
Generalized rate-code model for neuron ensembles with finite populations

Hideo Hasegawa*
Department of Physics, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan

�Received 16 August 2006; revised manuscript received 13 December 2006; published 8 May 2007�

We have proposed a generalized Langevin-type rate-code model subjected to multiplicative noise, in order to
study stationary and dynamical properties of an ensemble containing a finite number N of neurons. Calcula-
tions using the Fokker-Planck equation have shown that, owing to the multiplicative noise, our rate model
yields various kinds of stationary non-Gaussian distributions such as �, inverse-Gaussian-like, and log-normal-
like distributions, which have been experimentally observed. The dynamical properties of the rate model have
been studied with the use of the augmented moment method �AMM�, which was previously proposed by the
author from a macroscopic point of view for finite-unit stochastic systems. In the AMM, the original
N-dimensional stochastic differential equations �DEs� are transformed into three-dimensional deterministic
DEs for the means and fluctuations of local and global variables. The dynamical responses of the neuron
ensemble to pulse and sinusoidal inputs calculated by the AMM are in good agreement with those obtained by
direct simulation. The synchronization in the neuronal ensemble is discussed. The variabilities of the firing rate
and of the interspike interval are shown to increase with increasing magnitude of multiplicative noise, which
may be a conceivable origin of the observed large variability in cortical neurons.
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I. INTRODUCTION

Neurons in a brain communicate information, emitting
spikes which propagate through axons and dendrites to neu-
rons at the next stage. It has been a long-standing contro-
versy whether the information in neurons is encoded in the
firing rates �rate code� or in the more precise firing times
�temporal code� �1–3�. Some experimental results that have
been reported seem to support the former code while some
the latter �1–3�. In particular, a recent success in a brain-
machine interface �4,5� suggests that the population rate code
is employed in sensory and motor neurons while it is still not
clear which code is adopted in higher-level cortical neurons.

Experimental observations have shown that, in many ar-
eas of the brain, neurons are organized into groups of cells
such as columns in the visual cortex �6�. A small patch in the
cortex contains thousands of similar neurons, which receive
inputs from the same patch and other patches. There are
many theoretical studies of the property of neuronal en-
sembles consisting of equivalent neurons, with the use of
spiking neuron models or rate-code models �for a review of
neuronal models, see �7�, and related references therein�. In
the spiking neuron model, the dynamics of the membrane
potential of a neuron in the ensemble is described by the
Hodgkin-Huxley- �HH-� type nonlinear differential equations
�DEs� �8� which express the conductance-based mechanism
for firings. Reduced, simplified models such as the integrate-
and-fire �IF� and FitzHugh-Nagumo �FN� models have also
been employed. In contrast, in the rate-code model, neurons
are regarded as transducers between input and output signals,
both of which are expressed in terms of spiking rates.

Computational neuroscientists have tried to understand
the properties of ensemble neurons by using the two ap-
proaches: direct simulations �DSs� and analytical ap-

proaches. DS calculations have been performed for large-
scale networks mostly described by the simplest IF model.
Since the computational time of DS grows as N2 with N, the
size of the ensemble, a large-scale DS with more realistic
models becomes difficult. Although DS calculations provide
us with useful insight into the firing activity of the ensemble,
it is desirable to have results obtained by using analytical
approaches.

Analytical or semianalytical calculation methods for neu-
ronal ensembles have been proposed by using the mean-field
�MF� method �9–11�, population-density approaches
�12–16�, the moment method �17�, and the augmented mo-
ment method �AMM� �18� �details of the AMM will be dis-
cussed shortly�. It is interesting to analytically obtain infor-
mation about the firing rate or the interspike interval �ISI�,
starting from the spiking neuron model. It has been shown
that the dynamics of the spiking neuron ensemble may be
described by DEs of a macroscopic variable for the popula-
tion density or spike activity, which determines the firing rate
of ensemble neurons �12–16�. By using the f-I relation be-
tween the applied dc current I and the frequency f of autono-
mous firings, the rate-code model for conduction-based neu-
ron models is derived �19–21�. When we apply the Fokker-
Planck equation �FPE� method to the neuron ensemble
described by the IF model, the averaged firing rate R�t� is
expressed by P�V ,� , t�, which denotes the distribution prob-
ability of the averaged membrane potential V with the thresh-
old � for the firing �22�.

It is well known that neurons in brains are subjected to
various kinds of noise, although its precise origins are not
well understood. The response of neurons to stimuli is ex-
pected to be modified by noise in various ways. Indeed, al-
though firings of a single in vitro neuron are reported to be
precise and reliable �23�, those of in vivo neurons are quite
unreliable due to the noisy environment. The strong criticism
against the temporal code is that it is not robust against
noise, while the rate code is robust.*Electronic address: hasegawa@u-gakugei.ac.jp
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It is commonly assumed that there are two types of noise:
additive and multiplicative noise. The magnitude of the
former is independent of the state of the variable while that
of the latter depends on its state. Interesting phenomena
caused by the two types of noise have been investigated �24�.
It has been found that the property of multiplicative noise is
different from that of additive noise in some respects. �1�
Multiplicative noise induces a phase transition, creating an
ordered state, while additive noise works to destroy the or-
dering �25,26�. �2� Although the probability distribution in
stochastic systems subjected to additive white noise follows
a Gaussian, multiplicative white noise generally yields a
non-Gaussian distribution �27–32�. �3� The scaling relation
of the effective strength for additive noise given by ��N�
=��1� /�N is not applicable to that for multiplicative noise:
��N����1� /�N, where ��N� and ��N� denote the effective
strengths of multiplicative and additive noise, respectively, in
the N-unit system �33�. A naive approximation of the scaling
relation for multiplicative noise, ��N�=��1� /�N as adopted
in Ref. �25�, yields a result that does not agree with that of
DS �33�.

In this paper, we will study the properties of neuronal
ensembles based on the rate-code hypothesis. The rate mod-
els that have been proposed so far are mainly given by �4�

dri�t�
dt

= − �ri�t� + H� 1

N
�

j

wijrj�t� + Ii�t�� + ��i�t� , �1�

where ri�t� ��0� denotes the firing rate of a neuron i �i
=1–N�, � the relaxation rate, wij the coupling strength, H�x�
the gain function, Ii�t� an external input, and � the magnitude
of additive white noise of �i�t� with the correlation
	�i�t�� j�t��
=	ij	�t− t��. The rate model as given by Eq. �1�
has been adopted in many models based on neuronal popu-
lation dynamics. The typical rate model is the Wilson-Cowan
model, with which the stability of an ensemble consisting of
excitatory and inhibitory neurons is investigated �12,34�. The
rate model given by Eq. �1� with H�x�=x is the Hopfield
model �35�, which has been extensively adopted for studies
of the memory in the brain incorporating the plasticity of
synapses into wij. DS calculations have been performed, for
example, for a study of the population coding for N=100 �4�.
Analytical studies of Eq. �1� are conventionally made for the
case of N=
, adopting the FPE method with MF and diffu-
sion approximations. The stationary distribution obtained by
the FPE for Eq. �1� generally follows the Gaussian distribu-
tion.

ISI data obtained from experiments have been fitted by a
superposition of some known probability densities such as
the �, inverse-Gaussian, and log-normal distributions
�36–40�. The � distribution with parameters � and � is given
by

Pgam�x� =
�−�

����
x�−1 exp�−

x

�
� , �2�

which is derived from a simple stochastic IF model with
additive noise for Poisson inputs �37�, ��x� being the gamma
function. For �=1 in Eq. �2�, we get the exponential distri-

bution describing a standard Poisson process. The inverse
Gaussian distribution with parameters � and � given by

PIG�x� = � �

2�x3�1/2

exp�−
��x − ��2

2�2x
� , �3�

and is obtained from a stochastic IF model in which the
membrane potential is represented as a random walk with
drift �36�. The log-normal distribution with parameters � and
 given by

PLN�x� =
1

�2�2x
exp�−

�ln x − ��2

22 � , �4�

is adopted when the logarithm of ISI is assumed to follow a
Gaussian form �38�. Fittings of experimental ISI data to a
superposition of these probability densities have been exten-
sively discussed in the literature �36–40�.

The purpose of the present paper is to propose and study
the generalized, phenomenological rate model �Eqs. �5� and
�6��. We will discuss ensembles with finite populations, con-
trary to most existing analytical theories except a few �e.g.,
Ref. �16��, which discuss ensembles with infinite N. The sta-
tionary distribution of our rate model will be discussed by
using the FPE method. It is shown that, owing to the intro-
duced multiplicative noise, our rate model yields not only the
Gaussian distribution but also non-Gaussian distributions
such as �, inverse-Gaussian-like, and log-normal-like distri-
butions.

The dynamical properties of our rate model will be stud-
ied by using the AMM, which was previously proposed by
the present author �18,33,41�. Based on a macroscopic point
of view, Hasegawa �18� proposed the AMM, which empha-
sizes not the properties of individual neurons but rather those
of ensemble neurons. In the AMM, the state of finite-N-unit
stochastic ensembles is described by a fairly small number of
variables: averages and fluctuations of local and global vari-
ables. For example, the number of deterministic equations in
the AMM becomes 3 for an N-unit Langevin model. The
AMM has been successfully applied to a study on the dy-
namics of the Langevin model and stochastic spiking neuron
models such as FN and HH models, with global, local, or
small-world couplings �with and without transmission de-
lays� �42–46�.

The AMM in �18� was originally developed by expanding
variables around their stable mean values in order to obtain
the second-order moments for both local and global variables
in stochastic systems. In recent papers �33,41�, we have re-
formulated the AMM with the use of the FPE to discuss
stochastic systems subjected to multiplicative noise: the FPE
is adopted to avoid the difficulty due to the Ito versus Stra-
tonovich calculus inherent to multiplicative noise. In the
present paper, a study on the Langevin model with multipli-
cative noise made in �41�, has been applied to an investiga-
tion on the firing properties of neuronal ensembles. Our
method aims at the same purpose to effectively study the
property of neuronal ensembles as the approaches developed
in Refs. �12–16,19–21�.
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The paper is organized as follows. In Sec. II, we discuss
the generalized rate model for an ensemble containing N
neurons, investigating its stationary and dynamical proper-
ties. Some discussions are presented in Sec. III, where vari-
abilities of the rate and ISI are calculated. The final Sec. IV
is devoted to our conclusion.

II. PROPERTY OF NEURON ENSEMBLES

A. Generalized rate-code model

For a study of the properties of a neuron ensemble con-
taining a finite number N of neurons, we have assumed that
the dynamics of the firing rate ri�t� ��0� of a neuron i �i
=1–N� is given by

dri

dt
= F�ri� + H�ui� + �G�ri��i�t� + ��i�t� , �5�

with

ui�t� = �w

Z
� �

j��i�
rj�t� + Ii�t� . �6�

Here F�x�, G�x�, and H�x� are arbitrary functions of
x, Z �=N−1� denotes the coordination number, Ii�t� is an
input from external sources, and w is the coupling strength;
� and � express the strengths of additive and multiplicative
noise, respectively, given by �i�t� and �i�t�, which express
zero-mean Gaussian white noise with correlations given by

	�i�t�� j�t��
 = 	ij	�t − t�� , �7�

	�i�t�� j�t��
 = 	ij	�t − t�� , �8�

	�i�t�� j�t��
 = 0. �9�

The rate model in Eq. �1� adopts F�x�=−�x and G�x�=0 �no
multiplicative noise�.

The gain function H�x� expresses the response of the fir-
ing rate �ri� to a synaptic input field �ui�. It has been theo-
retically shown in �47� that, when spike inputs with the mean
ISI �Tin� are applied to an HH neuron, the mean ISI of output
signals �Tout� is Tout=Tin for Tin�15 ms and Tout�15 ms for
Tin�15 ms. This is consistent with the recent calculation for
HH neuron multilayers �48�, which shows a nearly linear
relationship between the input �rin� and output rates �rout� for
rin�60 Hz �Fig. 3 of Ref. �48��. It is interesting that the
rin-rout relation is continuous despite the fact that the f-I
relation of the HH neuron shows a discontinuous, type-II
behavior according to Ref. �8�. In the literature, two types of
expressions for H�x� have been adopted so far. In the first
category, sigmoid functions such as H�x�=1/ �1+e−x� �e.g.,
�12�� and arctan�x� �e.g., �49�� have been adopted. In the
second category, gain functions such as H�x�= �x−xc���x
−xc� �e.g., �21�� have been employed, modeling the f-I func-
tion for the frequency f of autonomous oscillation against the
applied dc current I, xc expressing the critical value and ��x�
the Heaviside function: ��x�=1 for x�0 and 0 otherwise.
The nonlinear, saturating behavior in H�x� arises from the

property of the refractory period ��r� because spike outputs
are prevented for tf � t� tf +�r after firing at t= tf. In this
paper, we have adopted a simple expression given by �50�

H�x� =
x

�x2 + 1
, �10�

although our results to be presented in the following sections
are expected to be valid for any choice of H�x�.

B. Stationary properties

1. Distribution of r

By employing the FPE, we may discuss the stationary
distribution p�r� for w=0 and Ii�t�= I, which is given by
�30,31�

ln p�r� � X�r� + Y�r� − �1 −
�

2
�ln��2G�r�2

2
+

�2

2
� ,

�11�

with

X�r� = 2� dr� F�r�
�2G�r�2 + �2� , �12�

Y�r� = 2� dr� H�I�
�2G�r�2 + �2� , �13�

where �=0 and 1 for the Ito and Stratonovich representa-
tions, respectively. Hereafter we mainly adopt the Stratonov-
ich representation.

Case I. F�x�=−�x and G�x�=x. For the linear Langevin
model, we get

p�r� � 1 + ��2r2

�2 ��−��/�2+1/2�

eY�r�, �14�

with

Y�r� = �2H

��
�arctan��r

�
� , �15�

where H=H�I�. In the case of H=Y�r�=0, we get the
q-Gaussian given by �30,31�

p�r� � �1 − �1 − q��r2�1/�1−q�, �16�

with

� =
2� + �2

2�2 , �17�

q =
2� + 3�2

2� + �2 . �18�

We examine some limiting cases of Eq. �14� as follows.
�a� For �=0 and ��0 �i.e., additive noise only�, Eq. �14�

yields

p�r� � e−��/�2��r − H/��2
. �19�
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�b� For �=0 and ��0 �i.e., multiplicative noise only�,
Eq. �14� leads to

p�r� � r−�2�/�2+1�e−�2H/�2�/r. �20�

Distributions p�r� calculated with the use of Eqs.
�14�–�20� are plotted in Figs. 1�a�–1�c�. The distribution p�r�
for �=0.0 �without multiplicative noise� in Fig. 1�a� shows
the Gaussian distribution, which is shifted by an applied in-

put I=0.1. When multiplicative noise is added ���0�, the
form of p�r� is changed to the q-Gaussian given by Eq. �16�.
Figure 1�b� shows that, when the magnitude of additive noise
� is increased, the width of p�r� is increased. Figure 1�c�
shows that, when the magnitude of the external input I is
increased, p�r� is much shifted and widely spread. Note that,
for �=0.0 and ��0 �additive noise only�, p�r� is simply
shifted without a change in its shape when increasing I �Eq.
�19��.

Case II. F�x�=−�xa and G�x�=xb �a ,b�0�. The special
case of a=1 and b=1 has been discussed in the preceding
case I �Eqs. �14�–�20��. For arbitrary a ��0� and b ��0�, the
probability distribution p�r� given by Eqs. �11�–�13� be-
comes

p�r� � 1 + ��2

�2�r2b�−1/2

eX�r�+Y�r�, �21�

with

X�r� = − � 2�ra+1

�2�a + 1��F�1,
a + 1

2b
,
a + 1

2b
+ 1;−

�2r2b

�2 � ,

�22�

Y�r� = �2Hr

�2 �F�1,
1

2b
,

1

2b
+ 1;−

�2r2b

�2 � , �23�

where F�a ,b ,c ;z� is the hypergeometric function. Some lim-
iting cases of Eqs. �21�–�23� are shown in the following.

�a� The case of H=Y�r�=0 was previously studied in �31�.
�b� For �=0 and ��0 �i.e., additive noise only�, we get

p�r� � exp− � 2�

�2�a + 1��ra+1 + �2H

�2 �r� . �24�

�c� For �=0 and ��0 �i.e., multiplicative noise only�, we
get

p�r� ��
r−b exp− � 2�

�2�a − 2b + 1��ra−2b+1 − � 2H

�2�2b − 1��r−2b+1� for a − 2b + 1 � 0,2b − 1 � 0, �25�

r−�2�/�2+b� exp− � 2H

�2�2b − 1��r−2b+1� for a − 2b + 1 = 0 �26�

r�2H/�2−1/2� exp− � 2�

�2a
�ra� for 2b − 1 = 0 �27�

r−�2��−H�/�2+1/2� for a − 2b + 1 = 0,2b − 1 = 0 �28�

�
�d� In the case of a=1 and b=1/2, we get

p�r� � �r +
�2

�2��2��2/�4+2H/�2−1/2�

exp− �2�

�2 �r� , �29�

which reduces, in the limit of �=0, to

p�r� � exp− � �

�2��r −
H

�
�2� for � = 0. �30�

Case III. F�x�=−� ln x and G�x�=x1/2. We get
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FIG. 1. �a� Distributions p�r� of the �local� firing rate r for
various � with �=1.0, �=0.1, I=0.1, and w=0.0, �b� p�r� for vari-
ous � with �=1.0, �=1.0, I=0.1, and w=0.0, and �c� p�r� for
various I with �=1.0, �=0.5, �=0.1, and w=0.0.
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p�r� � r−1/2 exp− � �

�2��ln r −
H

�
�2� for � = 0.

�31�

Figure 2�a� shows distributions p�r� for case II and vari-
ous a with fixed values of �=1.0, b=1.0, I=0.1, �=1.0, and
�=0.0 �multiplicative noise only�. With further decrease in
a, the peak of p�r� at r�0.1 becomes sharper. Figure 2�c�
shows distributions p�r� for case II and various b with fixed
values of �=1.0, a=1.0, I=0.1, �=1.0, and �=0.0 �multipli-
cative noise only�. We note that a change in the b value
yields considerable changes in the shape of p�r�. Figures 2�b�
and 2�d� will be discussed shortly.

2. Distribution of T

When the temporal ISI T is simply defined by T=1/r, its
distribution ��T� is given by

��T� = p� 1

T
� 1

T2 . �32�

We get various distributions of ��T� depending on the func-
tional forms of F�x� and G�x�. For F�x�=−�x, G�x�=x, and
�=0, Eq. �26� yields

��T� � T�2�/�2−1� exp− �2H

�2 �T� , �33�

which expresses the � distribution �Eq. �2�� �29,37�. For
F�x�=−�x2, G�x�=x, and �=0, Eq. �25� leads to

��T� � T−1 exp− �2H

�2 �T − �2�

�2 � 1

T
� , �34�

which is similar to the inverse Gaussian distribution �Eq. �3��
�36�. For F�x�=−� ln x, G�x�=x1/2, and �=0, Eq. �31� yields

��T� � T−3/2 exp− �2�

�2 ��ln T +
H

�
�2� , �35�

which is similar to the log-normal distribution �Eq. �4�� �38�.
Figures 2�b� and 2�d� show ��T� obtained from p�r�

shown in Figs. 2�a� and 2�c�, respectively, by a change of
variable with Eq. �32�. Figure 2�b� shows that, with further
decrease in a, the peak of ��T� becomes sharper and moves
left. We note in Fig. 2�d� that the form of ��T� is signifi-
cantly varied by changing b in G�x�=xb.

3. Distribution of R

When we consider the global variable R�t� defined by

R�t� =
1

N
�

i

ri�t� , �36�

the distribution P�R , t� for R is given by

P�R,t� =� ¯� �idrip��ri�,t�	�R −
1

N
�

j

rj� . �37�

Analytic expressions for P�R� are obtainable only for lim-
ited cases.

�a� For ��0 and �=0, P�R� is given by

P�R� � exp− ��N

�2 ��R −
H

�
�2� , �38�

where H=H�I�.
�b� For H=0, we get �41�

P�R� =
1

2�
�

−





dk eikR��k� , �39�

with

��k� = �� k

N
��N

, �40�

where ��k� is the characteristic function for p�r� given by
�51�

��k� = �
−





e−ikrp�r�dr , �41�

=21−�
����k���

����
K�����k�� , �42�

with

� =
�

�2 , �43�
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FIG. 2. �a� Distributions p�r� of the �local� firing rate r and �b�
��T� of the ISI T for a=0.8 �dot-dashed curves�, 1.0 �solid curves�,
1.5 �dotted curves�, and 2.0 �dashed curves� with �=1.0, b=1.0, I
=0.1, �=1.0, and �=0.0 �multiplicative noise only�. �c� p�r� of the
�local� firing rate r and �d� ��T� of the ISI T for b=0.5 �dashed
curves�, 1.0 �solid curves�, 1.5 �dotted curves�, and 2.0 �dot-dashed
curves� with �=1.0, a=1.0, I=0.1, �=1.0, and �=0.0 �multiplica-
tive noise only�; results for b=1.5 and b=2 should be multiplied by
factors of 2 and 5, respectively.
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�� =
�

�
, �44�

K��x� expressing the modified Bessel function.
Some numerical examples of P�R� are plotted in Figs.

3–5. Figures 3�a� and 3�b� show P�R� for �=0.0 and 0.5,
respectively, when N is changed. For �=0.0, P�R� is the
Gaussian distribution whose width is narrowed by a factor of
1 /�N with increasing N. In contrast, P�R� for �=0.5 is non-
Gaussian, whose shape seems to approach a Gaussian for
increasing N. These are consistent with the central-limit
theorem.

Effects of an external input I on p�r� and P�R� are exam-
ined in Figs. 4�a� and 4�b�. Figure 4�a� shows that, in the
case of �=0.0 �additive noise only�, p�r� and P�R� are sim-
ply shifted by a change in I. This is not the case for �
�0.0, for which p�r� and P�R� are shifted and widened with
increasing I, as shown in Fig. 4�b�.

Figures 5�a� and 5�b� show effects of the coupling w on
p�r� and P�R�. For �=0.0, p�r� and P�R� are changed only
slightly with increasing w. On the contrary, for �=0.5, an
introduction of the coupling significantly modifies p�r� and
P�R� as shown in Fig. 5�b�.

C. Dynamical properties

1. Augmented moment method

Next we will discuss the dynamical properties of the rate
model by using the AMM �18,33,41�. By employing the

FPE, we obtain the equations of motion for the moments 	ri
,
	rirj
, and 	R2
 where R= �1/N��iri. Then we get the equa-
tions of motion for the three quantities �, �, and � defined by
�18,33,41�

� = 	R
 =
1

N
�

i

	ri
 , �45�

� =
1

N
�

i

	�ri − ��2
 , �46�

� = 	�R − ��2
 , �47�

where � expresses the mean, � the averaged fluctuations in
local variables �ri�, and � the fluctuations in the global vari-
able �R�. We get �for details see �33,41��

d�

dt
= f0 + f2� + h0 + ���2

2
��g0g1 + 3�g1g2 + g0g3��� ,

�48�

d�

dt
= 2f1� + 2h1�wN

Z
��� −

�

N
� + �� + 1��g1

2 + 2g0g2��2�

+ �2g0
2 + �2, �49�

d�

dt
= 2f1� + 2h1w� + �� + 1��g1

2 + 2g0g2��2�

+
1

N
��2g0

2 + �2� , �50�

where f�= �1/�!����F��� /�x��, g�= �1/�!����G��� /�x��, h�

= �1/�!����H�u� /�u��, and u=w�+ I. The original
N-dimensional stochastic DEs given by Eqs. �5� and �6� are
transformed to the three-dimensional deterministic DEs
given by Eqs. �48�–�50�.

When we adopt

F�x� = − �x , �51�
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FIG. 3. Distributions P�R� of the �global� firing rate R for �
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=0.0, and I=0.1.
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G�x� = x , �52�

Eqs. �48�–�50� are expressed in the Stratonovich representa-
tion ��=1� by

d�

dt
= − �� + h0 +

�2�

2
, �53�

d�

dt
= − 2�� +

2h1wN

Z
�� −

�

N
� + 2�2� + �2�2 + �2,

�54�

d�

dt
= − 2�� + 2h1w� + 2�2� +

�2�2

N
+

�2

N
, �55�

where h0=u /�u2+1, h1=1/ �u2+1�3/2, and h2=−�3u /2� / �u2

+1�5/2 with u=w�+ I.
Before discussing the dynamical properties, we study the

stationary properties of Eqs. �53�–�55�. We get the stationary
solution given by

� =
h0

�� − �2/2�
, �56�

� =
��2�2 + �2�

2�� − �2 + wh1/Z��1 +
wh1

Z�� − �2 − wh1�� , �57�

� =
��2�2 + �2�

2N�� − �2 − wh1�
, �58�

where Eq. �56� expresses the fifth-order algebraic equation of
�. The stability of Eqs. �53�–�55� around the stationary so-
lution may be shown by calculating eigenvalues of their
Jacobian matrix, although the actual calculations are tedious.

Figure 6 shows the N dependences of � and � in the
stationary state for four sets of parameters: �� ,� ,w�
= �0.0,0.1,0.0� �solid curves�, �0.5, 0.1, 0.0� �dashed curves�,
�0.0, 0.1, 0.5� �dot-dashed curves�, and �0.5, 0.1, 0.5�
�double-dot-dashed curves�, with �=0.1, �=1.0, and I=0.1.
For all the cases, � is proportional to N−1, which is easily

seen in Eq. �58�. In contrast, � shows a weak N dependence
for small N ��10�. It is noted that �� and �� approximately
express the widths of p�r� and P�R�, respectively. The N
dependence of � in Fig. 6 is consistent with the result shown
in Figs. 3�a� and 3�b�, and with the central-limit theorem.

2. Response to pulse inputs

We have studied the dynamical properties of the rate
model, by applying a pulse input of I= I�t� given by

I�t� = A��t − t1���t2 − t� + I�b�, �59�

with A=0.5, t1=40, t2=50, and I�b�=0.1 which expresses the
background input. Figures 7�a�–7�c� show the time depen-
dences of �, �, and � for F�x�=−�x and G�x�=x when the
input pulse I�t� given by Eq. �59� is applied �52�: solid and
dashed curves show the results of the AMM and DS aver-
aged over 1000 trials, respectively, with �=0.5, �=1.0, w
=0.5, and N=10. Figures 7�b� and 7�c� show that an applied
input pulse induces changes in � and �. This may be under-
stood from the 2�2 terms in Eqs. �54� and �55�. The results of
the AMM shown by solid curves in Figs. 7�a�–7�c� are in
good agreement with DS results shown by dashed curves.
Figure 7�d� will be discussed shortly.

It is possible to discuss the synchrony in a neuronal en-
semble with the use of � and � defined by Eqs. �46� and �47�
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0.0� �dashed curves�, �0.0, 0.1, 0.5� �dot-dashed curves�, and �0.5,
0.1, 0.5� �double-dot-dashed curves�; �=1.0, N=10, and I=0.1.
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ing results of AMM and dashed curves expressing those of DS
result with 1000 trials.
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�18�. In order to quantitatively discuss the synchronization,
we first consider the quantity given by

P�t� =
1

N2�
ij

	�ri�t� − rj�t��2
 = 2���t� − ��t�� . �60�

When all neurons are firing with the same rate �the com-
pletely synchronous state�, we get ri�t�=R�t� for all i, and
then P�t�=0 in Eq. �60�. On the contrary, we get P�t�=2�1
−1/N��� P0�t� in the asynchronous state where �=� /N
�18,41�. We may define the synchronization ratio given by
�18�

S�t� � 1 −
P�t�
P0�t�

= �N��t�/��t� − 1

N − 1
� , �61�

which is 0 and 1 for completely asynchronous �P= P0� and
synchronous states �P=0�, respectively. Figure 7�d� shows
the synchronization ratio S�t� for ��t� and ��t� plotted in
Figs. 7�b� and 7�c�, respectively, with �=0.5, �=1.0, w
=0.5, and N=10. The synchronization ratio at t�40 and t
�60 is 0.15, but it is decreased to 0.03 at 40� t�50 by an
applied pulse. This is because � is more increased than � by
an applied pulse, and the ratio � /� is reduced. The synchro-
nization ratio vanishes for w=0, and it is increased with in-
creasing coupling strength �18,41�.

Next we show some results for different indices of a and
b in F�x�=−�xa and G�x�=xb. Figure 8�a� shows the time
dependence of � for �a ,b�= �1,1� �solid curve� and �a ,b�
= �2,1� �dashed curve� with �=0.0, �=0.1, w=0.0, and N
=10. The saturated magnitude of � for �=0.5 is larger than
that for �=0.0. Solid and dashed curves in Fig. 8�b� show �

for �a ,b�= �1,1� and �1,0.5�, respectively, with �=0.5, �
=0.001, N=10, and w=0.0. Both results show similar re-
sponses to an applied pulse, although � for a background
input of I�b�=0.1 for �a ,b�= �1,0.5� is a little larger than that
for �a ,b�= �1,1�.

3. Response to sinusoidal inputs

We have applied also a sinusoidal input given by

I�t� = A1 − cos�2�t

Tp
�� + I�b�, �62�

for F�x�=−�x and G�x�=x with �=1.0, A=0.5, I�b�=0.1, and
Tp=10 and 20. Time dependences of � for Tp=20 and Tp
=10 are plotted in Figs. 9�a� and 9�b�, respectively, with �
=0.5, �=1.0, w=0.0, and N=10. AMM results of ��t� shown
by solid curves in Figs. 9�a� and 9�b� are indistinguishable
from DS results �with 100 trials� shown by dashed curves
�52�, dot-dashed curves denoting the sinusoidal input I�t�. As
the period of Tp becomes shorter, the magnitude of � be-
comes smaller. The delay time of ��t� against an input I�t� is
about �d�1.0 �=1/�� for both Tp=10 and Tp=20.

III. DISCUSSION

We may calculate variabilities of r and T, by using their
distributions of p�r� and ��T�, which have been obtained in
Sec. II. For example, in the case of F�x�=−�x and G�x�=x,
the distribution of p�r� for �=0.0, w=0.0, and H= I given by
Eq. �26� leads to

	r
 =
I

�� − �2/2�
, �63�

		r2
 = 	�r − 	r
�2
 =
I2�2

2�� − �2/2�2�� − �2�
, �64�
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c̄v �
�		r2


	r

=

�

�2�� − �2�
. �65�

The relevant � distribution for ISI, ��T�, given by Eq. �33�
yields

	T
 =
�

I
, �66�

		T2
 = 	�T − 	T
�2
 =
��2

2I2 , �67�

cv �
�		T2


	T

=

�

�2�
. �68�

Equations �65� and �68� show that both c̄v and cv are in-
creased with increasing magnitude ��� of multiplicative
noise.

It has been reported that spike train variability seems to be
correlated with location in the processing hierarchy �53�. A
large value of cv is observed in the hippocampus �cv�3�
�54� whereas cv is small in cortical neurons �cv�0.5–1.0�
and motor neurons �cv�0.1� �55,56�. In order to explain the
observed large cv, several hypotheses have been proposed:
�1� a balance between excitatory and inhibitory inputs
�57,58�, �2� correlated fluctuations in recurrent networks
�59�, �3� active dendrite conductance �60�, and �4� a slowly
decreasing tail of input ISI of T−d �d�0� at large T �61�. Our
calculation shows that multiplicative noise may be an alter-
native origin �or one of the origins� of the observed large
variability. We note that the variability of r is given by c̄v
=�� /� in the AMM �e.g., Eq. �65� agrees with �� /� for �
and � given by Eqs. �56� and �57�, respectively, with w=�
=0�. It would be interesting to make a more detailed study of
the variability for general F�x� and G�x� as discussed in Sec.
II.

We have proposed the generalized rate-code model given
by Eqs. �5� and �6�, in which the relaxation process is given
by a single F�x�. Instead, when the relaxation process con-
sists of two terms

F�x� → c1F1�x� + c2F2�x� , �69�

with c1+c2=1, the distribution becomes

p�r� = �p1�r��c1�p2�r��c2, �70�

where pk�r� �k=1,2� denotes the distribution only with
F�x�=F1�x� or F�x�=F1�x�. In contrast, when multiplicative
noise arises from two independent origins,

�x��t� → c1�1x�1�t� + c2�2x�2�t� , �71�

the distribution for �=H=0 becomes

p�r� � r−�2�/�c1�1
2+c2�2

2�+1�. �72�

Similarly, when additive noise arises from two independent
origins,

���t� → c1�1�1�t� + c2�2�2�t� , �73�

the distribution for �=H=0 becomes

p�r� � e−�/�c1�1
2+c2�2

2�. �74�

Equations �70�, �72�, and �74� are quite different from the
form given by

p�r� = c1p1�r� + c2p2�r� , �75�

which has been conventionally adopted for a fitting the the-
oretical distribution to that obtained by experiments �36–40�.

IV. CONCLUSION

We have proposed a generalized rate-code model �Eqs. �5�
and �6��, whose properties have been discussed by using the
FPE and the AMM. The proposed rate model is a phenom-
enological one and has no biological basis. As discussed in
Sec. I, the conventional rate model given by Eq. �1� may be
obtainable from a spiking neuron model when we adopt ap-
propriate approximations to DEs derived by various ap-
proaches such as the population-density method �12–16� and
others �19–21�. It would be interesting to derive our rate
model given by Eqs. �5� and �6�, starting from a spiking
neuron model. The proposed generalized rate model is useful
in discussing stationary and dynamical properties of neuronal
ensembles. Indeed, our rate model has an interesting prop-
erty, yielding various types of stationary non-Gaussian dis-
tributions such as �, inverse-Gaussian, and log-normal dis-
tributions, which have been experimentally observed
�36–40�. It is well known that the Langevin-type model
given by Eq. �1� cannot properly describe fast neuronal dy-
namics at characteristic times �c shorter than � ��1/��. This
is, however, not a fatal defect because we may evade it, by
adopting an appropriate � value of ���c /10 for a given neu-
ronal ensemble with �c. Actually, the dynamical properties of
an ensemble consisting of excitatory and inhibitory neurons
has been successfully discussed with the use of the
Langevin-type Wilson-Cowan model �12,34� �for recent pa-
pers using the Wilson-Cowan model, see �62�, and related
references therein�. One of the disadvantages of the AMM is
that its applicability is limited to the case of weak noise
because it neglects contributions from higher moments.

On the contrary, the AMM has following advantages.
�i� The dynamical properties of an N-unit neuronal en-

semble may be easily studied by solving three-dimensional
ordinary DEs �Eqs. �48�–�50��, in which the three quantities
�, �, and � have clear physical meanings.

�ii� Analytic expressions for DEs provide us with physical
insight without numerical calculations �e.g., the N depen-
dence of � follows the central-limit theorem �Eq. �58���.

�iii� The synchronization of the ensemble may be dis-
cussed �Eq. �61��.

As for item �i�, note that we have to solve the
N-dimensional stochastic Langevin equations in DS, and the
�2N+1�-dimensional partial DEs in the FPE. Then the AMM
calculation is very much faster than DS: for example, for the
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calculation shown in Fig. 9�a�, the ratio of the computation
time of the AMM to that of DS becomes tAMM / tDS
�1/30 000 �63�. We hope that the proposed rate model may
be adopted for a wide class of study on neuronal ensembles
described by the Wilson-Cowan-type model �64�.
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