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The concept of controllability of linear systems from control theory is applied to networks inspired by
biology. A node is in this context controllable if an external signal can be applied which can adjust the level
�e.g., protein concentration� of the node in a finite time to an arbitrary value, regardless of the levels of the
other nodes. The property of being downstream of the node to which the input is applied turns out to be a
necessary but not a sufficient condition for being controllable. An interpretation of the controllability matrix,
when applied to networks, is also given. Finally, two case studies are provided in order to better explain the
concepts, as well as some results for a gene regulatory network of fission yeast.
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I. INTRODUCTION

Biological networks, such as those describing gene regu-
lation, can be seen as dynamical systems. Some structural
characteristics of these networks have been identified �1� but
the exploration of the dynamical implications is still in its
infancy. The area attracts people from various fields, such as
statistics, mathematics, computer science, biology, control
theory, and, of course, physics. From a physics perspective, it
is interesting both to model the dynamics of a specific sys-
tem directly with differential equations �2�, and to search for
mechanisms that have built these kinds of networks �3�. The
goal of this paper is to show how control theory can be
applied to networks, namely, how the concept of controlla-
bility can be taken into consideration. In network theory, a
node N1 in a directed network is often said to be controlled
by another node N2 if there is a directed path from N2 to N1.
Control theory, instead, uses the term controllability to de-
scribe the behavior of the network on the basis of the dy-
namical model. This latter definition of controllability ap-
plied to networks provides an insight to the behavior that
could be missed by just looking at the network in terms of
paths between nodes. The novelty here is the application of
the concept of controllability from control theory to net-
works in a systematic way. Although both the concept of
controllability and the representation of networks as digraphs
are well known, this kind of systematic study has not, to the
best knowledge of the present authors, been performed yet.

A network can be seen as a dynamic system with external
inputs acting on it and the interactions between the compo-
nents can be represented with a graph. The question whether
it is possible to control each node from the input raises, and
the notion of controllability can help to answer it. Often, it is
tacitly assumed that a node can be controlled by the nodes
upstream of it �4�. However, looking at controllability in this
new context of control theory, we obtain useful information
on how a node can be controlled going beyond the concept
of just being downstream of another node. An interpretation
of the controllability matrix is also given based on the gain

of different paths from the input to the nodes. The paper is
structured as follows. Section II introduces in a tutorial man-
ner the notion of controllability for linear systems. Section
III applies the concept of controllability to networks and
gives an interpretation in this context. Section IV explains
the notions previously introduced with two case studies. Sec-
tion V describes the results for a gene regulatory network of
fission yeast from the literature. Finally, Sec. VI contains
conclusions and mentions some future directions for re-
search.

II. CONTROLLABILITY

A linear system within control theory is often described in
terms of state equations as

ẋ�t� = Ax�t� + Bu�t� . �1�

Here x�Rn is the internal state of the system �often referred
to as “the state”� and u is an input �scalar� signal applied to
one of the units of the system �in a more general framework,
the input signal u can be both vector valued and/or applied to
more than one unit, but this is of no interest for the present
presentation�. The factors A and B are matrices, of dimen-
sions n�n and n�1, respectively, where A is called the
“state-transition matrix” and B for us has only one nonzero
element. Often, one also considers an output equation y�t�
=Cx�t�+Du�t�, with C and D as matrices. For the present
paper, however, this output equation is irrelevant and there-
fore discarded.

A natural question to ask is if we can find an input signal
u�t� which will take the system to any desired state in a finite
time �5�. In the general case, when the matrices A and B vary
in time, the concept of controllability is tied to a specific,
finite time interval denoted �t0 , tf� with tf � t0. Then, the fol-
lowing definition of controllability is widely accepted. The
linear state equation �1� is controllable on �t0 , tf� �6� if given
any initial state x�t0�=x0 there exists a continuous input sig-
nal u�t� such that the corresponding solution of Eq. �1� sat-
isfies x�tf�=0. Note that due to the linearity, a system in the
state x�t�=0 will remain in that state if the input signal is
turned off, i.e., if u�t�=0.*Electronic address: micho@itn.liu.se
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More interesting for us, because one can obtain easily
interpretable results, is the case of a time-invariant linear
system �i.e., the matrices A and B do not depend on time�.
The controllability property is now independent of the par-
ticular interval �t0 , tf�, and a necessary and sufficient condi-
tion for controllability of the linear system is the following:
A time-invariant linear system �1� is controllable if and only
if �see theorem 9.5 in Ref. �6�� the controllability matrix

C0 = �B AB ¯ An−1B� �2�

has full rank, i.e.,

rank C0 = n . �3�

The subscript zero is introduced in order not to confuse the
controllability matrix C0 with the matrix C in the output
equation. The matrix B from Eq. �1� will always have n rows
and in our case one column with only one nonzero element,
and constitutes the first column of the controllability matrix
C0. The second column of C0 is in this case the matrix prod-
uct AB, the third column is A2B, and so on.

Note that the formulation above presupposes linear equa-
tions. For a nonlinear system, it is not possible directly to
build the controllability matrix �2� and therefore to use the
condition �3�. However, it is often fruitful to linearize the
governing equations in a neighborhood of an equilibrium
point, and this paper will focus only on the linear case, which
then almost always represents a good starting point when
analyzing a system. The system from biology we use as an
example in Sec. V is indeed shown to be possible to describe
also with linear equations.

III. GRAPHS AND NETWORKS

The linear system given in �1� can be seen as a realization
of a graph �7�. The corresponding graph has as many nodes
as number of components of the state x, and a link between
two nodes are given by the existence of a nonzero element in
the matrix A. In other words, from A we obtain the adjacency
matrix for the graph if we replace all nonzero elements with
unity �in some texts, this is the transpose of the adjacency
matrix�. In particular it results in a directed graph, a digraph,
where each node is labelled as an integer i, i=1, . . . ,n and
described by a real number xi. An edge is drawn whenever a
node j affects directly the rate of change of a variable xi. The
element aij of the matrix A in Eq. �1� represents the weight of
the arc going from node j to node i. In this context, the input
u in Eq. �1� is seen as an external node affecting the node
corresponding to the nonzero element of the matrix B.

The term “controllability” is sometimes applied to di-
rected networks in the sense that upstream nodes are sup-
posed to control downstream nodes, i.e., one considers only
whether there is a path from one node to another. In order to
avoid confusion, we will in this paper only use the word
“controllability” the way it is introduced in Sec. II. It turns
out in our case studies below that these two concepts do not
coincide, where being downstream is a necessary but not
sufficient condition for being independently controlled.

When speaking of controllability of networks and the in-
put signal u is a scalar, the controllability matrix �2� acquires
a particular meaning. The element cij of the matrix C0 de-
notes the gain of all the paths going from the input u to the
node i along �j−1� links �or along j links, in case we con-
sider the input as an external node�. The particular case of 0
links denotes the case of the input applied directly on the
node. In the next section two case studies will illustrate in
details the interpretation given for the controllability matrix
for a graph.

IV. CASE STUDIES

In the previous section the concept of controllability for a
graph has been introduced and an interpretation of the con-
trollability matrix has been given. These concepts are now
illustrated with two case studies. Let the network have four
nodes and the input be applied to node 1 making B
= �1 0 0 0��. In both examples considered, the networks are
strongly connected, i.e., there is a directed path �often longer
than one edge� between every pair of nodes, but it will be
shown that in one case the controllability matrix has not full
rank.

A. Case A: Rank deficiency

Consider the network with links as shown in Fig. 1. The
corresponding state-transition matrix for the network of Fig.
1 is given by

A = �
0 a12 a13 a14

a21 0 0 a24

a31 0 0 a34

a41 0 0 0
� , �4�

FIG. 1. Network with four nodes; the corresponding controlla-
bility matrix is rank deficient.
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with aij�0 unless otherwise stated in the matrix, and the controllability matrix by

C0 = �
1 0 a12a21 + a13a31 + a14a41 a12a24a41 + a13a34a41

0 a21 a24a41 a12a21
2 + a31a21a13 + a41a21a14

0 a31 a34a41 a21a31a12 + a13a31
2 + a41a31a14

0 a41 0 a21a41a12 + a31a41a13 + a14a41
2
� . �5�

Figure 1 and the matrix �5� together give the interpreta-
tion of the controllability matrix for a graph. We see that it is
possible to go from the input at node 1 to nodes 2, 3, and 4
in one step and therefore the corresponding elements c22, c32,
and c42 are nonzero and given by the gain of the path a21,
a31, and a41, respectively. Let us now consider the element
c13 of the matrix C0: it represents the gain of all possible
paths going from the input at node 1 back to node 1 in two
steps. It is possible to go from the input to node 1 in two
steps following three different paths: going to node 2 through
the arc with gain a21 and coming back through the arc with
gain a12, the total gain of the path is a21a12. Similarly it is
possible to go through the arcs with gains a31 and a13 and
through the arcs with gains a41 and a14. The total gain of all
possible paths going from the input to node 1 in two steps is
given by a12a21+a13a31+a14a41, that is, exactly the element
c13 of the controllability matrix �5�.

The controllability matrix �5� has rank 3 and this means,
according to condition �3�, that the network is not control-
lable. Indeed rows 2, 3, and 4 of the controllability matrix �5�
have together rank 2, i.e., they are linearly dependent �for
certain values of aij, it might happen that one of them gets
independent as a kind of “accidental degeneracy” when the
other two become parallel�. This implies that nodes 2, 3, and

4 of the network cannot be controlled independently. This
property can also be seen by simulating the system �1� and
plotting the components of the state vector with respect to
time. The system given by Eq. �1� with the initial state as
zero has been simulated with the matrix A given in Eq. �4�
with all the nonzero elements replaced by random numbers
normally distributed �zero mean and unit variance, but the
exact values are not important here�. The input is a square
wave applied to node 1. In Fig. 2 one can see how the nodes
2, 3, and 4 of the state vector seem to be correlated in time,
and indeed the corresponding time derivatives of these sig-
nals are found to be linearly dependent.

Figure 2 also illustrates how node 1 is uncorrelated from
the other nodes, and this corresponds to the fact that row 1 of
the controllability matrix �5� is linearly independent from the
other rows. Here, we find how the vector containing the
time-derivatives of the signal for node 1 is linearly indepen-
dent to the time derivatives of the signals of the other nodes.

B. Case B: Full rank

Let the network be with the links as shown in Fig. 3.
Compared with case A �Fig. 1�, the only differences are that
the link between nodes 2 and 4 has been reversed, and that
the link from node 1 to node 3 now goes from node 3 to node
4. Although this similarity, the corresponding controllability
matrix, with the same input as in case A, has full rank. This
implies that all the nodes can be controlled independently by
a signal to the first one. Note that this means that any state,
i.e., any values of the four nodes, can be obtained by sending
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t

FIG. 2. Time development of the nodes of the network depicted
in Fig. 1 �case A�. The solid curve is the input signal, the plus signs
is for node 1, the dashed curve for node 2, the dash-dotted curve for
node 3, and the dotted curve for node 4. The second to fourth rows
in the controllability matrix have rank 2, i.e., the rank is not full,
and one can see how the nodes 2, 3, and 4 covary. Further, the
vectors containing the time-derivatives of these signals are found to
be linearly dependent. The first and third row, e.g., in the control-
lability matrix �5� are linearly independent, and one can see how the
nodes do not covary. Consequently, the vectors containing the time-
derivatives of these signals are linearly independent.

FIG. 3. Network with four nodes; the corresponding controlla-
bility matrix has full rank.
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a signal into node one. However, the result does not tell us
how to determine which signal to use for obtaining a desired
state. That issue is far beyond the scope of the present paper
to discuss.

V. NETWORK FOR CELL CYCLE REGULATION OF
FISSION YEAST

In this section a biological network is taken into consid-
eration and the concepts illustrated in Secs. II and III are
applied to it. The system is a dynamical model describing the
cell cycle regulation of fission yeast �8�. The differential
equations of the nonlinear model can be found in Table I in
Ref. �8�, where the variables correspond to protein or protein
complex concentrations. In Ref. �9� a piecewise linear ver-
sion of this model is obtained. It is based on the fact that the
biological system, apart from being large and complex, also
is robust and sparse. The result is a piecewise linear system
whose behavior can be described by a directed graph which
is represented in Fig. 4. In the Appendix is reported what
each node of the graph represents.

Once the directed graph is available, it is possible to de-
termine a formal description of the system in terms of state
variables �1�, even if we do not know the exact values of the
nonzero parameters aij. As an illustration, let us first apply
the input to node 1 and compute the controllability matrix. If
we look, for example, at the possible paths in two steps from
the input at node 1 to node 2, it is possible to go through
node 8, 12, or 13. This result appears in the controllability

matrix as c2,3=a2,8a8,1+a2,12a12,1+a2,13a13,1. All other ele-
ments can be determined likewise, but we refrain from re-
porting them here.

An interesting result comes from the analysis of the con-
trollability matrix in different cases when the input is applied
on each node at a time. Every time the input is applied on
node i, the corresponding controllability matrix is computed:
C0i

, i=1, . . . ,13. For each matrix C0i
, the rows that are lin-

early dependent are determined. It is found, e.g., that rows 7,
10, 11, 12, and 13 are linearly dependent for any input node
�except, of course, when the input is applied to one of these
nodes themselves�. This observation reflects, e.g., that a
single input cannot control the units TF, Slp1T, IEP, Wee1,
and Cdc25 �nodes 7, 10, 11, 12, and 13� independently of
each other. These units are spread temporally all over the cell
cycle, and our results indicate the fact that once the cycle has
passed the point “start,” it will proceed even if the extracel-
lular signals that triggered the process is removed �11�.

At heart of this biological exploration lies the fact that in
Ref. �9� it is shown how the governing nonlinear equations
can be approximated by piecewise linear equations where the
formalism above is applicable. Fission yeast is one model
organism, and there is reason to believe that properties found
here will to some extent be valid also in other organisms, at
least in unicellular eukaryotes. Indeed, the properties of ro-
bustness and sparsity are valid for many other organisms,
and hence the linear description should not be without rel-
evance. However, a more thorough exploration of this issue
is beyond the scope of the present text.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have extended the concept of controlla-
bility from control theory into the realm of network theory
for physics and systems biology. Controllability turns out to
be not only a fact of a node being downstream of another
node, but it depends in a more complex manner on the in-
trinsic structure of the network. If nodes are controllable, it
implies that arbitrary values for each node can be obtained
with a proper choice of the input signal. An interpretation of
the controllability matrix when applied to networks has also
been given. It is based on the gain of possible paths from the
input to each node.

These results have been applied to two case studies of a
network with four nodes; both when the corresponding con-
trollability matrix is rank deficient and when it has full rank.
Finally a gene regulatory network of yeast has been consid-
ered and the controllability has been explored.

The results presented in this paper suggest several issues
to explore. For example, could this concept be a reasonable
way to uncover functional modules within a biological net-
work? How strong are the nonlinear effects in a more realis-
tic description of other organisms than fission yeast, and how
large is the neighborhood in which the linear approximation
is reasonable?
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FIG. 4. Directed graph for the model of the cell cycle regulation
of fission yeast �9�. �Graph drawn with Pajek �10�.�

ANNA LOMBARDI AND MICHAEL HÖRNQUIST PHYSICAL REVIEW E 75, 056110 �2007�

056110-4



ACKNOWLEDGMENTS

We thank Lic. Mika Gustafsson for valuable comments
and discussions on this manuscript. Olivia Eriksson is ac-
knowledged for drawing our attention to Ref. �9� and for
providing data for the corresponding network.

APPENDIX: DIRECTED GRAPH FOR CELL CYCLE
REGULATION OF FISSION YEAST

In Sec. V a directed graph for the cell cycle regulation of
fission yeast �Schizosaccharomyces pombe, not to confuse
with the more often studied baker’s yeast, Saccharomyces
cerevisae� is reported. In order to be able to compare with
�8�, we provide here the names of the units

Node 1: MPF � M-phase promoting factor,

Node 2: preMPF,

Node 3: Cdc13T,

Node 4: Trimer,

Node 5: Rum1T,

Node 6: SK=starter kineses �Cdc2 with Cig1, Cig2,
Puc1�,

Node 7: TF=transcriptor factor for synthesis of SK,

Node 8: Ste9,

Node 9: Slp1,

Node 10: Slp1T,

Node 11: IEP,

Node 12: Wee1,

Node 13: Cdc25.
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