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Two-center-multipole expansion method: Application to macromolecular systems
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We propose a theoretical method for the calculation of the interaction energy between macromolecular
systems at large distances. The method provides a linear scaling of the computing time with the system size
and is considered as an alternative to the well-known fast multipole method. Its efficiency, accuracy, and
applicability to macromolecular systems is analyzed and discussed in detail.

DOI: 10.1103/PhysRevE.75.051912

I. INTRODUCTION

In recent years, there has been much progress in simulat-
ing the structure and dynamics of large molecules at the
atomic level, which may include up to thousands and mil-
lions of atoms [ 1-4]. For example, amorphous polymers may
have segments each with 10 000 atoms [4] which associate
to form partially crystalline lamellae, random coil regions,
and interfaces between these regions, each of which may
contribute with special mechanical and chemical properties
to the system.

With increasing computer powers it became possible to
study molecular systems of enormous sizes which were not
imaginable just several years ago. For example in Ref. [1] a
molecular dynamics simulations of the complete satellite to-
bacco mosaic virus was performed which includes up to 1
million of atoms. In that paper the stability of the whole
virion and of the RNA core alone were demonstrated, and a
pronounced instability was shown for the capsid without the
RNA.

The study of structure and dynamics of macromolecules
often implies the calculation of the potential energy surface
for the system. The potential energy surface of a macromol-
ecule carries alot of useful information about the system. For
example, from the potential energy landscape it is possible to
estimate the characteristic times for the conformational
changes [5-7] and for fragmentation [8]. The potential en-
ergy surface of a macromolecular system can be used for
studying the thermodynamical processes in the system such
as phase transitions [9]. In proteins, the potential energy sur-
face is related to one of the most intriguing problems of
protein physics: protein folding [9-13]. The rate constants
for complex biochemical reactions can also be established
from the analysis of the potential energy surface [14,15].

The calculation of the potential energy surface and mo-
lecular dynamics simulations often implies the evaluation of
pairwise interactions. The direct method for evaluating these
potentials is proportional to ~N?, where N is the number of
particles in the system. This places a severe restraint on the
treatable size of the system. During the last two decades
many different methods have been suggested which provide
a linear dependence of the computational cost with respect to
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N [16-21]. The most widely used algorithm of this kind is
the fast multipole method (FMM) [17-24]. The critical size
of the system at which this method becomes computationally
faster than the exact method is accuracy dependent and is
very sensitive to the slope in the N dependence of the com-
putational cost. In Refs. [18,20,25] critical sizes ranging
from N=300 to 30 000 have been reported. Many discrep-
ancies of the estimates in the critical size arise from differ-
ences in the effort of optimizing the algorithm and the un-
derlying code. However, it is also important to optimize the
methods themselves with respect to the required accuracy.

The FMM is based on the systematic organization of mul-
tipole representations of a local charge distribution, so that
each particle interacts with local expansions of the potential.
Originally FMM was introduced in Ref. [21] by Greengard
and Rokhlin. Later, Greengard’s method was implemented in
various forms. Schmidt and Lee [20] produced a version
based upon the spherical multipoles for both periodic and
nonperiodic systems. Zhou and Johnson implemented the
FMM for use on parallel computers [26], while Board et al.
reported both serial and parallel versions of the FMM [25].

Ding et al. introduced a version of the FMM that relies
upon Cartesian rather than spherical multipoles [18], which
they applied to very large scale molecular dynamics calcula-
tions. Additionally they modified Greengard’s definition of
the nearest neighbors to increase the proportion of interac-
tions evaluated via local expansions. Shimada et al. also de-
veloped a Cartesian-based FMM program [27], primarily to
treat periodic systems described by molecular mechanics po-
tentials. In both cases only low order multipoles were em-
ployed, since high accuracy was not sought.

In the present paper we suggest a method for calculating
the interaction energy between macromolecules. Our method
also provides a linear scaling of the computational costs with
the size of the system and is based on the multipole expan-
sion of the potential. However, the underlying ideas are quite
different from the FMM.

Assuming that atoms from different macromolecules in-
teract via a pairwise Coulomb potential, we expand the po-
tential around the centers of the molecules and build a two-
center-multipole expansion using bipolar harmonics algebra.
Finally, we obtain a general expression which can be used
for calculating the energy and forces between the fragments.
This approach is different from the one used in the FMM,
where the so-called translational operators were used to ex-
pand the potential around a shifted center. Note that the final
expression, which we suggest in our theory was not dis-
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cussed before within the FMM. Similar expressions were
discussed since the early 1950s (see, e.g., Refs. [28-31]). In
these papers the two-center-multipole expansion was consid-
ered as a new form of Coulomb potential expansion, but the
expansion was never applied to the study of macromolecular
systems.

We consider the interaction of macromolecules via Cou-
lomb potential since this is the only long-range interaction in
macromolecules, which is important for the description of
the potential energy surface at large distances. Other interac-
tion terms in macromolecular systems are of the short-range
type and become important when macromolecules get close
to each other [8]. At large distances these terms can be ne-
glected.

In the present paper we show that the method based on
the two-center-multipole expansion can be used for comput-
ing the interaction energy between complex macromolecular
systems. In Sec. II we present the formalism which lies be-
hind the two-center-multipole expansion method. In Sec.
IIT A we analyze the behavior of the computation cost of this
method and establish the critical sizes of the system, when
the two-center-multipole expansion method demands less
computer time than the exact energy calculation approach. In
Sec. III B we compare the results of our calculation with the
results obtained within the framework of the FMM. In Sec.
IV we discuss the accuracy of the two-center-multipole ex-
pansion method.

II. TWO-CENTER-MULTIPOLE EXPANSION METHOD

In this section we present the formalism, which underlies
the two-center-multipole expansion method, which will be
further referred to as the TCM method. Let us consider two
multiatomic systems, which we will denote as A and B. The
pairwise Coulomb interaction energy of those systems can be
written as follows:

Ny Ny d Ny Ny d
U=2 2 —tr=223>—"— ()
i=1 j=1 |Rf Rﬂ i=1 j=1 |R0+1' —I'A

where N, and Nj are the total number of atoms in systems A
and B respectively, g; and g; are the charges of atoms i and j
from the system A and B respectively, R is the vector inter-
connecting the center of system A with the center of system
B, rf and rf are the vectors describing the position of
charges i and j with respect to the centers of the system A
and B, respectively. The centers of both systems can be any
suitable points of each of the molecules. It is natural to de-
fine them as the centers of mass of the corresponding sys-
tems, but in some cases another choice might be more con-
venient [see, for example, Ref. [8], where we have applied
the two-center-multipole (TCM) method for studying frag-
mentation of alanine dipeptide].

Expression (1) can be expanded into a series of spherical
harmonics. The expansion depends on the vectors R, 1{* and
rf . In the present paper we consider the case when

[Ro| > [rf] +Ir] 2)

holds for all i and j. This particular case is important, be-
cause it describes well separated charge distributions, and
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can be used for modeling the interaction between complex
objects at large distances. In this case the expansion of Eq.
(1) reads [32]

P
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According to Ref. [32] the function
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where a bipolar harmonic is defined as follows:

[Yl (®rl’q)r1) ® Yl2(®r2’q)r2)]LM

- 2 lml(®r19q)rl)Y12m2(®r27q)r2)' (5)

my,ny

1”'112’"2

Here ClLl%ﬂzmz are the Clebsch-Gordan coefficients, which
can be transformed to the 3j-symbol notation as follows:

L 1 L
CLM - (_ 1)11—12+M\fm( 1 2 ) (6)

Lymylymy m, my, —M

Using Egs. (4), (6), and (5) we can rewrite expansion (3)
as follows:

o I
49;
=qq; > X (=DM
|R0+r -] I1,h=0 my=—1,

Iy+ly=L my=—1,
X\/ (4m)32L)! (11 I, L )
QL+ DL+ 1) \my my —M
(rA )h(r)=
RL+1
XY (O, @)Y, (O,8.0,5)Y (O D).
(7)

The multipole moments of systems A and B are defined as
follows:

Qm, = Eq, )’1\/ Y1 (@8 0),
lem2 EQJ(VB)IZ\ lzmz( ;f’(I)rB) (8)
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Summing Eq. (7) over i and j, and accounting only for the
first L., multipoles in both systems, we obtain

E A D o Ya)
Umult= 2 E I+1 2N
1y=0 m=1; Ro (21)'(21)!
li+h=L my=-1I,
ll lZ L B *
X<ml n, _M) X QIIA]mIlemzyLM((‘-DRO’CDRO)'

)

This expression describes the electrostatic energy of the
system in terms of a two-center-multipole expansion. Note,
that this expansion is only valid when the condition Ry> rlA
+rf holds for all i and j, otherwise more sophisticated ex-
pansions have to be considered, which is beyond the scope of
the present paper.

Summation in Eq. (9) is performed over I/,
e [0+ Lyl; my e[l +-1;]; my € [-1,- -+ 1,], and the condi-
tion M=m;+m, holds. L, is the principal multipole num-
ber, which determines the number of multipoles in the ex-
pansion.

III. COMPUTATIONAL EFFICIENCY

A. Comparison with direct Coulomb interaction method

In this section we discuss the computational efficiency of
the TCM method. For this purpose we have analyzed the
time required for computing the Coulomb interaction energy
between two systems of charges and the time required for the
energy calculation within the framework of the TCM method
for different system sizes, and for different values of the
principal multipole number.

For the study of the computational efficiency of the TCM
method we have considered the interaction between two sys-
tems (we denote them as A and B) of randomly distributed
charges, for which the condition (2) holds. The charges in
both systems were randomly distributed within the spheres
of radii RA=1.0N},/3 and RB=1.0N11;/ 3, respectively, and the
distance between the centers of mass of the two systems was
chosen as Ry=3/2(R4+Rp).

The computational time needed for the energy calcula-
tions is proportional to the number of operations required.
Thus, the time needed for the Coulomb energy calculation
(CE calculation) can be estimated as

TCoul = AcouNaNp ~ N2, (10)

where ac,, is a constant depending on the computer proces-
sor power and on the efficiency of the code, Ny~ Nz~ N.
From Eq. (10) it follows that the computational cost of the
CE calculation grows proportionally to the second power of
the system size.

For large systems the TCM method becomes more effi-
cient because it provides a linear scaling with the system
size. The time needed for the energy calculation reads
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FIG. 1. (Color online) Time needed for energy calculation as a
function of the system size.

Linax Lmax ll 12
o) = BN+ 2 2 2 2 (NaT), i, + NBTiym,)
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where the first term BN corresponds to the computer time
needed for allocating arrays in memory and tabulating the
computationally expensive functions such as cos(®) and
exp(im®). 7, is the time needed for evaluation of the
spherical harmonic at given / and m, and a,,; is a numerical
coefficient, which depends on the processor power and on
the efficiency of the code. In general it is different from
dCoul-

In Fig. 1 we present the dependencies of the computer
time needed for the CE calculation (squares) and for the
computation of energy within the TCM method for different
values of the principal multipole number as a function of
system size. This data was obtained on a 1.8 GHz 64-bit
AMD Opteron-244 computer.

From Fig. 1 it is clear that the time needed for the CE
calculation has a prominent parabolic trend that is consistent
with the analytical expression (10). The fitting expression
which describes this dependence is given in the first row of
Table 1. At large N the N term becomes dominant and the
other two terms can be neglected. Thus, «c,,=~4.46
X 1078 s.

The fitting expressions which describe the time needed for
the energy computations within the TCM method at different
values of the principal multipole number are given in Table I,
rows 2—10. These expressions were obtained by fitting the
data shown in Fig. 1. Note the linear dependence on N. The
numerical coefficient in all expressions correspond to the
factor ayLmax(1+Linae)’ in Eq. (11). The fitting expressions
in Table I were obtained by fitting of data obtained for sys-
tems with large number of particles (see Fig. 1). Therefore
these expressions are applicable when N> 1.

From equations presented in Table I it is possible to de-
termine the critical system sizes at which the TCM method
becomes less computer time demanding than the CE calcu-
lation. The critical system sizes calculated for different prin-
cipal multipole numbers are shown in the third column of
Table I. These sizes correspond to the intersection points of
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TABLE I. Fitting expressions for the computational time needed
for the CE calculation and for the energy computation within the
TCM method at different values of the principal multipole number
Linax (second column). System sizes, for which the Coulomb energy
calculation becomes more computer time demanding at a given
value of L, are shown in the third column.

Linax 7'(N) (S) Nnax

Coulomb 0.11736-0.0002N+4.6768 X 10~3N?

2 -0.01986+3.0X 107N 4223

3 —-0.03159+5.0X 10N 4662

4 -0.04714+1.0X 107*N 5809

5 —-0.16054+2.1 X 107*N 8026

6 —0.14710+3.7 X 107*N 11 704
7 —-0.59675+7.4 X 107N 19 308
8 —-0.35383+10.9 X 10~*N 27212
9 —1.15856+1.9X 107N 44 286
10 -0.83688+2.71 X 107°N 61 892

the parabola describing the time needed for the CE calcula-
tion with the straight lines describing the computational time
needed for the TCM method. In Fig. 1 one can see six inter-
section points for L, =2-7.

From Eq. (11), it follows that computation time of the
energy within the framework of the TCM method grows as
the power of 4 with increasing L,,. To stress this fact, in
Fig. 2 we present the dependencies of the computation time
obtained within the TCM method at different system sizes as
a function of principal multipole number. All curves shown
in Fig. 2 can be perfectly fitted by the analytical expression
(11). In the inset to Fig. 2, we plot the dependence of the
fitting coefficient o, as a function of the system size. From
this plot it is seen that «a,,,, varies only slightly for all system
sizes considered, being equal to (1.982+0.015) X 1077 s.

Thus, the expression for the time needed for the energy
calculation within the framework of the TCM method reads
as

60 1 1 1 1 1 1 1 1 1
200f ' : -
501 o 199} 1 i
£ 98] ]
=197
— 4071 2 ] 3
”n 3
~ 195 L L
o 301 8000 12000 16000 20000 -
é * 20000 N
20 » 18000 -
< 16000 *
v 14000
104 A 12000 [
e 10000
= 38000
0 T T T T T T T
1 2 3 4 5 6 7 8 9 10 M

FIG. 2. (Color online) Time needed for the calculation of energy
of the systems of different sizes computed within the framework of
the TCM method as a function of the principal multipole number
L.« In the inset we plot a,,, as a function of the system size.
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Tonatt(Lina) = 1.98 X 1077L 0 (14 L, )N, (12)

Note, that @, =1.98X 1077 s is larger than ac,,~4.46
X 1078 s, since in one turn of the TCM method more alge-
braic operations have to be done, than in one turn of the CE
calculation.

From the analysis performed in this section it is clear that
the TCM method can give a significant gain in the computa-
tion time. However, at larger principal multipole numbers
(L1ax=8,9,10) this method can compete with the CE calcu-
lation only at system sizes greater than 27 000-61 000 at-
oms. The accounting for higher multipoles is necessary if the
distance between two interacting systems becomes compa-
rable to the size of the systems. In the next section we dis-
cuss in detail the accuracy of the TCM method and identify
situations in which higher multipoles should be accounted
for.

B. Comparison with the fast multipole method

The fast multipole method (FMM) [21-23] is a well
known method for calculating the electrostatic energy in a
multiparticle system, which provides a linear scaling of the
computing time with the system size. In order to stress the
computational efficiency of the TCM method in this section
we compare the time required for the energy calculation
within the framework of the FMM and using the TCM
method.

To perform such a comparison we used an adaptive FMM
library, which has been implemented for the Coulomb poten-
tial in three dimensions [24,33]. We have generated two ran-
dom charge distributions of different size and calculated the
interaction energies between them as well as the required
computation time using the FMM and the TCM methods. As
in the previous section the charges in both systems were
randomly distributed within the spheres of radii R,= l.ONX 3
and Rz=1.0N, 13, respectively, and the distance between the
center of mass of the two systems was chosen as R,
23/2(RA+RB)'

In Fig. 3 we present the comparison of the computer time
needed for the FMM calculation (squares) and for the com-
putation of energy within the TCM method (triangles) as a
function of system size. These data were obtained on an
Intel(R) Xeon(TM) CPU 2.40 GHz computer. In the upper
and lower insets of Fig. 3 we show the relative error of the
FMM and of the TCM methods as a function of the system
size respectively, which is defined as follows:

Ucou— U,
Monethod = | Coul melh0d| 100 % . (13)

| UCoul|

Here “method” indicates the FMM or the TCM methods. For
comparing the efficiency of the two methods we have con-
sidered different charge distributions within the size range of
100 to 10 000 particles. Each point in Fig. 3 corresponds to a
particular charge distribution. For each system size ten dif-
ferent charge distributions were used. The time of the FMM
calculation depends on the charge distribution, as is clearly
seen in Fig. 3. Note that for a given system size the calcula-
tion time of the FMM can change by more than a factor of 5,
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FIG. 3. (Color online) Time needed for the calculation of the
interaction energy between two systems as a function the total num-
ber of particles calculated within the framework of the TCM
method (triangles) and within the framework of the FMM (squares).
Plots (a) and (b) in the inset show the relative error of the FMM and
of the TCM methods respectively as a function of the system size,
computed using Eq. (13).

depending on the charge distribution (see points for N
=10 000 in Fig. 3).

For all system sizes FMM requires some minimal com-
puter time for calculating the energy of the system, which
increases with the growth of system size (see Fig. 3). The
comparison of the minimal FMM computation time with the
computation time required for the TCM method shows that
the TCM method appears to be significantly faster than the
FMM. For N=10 000 FMM requires at least 2.15 s to com-
pute the energy, while the TCM method requires 0.53 s, be-
ing approximately 4 times faster.

The results of the TCM method calculation shown in Fig.
3, were obtained for L,,,=2. The analysis of relative errors
presented in the inset to Fig. 3 shows that with this principal
multipole number it is possible to calculate the energy be-
tween two systems with an error of less than 1% for almost
arbitrary charge distribution. Note that for the same charge
distributions the error of the FMM is much more, being
about 5% in almost all of the considered systems. This al-
lows us to conclude that the TCM method is more efficient
and more accurate than the classical FMM.

It is important to mention that in the traditional imple-
mentation, FMM calculates the total electrostatic energy of
the system while TCM method was developed for studying
interaction energy between system fragments. It is possible
to modify the FMM to study only interaction energies be-
tween different parts of the system. However, the computa-
tion cost of the modified FMM is expected to be higher than
of the TCM method. This happens because, within the frame-
work of the modified FMM method, the field created by one
fragment of the system should be expanded in the multipole
series and the interactions of the resulting multipole mo-
ments with the charges from another fragment should be cal-
culated. Thus the computation cost of this method will be
proportional to NyNg, where N, and Ny are the number of
particles in two fragments, while the TCM method is propor-
tional to N4+ Np. The computation cost of the modified ver-
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sion of the FMM depends quadratically on the size of the
system, because in this method the interacting fragments
should be considered as two independent cells, while tradi-
tional FMM uses a hierarchical subdivision of the whole
system into cells to achieve linear scaling.

So far we have considered only the interaction between
two multiparticle systems in vacuo, and demonstrated the
efficiency of the TCM method in this case, although the
TCM method can also be applied to the larger number of
interacting systems. The study of structure and dynamics of
biomolecular systems consisting of several components (i.e.,
an ensemble of proteins, DNA, macromolecules in solution)
is a separate topic, which is beyond the scope of this paper
and deserves a separate investigation.

IV. ACCURACY OF THE TCM METHOD: POTENTIAL
ENERGY SURFACE FOR PORCINE PANCREATIC
TRYPSIN/SOYBEAN TRYPSIN INHIBITOR COMPLEX

We have calculated the interaction energy between two
proteins within the framework of the TCM method and com-
pared it with the exact Coulomb energy value. On the basis
of this comparison we have concluded about the accuracy of
the TCM method.

In the present paper we have studied the interaction en-
ergy between the porcine pancreatic trypsin and the soybean
trypsin inhibitor proteins [Protein Data Bank (PDB) [36] en-
try 1AVW [37]]. Trypsins are digestive enzymes produced in
the pancreas in the form of inactive trypsinogens. They are
then secreted into the small intestine, where they are acti-
vated by another enzyme into trypsins. The resulting trypsins
themselves activate more trypsinogens (autocatalysis). Mem-
bers of the trypsin family cleave proteins at the carboxyl side
(or “C-terminus”) of the amino acids lysine and arginine.
Porcine pancreatic trypsin is a archetypal example. Its natu-
ral noncovalent inhibitor (porcine pancreatic trypsin inhibi-
tor) inhibits the enzyme’s activity in the pancreas, protecting
it from self-digestion.

Trypsin is also inhibited noncovalently by the soybean
trypsin inhibitor from the soya bean plant, although this in-
hibitor is unrelated to the porcine pancreatic trypsin inhibitor
family of inhibitors. Although the biological function of the
soybean trypsin inhibitor is mostly unknown it is assumed to
help defend the plant from insect attack by interfering with
the insect digestive system.

The structure of both proteins is shown in Fig. 4. The
coordinate frame used for our computations is marked in the
figure. This coordinate frame is consistent with the standard
coordinate frame used in the PDB.

We use this particular example as a model system in order
to demonstrate the possible use of the TCM method. There-
fore environmental effects are omitted and we consider only
the protein-protein interaction in vacuo. The porcine pancre-
atic trypsin and the soybean trypsin inhibitor include 223 and
177 amino acids, respectively. Both proteins include 5847
atoms. Thus for such system size the TCM method is faster
than the CE calculation if L, <4 (see Table I).

We have calculated the interaction energy between the
porcine pancreatic trypsin and soybean trypsin inhibitor as a
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soybean trypsin inhibitor

porcine pancreatic trypsin

FIG. 4. (Color online) Structure of the porcine pancreatic
trypsin and soybean trypsin inhibitor with the coordinate frame
used for the energy computation. The figure has been rendered with
help of the visual molecular dynamics (VMD) visualization pack-
age [38].

function of distance between the centers of masses of the
fragments R, and the angle ®, which is determined as the
angle between the x axis and the vector R, (see Fig. 4). We

have assumed that the porcine pancreatic trypsin is fixed in
space at the center of the coordinate frame and have re-

stricted R, to the xy plane. Of course, the two degrees of
freedom considered are not sufficient for a complete descrip-
tion of the mutual interaction between the two systems. For
this purpose at least six degrees of freedom are needed.
However, for our example of the energy calculation of the
porcine-pancreatic-trypsin—soybean-trypsin-inhibitor ~ com-
plex WithiI_l) the framework of the TCM method the two co-
ordinates R, and O are sufficient.

The interaction energy of the porcine pancreatic trypsin
with the soybean trypsin inhibitor as a function of R, and ®
calculated within the framework of the TCM method is
shown in Fig. 5. The Coulomb interaction energy between
the two proteins is shown in plot (a). In Ref. [8] it has been
shown that the interaction energy between two well sepa-
rated biological fragments arises mainly due to the Coulomb
forces. In the present paper we consider R, € [58,100] A and
0 [0,360]°, at which condition (2) holds and both proteins
can be considered as separated. This means that the potential
energy surface shown in Fig. 5(b) describes the interaction
energy between the porcine pancreatic trypsin and the soy-
bean trypsin inhibitor on the level of accuracy of at least
90%.

Figure 5(a) shows that one can select several characteris-
tic regions on the potential energy surface marked with num-
bers 1-4. The corresponding configurations (states) of the
system are shown in Fig. 6. The potential energy surface is
determined by the Coulomb interactions between atoms, thus
at large distances it raises and asymptotically approaches
zero. State 1 has the maximum energy within the considered
part of the potential energy surface because this state corre-
sponds to the largest contact separation distance between
porcine pancreatic trypsin and the soybean trypsin inhibitor
being equal to 54.8 A.

At smaller distances the potential energy decreases due to
the attractive forces acting between the two proteins. State 2
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FIG. 5. (Color online) The interaction energies of the porcine
pancreatic trypsin with the soybean trypsin inhibitor calculated as
the function of R, and O (see Fig. 4) within the framework of the
TCM method at different values of the principal multipole number
Linaxt Linax=2 (b); Lyax=4 (c); Liyax=6 (d); Lyax=8 (e); Lyax=10
(). The result of the CE calculation is shown in plot (a).

corresponds to the minimum on the potential energy surface.
It arises because a positively charged polar arginine (R125)
from the porcine pancreatic trypsin approaches the nega-
tively charged site of the soybean trypsin inhibitor, which
includes negatively charged polar amino acids glutamic acid

(b)

(d)

RE63%->

R,=58 A; ©=342°

R,=58 A; ©=72°

FIG. 6. (Color online) Relative orientations of the porcine pan-
creatic trypsin and the soybean trypsin inhibitor, corresponding to
the selected points on the potential energy surface presented in Fig.
5: state 1 (a), state 2 (b), state 3 (c), state 4 (d). Below each image
we give the corresponding values of R, and ®. Some important
amino acids are marked according to their PDB identification. The
figure was prepared with the help of the VMD visualization package
[38].
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©® (degrees)

FIG. 7. (Color online) Relative error of the interaction energies
of the porcine pancreatic trypsin with the soybean trypsin inhibitor
calculated as the function of Ry and ® within the framework of the
TCM method at different values of the principal multipole number
f’n)qax: Lmax=2 (a), Lmax=4 (b)7 Lmax=6 (C), Lmax=8 (d)v Lmax=10
e).

(E549) and aspartic acid (D551) (see state 2 in Fig. 6). The
strong attraction between the amino acids leads to the forma-
tion of a potential well on the potential energy surface. This
observation is essential for dynamics of the attachment pro-
cess of two proteins, because it establishes the most probable
angle at which the proteins stick in the xy plane of the con-
sidered coordinate frame (®=192°).

States 3 and 4 correspond to the saddle points on the
potential energy surface and have energies higher than state
2. They are formed because at these configurations two posi-
tively charged polar amino acids from the two proteins be-
come closer in space providing a source of a local repulsive
force. In state 3 these amino acids are lysines (K145 and
K665) (see state 3 in Fig. 6), and in state 4 these are argin-
ines (R62 and R563)(see state 4 in Fig. 6).

In Fig. 5(b) we show the potential energy surface obtained
within the framework of the TCM method with L ,,=2, i.e.,
with accounting for up to the quadrupole-quadrupole inter-
action term in the multipole expansion (9). From the figure it
is seen that the TCM method describes correctly the major
features of the potential energy landscape (i.e., the position
of the minimum and maximum as well as their relative en-
ergies). However, the minor details of the landscape, such as
the saddle points 3 and 4 [see Fig. 5(a)] are missed.

The relative error of the TCM method can be defined as
follows:

|Ucou(Ro,0) — Ukmix(R), 0]
| UCoul(RO, ®)|

77(Lmax) (RO,®) = X 100 % s

(14)

where Ucou(Ry,®) and Ulmx(R,,®) are the Coulomb en-
ergy and the energy calculated at given values of R, and ©®
within the TCM method, respectively. In Fig. 7(a) we present
the relative error calculated according to Eq. (14) for L,
=2. From this plot it is clear that significant deviation from

the exact result arise at ® ~50—-60°, 140-150°, 245°, 300—
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310°, and 350°. The discrepancy at ©~50-60°, ©
~300-310°, and ® ~350° arises because the saddle points
3 and 4, cannot be described within the framework of TCM
method with L,,,,=2. The discrepancy at ® ~ 140—150° and
O ~245° is due to the error in the calculation of the slopes of
minimum 2 at Ry=58 A and ®=198°.

It is worth noting that the relative error of the TCM
method with L,,=2 is less than 10%. With increasing dis-
tance between the proteins, the relative error decreases, and
becomes less than 5% at Ry=72 A and less than 3% at R,
=86 A [see Fig. 7(a)]. This means that already at L, =2
the TCM method reproduces with a reasonable accuracy the
essential features of the potential energy landscape. This ob-
servation is very important, because TCM method with
L,.x=2 requires less computer time than the CE calculation
already at N=4223 (see Table I). Thus, the TCM method can
be used for the identification of major minima and maxima
on the potential energy surface of macromolecules and mod-
eling dynamics of complex molecular systems.

Accounting for higher multipoles in the multipole expan-
sion (9) leads to a more accurate calculation of the potential
energy surface. Figures 5(c) and 5(d) show the potential en-
ergy surfaces obtained within the framework of the TCM
method with L,,=4 and 6, respectively. From these plots it
is seen that all minor details of the Coulomb potential energy
surface, such as the saddle points 3 and 4 are reproduced
correctly. Figure 7(b) shows that the TCM method with
L,..x=4 gives the maximal relative error of about 5% at R,
=58 A and ®=75°, in the vicinity of the saddle point 3. The
relative errors in the vicinity of the saddle point 4 and mini-
mum 2 are equal to 4 and 1 %, respectively. The error be-
comes less than 1% for all values of angle ® at Ry=70 A.
For L,,=6, the largest relative error is equal to 1.5% at
Ry=58 A and ®=340° (saddle point 4), becoming less than
1% at Ry=61 A [see Fig. 7(c)].

By accounting for the higher multipoles in the multipole
expansion (9) one can increase the accuracy of the method.
Thus, with L,,=8 and 10 it is possible to calculate the po-
tential energy surface with the error less then 1% [see Figs.
5(e) and 5(f) and Figs. 7(d) and 7(e)]. Although the time
needed for computing the potential energy surfaces with
L..«=8 and 10 is larger than the time needed for computing
the Coulomb energy directly (see Table I), we present these
surfaces in order to stress the convergence of the TCM
method.

V. CONCLUSION

In the present paper we have proposed a method for the
calculation of the Coulomb interaction energy between pairs
of macromolecular objects. The suggested method provides a
linear scaling of the computational costs with the size of the
system and is based on the two-center-multipole expansion
of the potential. Analyzing the dependence of the required
computer time on the system size, we have established the
critical sizes at which our method becomes more efficient
than the direct calculation of the Coulomb energy.

The comparison of efficiency of the TCM method with
the efficiency of FMM allows us to conclude that the TCM
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method has proved to be faster and more accurate than the
classical FMM.

The method based on the two-center-multipole expansion
can be used for the efficient computation of the interaction
energy between complex macromolecular systems. To deter-
mine that we have considered the interaction between two
proteins: porcine pancreatic trypsin and the soybean trypsin
inhibitor. The accuracy of the method has been discussed in
detail. It has been shown that accounting of only four multi-
poles in both proteins gives an error in the interaction energy
less than 5%.

The TCM method is especially useful for studying dy-
namics of rigid molecules, but it can also be adopted for
studying dynamics of flexible molecules. In this work we
have developed a method for the efficient calculation of the
interaction energy between pairs of large multiparticle sys-
tems, e.g., macromolecules, being in vacuo. The investiga-
tion of biomolecular systems consisting of several compo-
nents (i.e., complexes of proteins, DNA, macromolecules in
solution) and the extension of the TCM method for these
cases deserves a separate investigation. If a system of interest
consists of several interacting molecules being placed in a
solution, one can use the TCM method to describe the inter-
action between the molecules and then to take account of the
solution as implicit solvent. This can be achieved using for
example the formalism of the Poisson-Boltzmann [34,35],
similar to how it was implemented for the description of the
antigen-antibody binding and unbinding process [14,15]. The
other possibility is to split the whole system into boxes and
account for the solvent explicitly by calculating the interac-
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tions between the boxes and the molecules of interest. This
can be achieved by using the TCM method or a combination
of the FMM and the TCM methods. In this case the FMM
can be used for the calculation of the resulting effective mul-
tipole moment of the solvent, while the TCM method is
much better suitable for the description of the macromol-
ecules energetics and dynamics. Note that all of the sug-
gested methodologies provide linear scaling of the computa-
tion time on the system size.

The results of this work can be utilized for the description
of complex molecular systems such as viruses, DNA, protein
complexes, etc., and their dynamics. Many dynamical fea-
tures and phenomena of these systems are caused by the
electrostatic interaction between their various fragments and
thus the use of the two-center-multipole expansion method
should give a significant gain in their computation costs.
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