properties expected of dissipative self-
localized solutions, i.e., cavity solitons. First, the intensity
decays almost exponentially from the central maximum to-
ward the zero background (Fig. 7). This also implies expo-
nential decay of r|E]> as r—w, in contrast with Bessel
beams, for which this quantity, essentially the energy per
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FIG. 7. (Color online) Evidence of the self-localization of the
LTW state. Displayed is the intensity |E|> of the field versus the
distance r from its peak. Note the logarithmic intensity scale, so that
the linear decrease of each of three intensity measures shows expo-
nential localization. Solid curve is the azimuthally averaged inten-
sity. Dotted and dashed curves are two orthogonal sections. These
curves are calculated over a radial range four times larger than that
displayed in Fig. 6.

annulus, remains constant. Second, the structure can be
present or absent for the same parameters. Third, the LTW
can be excited in any region of the transverse section, i.e.,
has freedom of location. Fourth, it is an attractor of the dy-
namics, forming and stabilizing from nonsmooth initial con-
ditions only approximating the amplitude and width of the
LTW. We have also found similar LTW structures for other
parameter values. In particular, they exist also for flat gain
(T,=0), and so are not sensitive to the particular width or
shape of the gain spectrum.

We can also excite a different sort of localized structure
with initial conditions consisting of a radially symmetric
(Gaussian) pulse. The frequency of this address pulse is that
of the external cavity mode of maximal amplitude, and its
duration is equal to the delay time 7+27. A symmetric stable
localized structure is created [Figs. 6(d)-6(f)], which we
term a localized standing wave (LSW). In the real part, the
center oscillates with constant frequency, while the tail is like
an inward-traveling wave. The intensity at any point is
constant.

As well as the self-focusing case a=5.0 described above,
we have checked the self-defocusing case a=-5.0, for which
the stability boundaries of the trivial solution are depicted in
Fig. 3(c). However, by appropriate choice of w,, and the
spatial filter parameters, it is again possible to obtain bista-
bility, and LTWs can be excited in the same way. Hence
self-localization does not depend on the sign of the phase-
amplitude coupling.

The mutual independence of these self-localized struc-
tures is demonstrated explicitly in Fig. 8 where it is shown
that several, of different types, can stably coexist within the
transverse plane (Fig. 8).

V. CONCLUSIONS

In summary, we have presented and analyzed a model of a
VCSEL with frequency-selective external feedback, and
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(b)

FIG. 8. Stable coexistence of several localized structures, two
LTWs with different orientations (on the left) and one LSW. Image
area is four times larger than in Fig. 6. (a) Real part and (b) ampli-
tude of field.

shown that the system supports traveling-wave solutions.
More significantly, we have found conditions under which
the traveling waves can coexist with the trivial laser off state.
We showed stable coexistence of a single transverse travel-
ing wave with a homogeneous solution with spatially filtered
feedback. Such coexistence often implies the existence of
localized solutions, and indeed we have presented numerical
evidence for the occurrence of such solutions in our system.
These self-localized traveling and standing waves satisfy all
of the important criteria for conventional cavity solitons: ex-
ponential localization, presence or absence under the same
conditions, and freedom of location.

These results have several interesting aspects. In the first
place, they pave the way for realizing a semiconductor-based
cavity soliton laser using fairly standard designs. Second, we
have demonstrated localized structures (LTWs and LSWs)
which, because of their unusual internal structures (and, in
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the case of the LTWs, spatial asymmetry), are quite different
in nature from the well-established cavity solitons mentioned
in the Introduction. They do have particlelike properties,
however, similar to those of other dissipative solitons, and so
we claim that our model does indeed describe a cavity soli-
ton laser. The interactions of these LTW and LSW solitons
with each other and with external “forces” is an important
area for future investigation—Fig. 8 already shows that the
interaction has a limited range. Other studies on cavity soli-
tons show an oscillatory interaction at short distances, lead-
ing to bound states (e.g., [5,8,33]), and some recent results
indicate intricate features of the interaction of asymmetric
solitons [34]. Third, semiconductor lasers with optical feed-
back are known to show a wide variety of temporal instabili-
ties, and preliminary results indicate that the system under
study is no exception. Studying the properties of regularly
and irregularly oscillating localized structures may be fruitful
for fundamental insights into spatiotemporal dynamics and
chaos, and possible synchronization (within the same device
or in coupled devices) has potential for chaotic data trans-
mission [35].
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