
Dynamics of neural cryptography

Andreas Ruttor and Wolfgang Kinzel
Institut für Theoretische Physik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

Ido Kanter
Minerva Center and Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel

�Received 21 December 2006; published 9 May 2007�

Synchronization of neural networks has been used for public channel protocols in cryptography. In the case
of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven
by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the
overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the
step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirec-
tional interaction leads to full synchronization on average. In contrast, successful learning is only possible by
means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the
security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and
unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that
those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which
can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution.
As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can
easily be made unfeasible.

DOI: 10.1103/PhysRevE.75.056104 PACS number�s�: 84.35.�i, 87.18.Sn, 89.70.�c

I. INTRODUCTION

Synchronization of neural networks �1,2� is a special case
of an online learning situation. Two neural networks start
with randomly chosen uncorrelated weights. In each time
step they receive common input values, communicate their
output to each other and use a suitable learning rule to update
their weights. Finally, this process leads to full synchroniza-
tion of corresponding weights in both networks.

In the case of simple networks, e.g., perceptrons, there is
no difference between unidirectional learning and bidirec-
tional synchronization. However, for tree parity machines
�TPMs� an interesting phenomenon can be observed: two
neural networks learning from each other synchronize much
faster than a third network only listening to the communica-
tion �2�.

This effect has been applied to solve a cryptographic
problem �3�: Two partners A and B want to exchange a secret
message over a public channel. In order to protect the con-
tent against an attacker E, who is listening to the communi-
cation, A encrypts the message. However, then B needs A’s
key for decryption. Without an additional private channel A
and B have to use a cryptographic key-exchange protocol in
order to generate a common secret key over the public chan-
nel �4�. This can be achieved by synchronizing two TPMs,
one for A and one for B, respectively. Of course, the attacker
tries to determine the key, too. But when learning is much
slower than synchronization, a tree parity machine �TPM�
trained by E is usually unable to synchronize before A and B
have finished the key exchange. Therefore the success prob-
ability PE of an attack is very small �5�.

Compared to other key-exchange algorithms neural cryp-
tography needs only simple mathematical operations,
namely, adding and subtracting integer numbers. Thus it is
possible to use this key-exchange protocol in devices with

limited computing power. Computer scientists are already
working on hardware implementations, which are part of an
integrated circuit �6–9�.

Since the first proposal of the neural key-exchange proto-
col �3� most research has been focused on finding more ad-
vanced methods for the partners �10–12� and the attacker
�13–15�. However, the results of simulations and iterative
calculations show the same scaling behavior in almost all
cases: the success probability PE decreases exponentially
with increasing synaptic depth L �5�, while the average syn-
chronization time tsync only grows proportional to L2 �16�.
Therefore L plays the same role in neural cryptography as
the key length in traditional cryptographic systems, which
are based on number theory �15�.

In this paper we analyze the synchronization process of
two tree parity machines by the dynamics of the overlap �.
First, we repeat the definition of basic algorithms of neural
cryptography regarding synchronization and attacks in Sec.
II. In Sec. III we calculate the probabilities of attractive and
repulsive steps for different types of interactions. The effect
of these steps on the overlap is then presented in Sec. IV.
Here we show that the mechanisms for unidirectional learn-
ing and bidirectional synchronization are indeed different. In
Sec. V we finally apply our results on the dynamics of neural
synchronization in order to analyze the security of neural
cryptography against brute-force attacks. For that purpose
we use the entropy of the weight distribution to determine a
scaling law for the number of keys which can be generated
by the neural key-exchange protocol.

II. NEURAL SYNCHRONIZATION

The TPMs used by partners and attackers in neural cryp-
tography consist of K hidden units, which are discrete per-
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ceptrons with independent receptive fields. The general
structure of these networks is shown in Fig. 1. All input
values are binary,

xij � �− 1, + 1� �1�

and the weights are discrete numbers between −L and +L,

wij � �− L,− L + 1, . . . , + L� . �2�

Here the index i=1, . . . ,K denotes the ith hidden unit of the
TPM and j=1, . . . ,N the elements of each vector. As usual,
the output �i of a hidden unit is given by the sign of the
scalar product of inputs and weights

�i = sgn�wi · xi� , �3�

and the total output � of a TPM is defined as the product
�parity� of the hidden units

� = �
i=1

K

�i. �4�

The two partners start with secret random weight vectors
wA and wB, respectively. At each time step, a common public
input vector x is generated, and the partners exchange their
output bits over the public channel. The weight vectors are
updated, and the process is iterated until the partners have
synchronized their weights which then are used for the secret
key. Note that the hidden units �i

A and �i
B are secret, this is

an essential mechanism for the security of neural cryptogra-
phy.

We consider three different algorithms for the update of
the weights in each time step.

Synchronization:

wi
A/B+ = wi

A/B + xi���i
A/B�A����A�B� . �5�

In neural cryptography this algorithm is used by the partners
A and B. Here we only consider the random walk learning
rule �17�, because all other suitable learning rules �Hebbian
and Anti-Hebbian� converge to it in the limit N→� �15�.

Simple attack:

wi
E+ = wi

E + xi���i
E�A����A�B� . �6�

This method is the simplest algorithm for unidirectional
learning. An attacker E can try it in order to synchronize with
the partners A and B by training a TPM with the observed
examples consisting of xi and �A �3�.

Geometric attack: The geometric attack is the most suc-
cessful method for an attacker using only a single TPM �13�.
Here E tries to realize Eq. �5� without being able to interact
with A. As long as �E=�A, this can be achieved by just ap-

plying Eq. �6�, as both learning rules have the same effect.
However, in the case �E��A E cannot stop A’s update of the
weights. Instead of this the attacker uses additional informa-
tion contained in the local fields

hi
E =

1
�N

wi
E · xi �7�

of the hidden units in order to correct the output �E of her
TPM. As a low absolute value 	hi

E	 indicates a high probabil-
ity of �i

E��i
A, the attacker flips the output of the hidden unit

with minimal 	hi
E	 before applying the learning rule �6�.

In all three cases weights wij leaving the allowed range
between −L and +L are reset to the nearest boundary value
sgn�wij�L.

We analyze the process of synchronization using simula-
tions of finite systems as well as iterative calculations for
N→� �11,18�. Correlations between the weight vectors of
two corresponding hidden units i are described by �2L+1�2

variables pa,b
i �t�, which are defined as the probability to find

a weight with wij
A�t�=a in A’s tree parity machine and wij

B

=b in B’s TPM at time t:

pa,b
i �t� = P„wij

A�t� = a ∧ wij
B�t� = b… . �8�

While these quantities are approximately given by the fre-
quency of the weight values wij

A�t� and wij
B�t� in simulations,

we use the equations of motion given in Ref. �11� to deter-
mine the time evolution of pa,b

i �t� directly in the limit N
→�.

In both cases the standard order parameters �19�, which
are commonly used for the analysis of online learning, can
be calculated as functions of pa,b

i �t�:

Qi
A =

1

N
wi

A · wi
A = 


a=−L

L



b=−L

L

a2pa,b
i , �9�

Qi
B =

1

N
wi

B · wi
B = 


a=−L

L



b=−L

L

b2pa,b
i , �10�

Ri
A,B =

1

N
wi

A · wi
B = 


a=−L

L



b=−L

L

abpa,b
i . �11�

The level of synchronization between two corresponding
hidden units is then given by the normalized overlap �19�

�i =
wi

A · wi
B

�wi
A · wi

A�wi
B · wi

B
=

Ri
A,B

�Qi
AQi

B
. �12�

Uncorrelated weight vectors at the beginning of the synchro-
nization process have �i=0, while the maximum value �i
=1 is reached for fully synchronized weights.

All the update algorithms discussed above can be de-
scribed by

wi
A/B/E�t + 1� = wi

A/B/E�t� + f i
A/B/E�t�xi�t� , �13�

where fA/B/E�t� is a function, which can take the values −1, 0,
or +1 according to the learning rule. Therefore only three
different effects are possible.

x

w
σ

τ

Π

FIG. 1. A TPM with K=3 and N=4.
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If f i
A�t�= f i

B�t��0, the weights in both corresponding hid-
den units are moved in the same direction, so that the overlap
increases. This is called an “attractive step” and can be de-
scribed as anisotropic diffusion

pa,b
i+ =

1

2
�pa+1,b+1

i + pa−1,b−1
i � , �14�

with reflecting boundary conditions. A sequence of these at-
tractive steps finally reaches a fixed point at �i=1.

If only the weights of one hidden unit are updated, f i
A�t�

+ f i
B�t�= ±1, the overlap �i decreases on average. This repul-

sive step performs a normal diffusion on a �2L+1�� �2L
+1� square lattice

pa,b
i+ =

1

4
�pa+1,b

i + pa−1,b
i + pa,b+1

i + pa,b−1
i � . �15�

Of course, the boundary conditions are the same as above.
For a sequence of these repulsive steps the fixed point of the
overlap is located at �i=0.

For f i
A�t�= f i

B�t�=0 the weights stay at their position.
Therefore the overlap does not change at all in this step.

The remaining situation f i
A�t�=−f i

B�t��0 cannot occur in
any algorithm discussed above.

In general, the change of the overlap �� is not only a
function of the current overlap, but depends also on the dis-
tribution of the weights and the type of step, which is de-
noted by a subscript if necessary: the effect of an attractive
step is given by ��a���, while we use ��r��� in the case of
repulsive steps. Both quantities as well as �����, which is
not restricted to a particular type of step, are random vari-
ables, whose properties can be determined in simulations or
iterative calculations.

However, for special cases an analytical solution can be
given by using Eqs. �14� and �15�, taking the boundary con-
ditions into account. At the beginning of the synchronization
all weights are uniformly distributed, so that a repulsive step
does not change the overlap, but an attractive step has a large
effect:

��a�� = 0� =
12L

�L + 1��2L + 1�2 �
3

L2 , �16�

��r�� = 0� = 0. �17�

In contrast, one observes the opposite situation for fully syn-
chronized weights ��=1�:

��a�� = 1� = 0, �18�

��r�� = 1� = −
3

�L + 1��2L + 1�
� −

3

2L2 . �19�

Here an attractive step does not change the overlap at all, but
a repulsive step has its maximum effect.

Figure 2 shows that ���a���
 and ���r���
 do not depend
on the synchronization algorithm. Consequently, the differ-
ence between unidirectional learning and bidirectional syn-
chronization is caused by the probability of attractive and
repulsive steps, but not their effects.

Using Eqs. �16� and �19� we obtain the rescaled quantities
���a���
 /��a�0� and ���r���
 /��r�1� which become asymp-
totically independent of L for large synaptic depth. This is
clearly visible in Figs. 3 and 4. Therefore these two functions
are sufficient to describe the effect of attractive and repulsive
steps.
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FIG. 2. Effect of attractive �upper curve� and repulsive steps
�lower curve� for K=3 and L=10. Symbols represent averages over
1000 simulations for N=100. The lines denote the corresponding
results obtained by iterative calculations for bidirectional synchro-
nization and N→�.
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FIG. 3. Scaling functions for attractive steps. These results were
obtained in 1000 iterative calculations for bidirectional synchroni-
zation with K=3 and N→�.
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FIG. 4. Scaling functions for repulsive steps. These results were
obtained in the same way as those shown in Fig. 3.
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III. TRANSITION PROBABILITIES

All algorithms for neural synchronization have in com-
mon that a repulsive step can only occur in the ith hidden
unit, if the two corresponding outputs �i are different. The
probability for this event is given by the well-known gener-
alization error �19�

	i =
1



arccos��i� �20�

of the perceptron. In the case of unidirectional learning mu-
tual interaction does not happen. Therefore the probability of
repulsive steps for an simple attack is directly given by Eq.
�20�:

Pr
E = 	i. �21�

However, if both hidden units agree on �i, this does not
always lead to an attractive step, because �i=� is another
necessary condition for an update of the weights. Thus the
probability of attractive steps is given by

Pa
E =

1

2
�1 − 	i� �22�

in the case of learning with K�1.
In contrast, mutual interaction is an integral part of bidi-

rectional synchronization. When �A��B, that move of the
weights would have a repulsive effect in at least one hidden
unit, hence the partners A and B avoid it by not updating the
weights. However, when an even number of hidden units
disagrees on the output, one has �A=�B and the learning rule
is applied. Taking all possibilities into account, we find for
K=3 and identical overlap �	i=	� in all hidden units �11�:

Pa
B =

1

2

�1 − 	�3 + �1 − 	�	2

�1 − 	�3 + 3�1 − 	�	2 , �23�

Pr
B =

2�1 − 	�	2

�1 − 	�3 + 3�1 − 	�	2 . �24�

Because of Pr
B� Pr

E the partners have a clear advantage over
a simple attacker in neural cryptography.

However, E can do better by taking the local field into
account. Then the probability for �i

E��i
A is given by the

prediction error �20�

	i
p =

1

2�1 − erf� �i

�2�1 − �i
2�

	hi	
�Qi

�� �25�

of a perceptron, which depends not only on �i but also on
	hi

E	. This quantity is a strictly monotonic decreasing function
of 	hi

E	. Therefore the geometric attack is often able to find
the hidden unit with �i

E��i
A by searching for the minimum

of 	hi
E	. If all other units have � j

E=� j
A, then the probability for

a successful geometric correction �15� is given by

Pg = �
0

�

�
j�i
��

hi

� 2
�2
Qj

1 − 	 j
p

1 − 	 j
e−hj

2/�2Qj�dhj�
�

2
�2
Qi

	i
p

	i
e−hi

2/�2Qi�dhi. �26�

Using this equation, we find for K=3, geometric attack and
identical overlap in all hidden units

Pa
E =

1

2
�1 + 2Pg��1 − 	�2	 +

1

2
�1 − 	�3 +

1

2
�1 − 	�	2 +

1

6
	3,

�27�

Pr
E = 2�1 − Pg��1 − 	�2	 + 2�1 − 	�	2 +

2

3
	3. �28�

While Pr
E for the geometric attack is lower than for the

simple attack, it is still higher than Pr
B. Thus even this ad-

vanced algorithm for unidirectional learning has a disadvan-
tage compared to bidirectional synchronization, which is
clearly visible in Fig. 5.

IV. DYNAMICS OF THE OVERLAP

The results presented in Secs. II and III indicate that the
overlap � between two corresponding hidden units performs
a random walk with position dependent step sizes
(��a��� ,��r���) and transition probabilities (Pa��� , Pr���).
In order to understand the dynamics, we calculate the aver-
age change of the overlap as a function of � itself:

���
 = Pa��a + Pr��r. �29�

This quantity is shown in Fig. 6. In the case of bidirectional
synchronization for K�3 it is always positive until the pro-
cess reaches an absorbing state at �=1.

While the transition probabilities are independent of L,
the step sizes decrease asymptotically proportional to L−2

according to Eqs. �16� and �19�. That is why ���
 is also
proportional to L−2 and we find �5�

tsync 

1

���


 L2 �30�

for the average number of steps needed for full synchroniza-
tion. In fact, the probability Psync�t� to achieve identical
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P
r
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geometric attack

FIG. 5. Probability that updating the weights has a repulsive
effect in one hidden unit for K=3.
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weight vectors in A’s and B’s neural networks in at most t
steps is given by a Gumbel distribution

Psync�t� = e−e��−t�/�
, �31�

with parameters � and �, which increase proportional to L2

�16�. Thus A and B can generate a common key in a short
time with the help of neural cryptography.

Additionally, ������
 is independent of N except for
finite-size effects, which is clearly visible in Fig. 2. The exact
analytical calculation presented in Ref. �16� yields tsync

L2 ln N, because one has to wait until all corresponding
weights have identical values. Consequently, the partners are
able to use rather large neural networks without problems.

However, the situation is completely different in the case
of learning, e.g., for the simple attack or the geometric at-
tack. Now there exists a fixed point of the dynamics at � f
�1 with ����� f�
=0. In the case of K=3, which is the usual
choice in regard to neural cryptography, we find � f �0.65 for
the simple attack and � f �0.68 for the geometric attack.

As long as ��� f the overlap increases on average, but
afterwards we observe a quasistationary Gaussian distribu-
tion of � with mean value � f and standard deviation � f. This
is clearly visible in Fig. 7. Consequently, the absorbing state
�=1 can only be reached by fluctuations of the overlap.

In order to determine the scaling of the standard deviation
� f of the overlap at the fixed point, we use a linear approxi-

mation for the dynamics of �� around � f without taking
boundary conditions into account

���t� � − ����t� − � f� + ���t� . �32�

Here ��t� are random numbers with zero mean and unit vari-
ance. The parameters are defined as

� = − � d

d�
������
�

�=�f

, �33�

� = ������� f��2
 . �34�

In this model, the time evolution of the overlap is given as
the solution of Eq. �32�

��t� − � f = 

i=1

t

�1 − ��t−i���i� �35�

using the initial condition ��0�=� f, which is irrelevant in the
limit t→�. Therefore the fluctuations of the overlap in the
stationary state are given by

� f
2 = 


t=0

�

�1 − ��2t�2 =
�2

2� − �2 . �36�

As the step sizes of the random walk in � space decrease
proportional to L−2 for L�1 according to Eqs. �16� and �19�,
this is also the scaling behavior of the parameters � and �.
Thus we find

� f 

1

L
�37�

for larger values of the synaptic depth. Although we have
neglected the more complex features of ������
, this scaling
behavior is clearly visible in Fig. 8. The deviations for small
values of L are caused by finite-size effects.

Consequently, an attacker E is unable to synchronize with
A and B in the limit L→�, even if she uses the geometric
attack. This is also true for any other algorithm, which has a
fixed point at � f �1 in the dynamics of the overlap.

For finite synaptic depth, however, E has a chance of
getting beyond the fixed point at � f by fluctuations. The
probability that this event occurs in any given step is inde-
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FIG. 6. Average change of the overlap for K=3, L=5, and N
=100. Symbols represent results obtained in 1000 simulations.
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FIG. 7. Distribution of the overlap � at different time steps for
K=3, L=5, N=100, and geometric attack. These histograms show
the result of 10 000 simulations.
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FIG. 8. Standard deviation of � at the fixed point � f. Symbols
denote results averaged over 10 000 simulations using K=3, N
=1000, and unidirectional synchronization.

DYNAMICS OF NEURAL CRYPTOGRAPHY PHYSICAL REVIEW E 75, 056104 �2007�

056104-5



pendent of t once the quasistationary state has been reached.
That is why Psync

E �t� is no longer given by Eq. �31�, but
described well for t� t0 by an exponential distribution

Psync
E �t� = 1 − e−�t−t0�/tf , �38�

with time constant tf. This is clearly visible in Fig. 9. Be-
cause of tf � t0 one needs

�tsync
 � tf �39�

steps on average to achieve full synchronization by unidirec-
tional learning.

In our simplified model with linear ������
 the average
time needed to reach �=1 starting at the fixed point is given
by

tf �
1

P�� = 1�
= �2
� f e�1−�f

2�/�2�f
2� �40�

in the case of small fluctuations � f �1−� f, where we can
assume that the distribution of � is not influenced by the
presence of the absorbing state at �=1. Hence we expect

tf 
 ecL2
�41�

for the scaling of the time constant, as � f changes propor-
tional to L−1, while � f stays nearly constant. And Fig. 10

shows that indeed tf grows exponentially with increasing
synaptic depth

tf 
 ec1L+c2L2
. �42�

Thus the complexity of attacks on the neural key-
exchange protocol can be controlled by choosing L. Or if E’s
effort stays constant, her success probability drops exponen-
tially with increasing synaptic depth. This has been observed
in the case of the geometric attack �10� and even for ad-
vanced methods �12,15�. Consequently, A and B can reach
any desired level of security by increasing L, as the complex-
ity of a single key exchange grows only proportional to L2.

However, this is not true for K�3. As shown in Fig. 11, a
fixed point at � f �1 appears in the case of bidirectional syn-
chronization, too. Therefore Eq. �30� is not valid any more
and tsync increases exponentially with L. That is why TPMs
with four and more hidden units cannot be used in the neural
key-exchange protocol.

V. NUMBER OF KEYS

The state of the TPMs in each time step is a function of
the secret initial conditions and the public sequence of input
values. Therefore E can—in principle—determine the pos-
sible weight configurations at synchronization time tsync us-
ing her knowledge about the input vectors xi�t�. However, if
the number of these keys is large, a brute-force attack is
unfeasible. Consequently, this quantity is important for the
security of neural cryptography, too.

In order to estimate the number of keys, which can be
generated by the neural key-exchange protocol using a given
sequence of inputs, we look at the following system consist-
ing of two pairs of TPMs:

wi
A+ = wi

A + xi���i
A�A����A�B� , �43�

wi
B+ = wi

B + xi���i
B�B����A�B� , �44�

wi
C+ = wi

C + xi���i
C�C����C�D� , �45�

wi
D+ = wi

D + xi���i
D�D����C�D� . �46�

In this model all four neural networks receive the same se-
quence of inputs, but both pairs communicate their output
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FIG. 9. Probability distribution of tsync for K=3, N=1000 and
geometric attack. Symbols denote results averaged over 1000 simu-
lations and the lines show fits with Eq. �38�.
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bits only internally. Thus A and B as well as C and D syn-
chronize using the random walk learning rule, while correla-
tions caused by common inputs are visible in the overlap
�i

AC. Because of the symmetry in this system, �i
AD, �i

BC, and
�i

BD have the same properties as this quantity, so that it is
sufficient to look at �i

AC only.
Of course, synchronization of networks which do not in-

teract with each other, e.g., A with C, is much more difficult
and takes a longer time than performing the normal key-
exchange protocol. That is why we assume �AB=1 and �CD

=1 for the calculation of ���AC��AC�
.
The result is shown in Fig. 12. Similar to the case of

unidirectional learning, there is a fixed point at � f
AC�1 for

the dynamics of the overlap. Because of � f
AC�� f

AE the prob-
ability for full synchronization in this case is much smaller
than for a successful simple attack. In fact, large fluctuations
which lead to equal weights without interaction only occur in
small systems. But the common input sequence causes cor-
relations between wi

A and wi
C even for L�1 and N�1. Con-

sequently, the number of keys nkey is smaller than the number
of weight configurations nconf= �2L+1�KN of a tree parity ma-
chine.

We further analyze these correlations by calculating the
entropy of the weight distribution

S = − KN 

a=−L

L



c=−L

L

pa,c ln pa,c. �47�

Here pa,c is the probability to find wij
A =a and wij

C=c by se-
lecting a random weight. As the weights in each tree parity
machine alone stay uniformly distributed, the entropy of two
fully synchronized networks is given by

S0 = ln nconf = KN ln�2L + 1� , �48�

which is also the entropy of a single TPM. Consequently, the
quantity S−S0 describes the correlations between the weight
vectors caused by the common input sequence. It is propor-
tional to the length of the generated cryptographic key with
any redundancy removed using a suitable encoding. There-
fore the logarithm of the effective number of keys is given
by

ln nkey = S − S0. �49�

We note, however, that the real number can be larger, be-
cause not all possible weight configurations occur with equal
probability as keys. Therefore nkey is, in fact, a lower bound
for the number of different final configurations. However,
this quantity determines the security against brute-force at-
tacks, as an attacker tries the most probable keys first.

Figure 13 shows the time evolution of this entropy. First
S−S0 shrinks linearly with increasing t, as the overlap �
between A and C grows while it approaches the stationary
state. This behavior is consistent with an exponential de-
creasing number of keys, which can be directly observed in
very small systems as shown in Fig. 14. Of course, after the
system has reached the fixed point shown in Fig. 12, the
entropy stays constant. We use this minimum value in order
to determine nkey.

It is clearly visible that there are two scaling relations for
S�t�. The synchronization time tsync
L2 is the time scale of
all processes related to the synchronization of tree parity ma-
chines. It depends on the size of the learning steps ���
.
Therefore the time needed to reach the fixed point of �i

AC is
proportional to L2, too.

Entropy is an extensive quantity. Thus S and S0 are pro-
portional to the number of weights N. Consequently the
number of keys, which can be generated by the neural key-
exchange protocol for a given input sequence, grows expo-
nentially with increasing N.
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FIG. 12. Average change of the overlap between A and C for
K=3, L=3, and N=1000, obtained from 100 simulations with 100
pairs of TPMs.
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FIG. 13. Entropy per weight for A and C for K=3 and L=3.
Symbols denote results obtained in 100 simulations with 100 pairs
of TPMs.
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In order to determine the dependency between the synap-
tic depth L and nkey we calculate the mutual information

I = 2S0 − S �50�

between A and C, which is visible in the correlations of the
weight vectors. Using Eqs. �48� and �49� we find

I = − ln� nkey

nconf
� . �51�

Therefore the number of keys is given by

nkey = nconfe
−I = ��2L + 1�Ke−I/N�N. �52�

As shown in Fig. 15, I /N becomes asymptotically inde-
pendent of the synaptic depth in the limit L→�. Of course,
changing N does not influence I /N either, as it is an intensive
quantity. Extrapolating I yields the result

I � 0.42N , �53�

which is valid for K=3 and L�1. Consequently, nkey in-
creases exponentially with N,

nkey � �0.66�2L + 1�3�N, �54�

so that there are always enough possible keys in larger sys-
tems to prevent successful brute-force attacks on the neural
key-exchange protocol.

VI. CONCLUSIONS

Synchronization of neural networks is a dynamical pro-
cess driven by attractive and repulsive stochastic forces.
While there is little difference between unidirectional and

bidirectional interaction in the case of simple networks such
as perceptrons, more complex networks such as TPMs show
an interesting phenomenon: neural networks which interact
with each other synchronize faster than those, which are only
trained with the examples generated by others.

We have investigated the dynamics of this effect, which is
essential for the recently proposed neural key-exchange pro-
tocol. In multilayer feed-forward networks the hidden units
are not public. Therefore learning steps can have either an
attractive or repulsive effect. In both cases the step size only
depends on the synaptic depth L and the time-dependent
overlap � between the networks. Two neural networks, A and
B, learning from each other are able to skip unsuitable input
vectors because of their interaction. That is why they avoid
some repulsive steps and have a clear advantage over a third
passive neural network E, which cannot influence A and B.
Consequently, A and B have a lower frequency of repulsive
learning steps than E, which causes the difference between
bidirectional synchronization and unidirectional learning.

Using the step sizes ��a���, ��r��� and transition prob-
abilities Pa���, Pr��� we described the process of neural syn-
chronization as a random walk of the overlap �. The most
important properties of the dynamics are visible in the aver-
age change of the overlap ������
. In the case of K=3 and
bidirectional interaction the dynamics of the overlap has only
one fixed point at �=1. That is why full synchronization is
achieved after �tsync

L2 steps on average. However, for uni-
directional learning or mutual learning with K�3 there is an
additional fixed point at � f �1, so that �=1 is only reachable
by fluctuations. This leads to a different scaling behavior of
the average synchronization time �tsync

ec1L+c2L2

. Thus the
difference between bidirectional synchronization and unidi-
rectional learning can be controlled by choosing the synaptic
depth L.

An identical input sequence causes correlations between
tree parity machines even without any other interaction.
Similarly to the case of unidirectional learning there is a
fixed point at � f �1. As the distance 1−� f is larger, full
synchronization without interaction is only observed for very
small TPMs. But the correlations restrict the number of dif-
ferent keys nkey, which can be generated by the neural key-
exchange protocol using a certain input sequence and ran-
dom initial weights. Both the configuration space nconf= �2L
+1�KN and nkey grow exponentially with increasing number
of weights per hidden unit. Therefore a large value of N
guarantees the security of neural cryptography against brute-
force attacks and similar methods.

�1� R. Metzler, W. Kinzel, and I. Kanter, Phys. Rev. E 62, 2555
�2000�.

�2� W. Kinzel and I. Kanter, J. Phys. A 36, 11173 �2003�.
�3� I. Kanter, W. Kinzel, and E. Kanter, Europhys. Lett. 57, 141

�2002�.
�4� D. R. Stinson, Cryptography: Theory and Practice �CRC

Press, Boca Raton, FL, 1995�.

�5� R. Mislovaty, Y. Perchenok, I. Kanter, and W. Kinzel, Phys.
Rev. E 66, 066102 �2002�.

�6� M. Volkmer and S. Wallner, in Proceedings of the 2nd German
Workshop on Mobile Ad-hoc Networks, WMAN 2004, edited by
P. Dadam and M. Reichert, Vol. P-50 of Lecture Notes in In-
formatics (LNI) �Bonner Köllen Verlag, Ulm, 2004�, pp. 128–
137.

5 4 3 2 1
L

0.00

0.10

0.20

0.30

0.40

0.50
I

/N
t ≈ 90 L

2

0.42 − 0.11 / L

0 20 40 60 80 100

t / L
2

0

0.5
I

/N
L = 1
L = 2
L = 3
L = 4
L = 5

FIG. 15. Mutual information between A and C for K=3, N
=1000, obtained in 1000 simulations with 10 pairs of TPMs.

RUTTOR, KINZEL, AND KANTER PHYSICAL REVIEW E 75, 056104 �2007�

056104-8



�7� M. Volkmer and S. Wallner, in Proceedings of the 1st Interna-
tional Workshop on Secure and Ubiquitous Networks, SUN’05
�IEEE Computer Society, Copenhagen, 2005�, pp. 241–245.

�8� M. Volkmer and S. Wallner, in ECRYPT (European Network of
Excellence for Cryptology) Workshop on RFID and Light-
weight Crypto �Graz University of Technology, Graz, 2005�,
pp. 102–113.

�9� M. Volkmer and S. Wallner, IEEE Trans. Comput. 54, 421
�2005�.

�10� R. Mislovaty, E. Klein, I. Kanter, and W. Kinzel, Phys. Rev.
Lett. 91, 118701 �2003�.

�11� A. Ruttor, W. Kinzel, L. Shacham, and I. Kanter, Phys. Rev. E
69, 046110 �2004�.

�12� A. Ruttor, W. Kinzel, and I. Kanter, J. Stat. Mech.: Theory
Exp. 2005, P01009.

�13� A. Klimov, A. Mityaguine, and A. Shamir, in Advances in
Cryptology—ASIACRYPT 2002, edited by Y. Zheng �Springer,
Heidelberg, 2003�, p. 288.

�14� L. N. Shacham, E. Klein, R. Mislovaty, I. Kanter, and W.
Kinzel, Phys. Rev. E 69, 066137 �2004�.

�15� A. Ruttor, W. Kinzel, R. Naeh, and I. Kanter, Phys. Rev. E 73,
036121 �2006�.

�16� A. Ruttor, G. Reents, and W. Kinzel, J. Phys. A 37, 8609
�2004�.

�17� W. Kinzel and I. Kanter, eprint cond-mat/0208453.
�18� M. Rosen-Zvi, E. Klein, I. Kanter, and W. Kinzel, Phys. Rev. E

66, 066135 �2002�.
�19� A. Engel and C. Van den Broeck, Statistical Mechanics of

Learning �Cambridge University Press, Cambridge, 2001�.
�20� L. Ein-Dor and I. Kanter, Phys. Rev. E 60, 799 �1999�.

DYNAMICS OF NEURAL CRYPTOGRAPHY PHYSICAL REVIEW E 75, 056104 �2007�

056104-9


