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Crossover behavior and multistep relaxation in a schematic model of the cut-off glass transition
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We study a schematic mode-coupling model in which the ideal glass transition is cut off by a decay of the
quadratic coupling constant in the memory function. (Such a decay, on a time scale 7;, has been suggested as
the likely consequence of activated processes.) If this decay is complete, so that only a linear coupling remains
at late times, then the « relaxation shows a temporal crossover from a relaxation typical of the unmodified
schematic model to a final strongly slower-than-exponential relaxation. This crossover, which differs somewhat
in form from previous schematic models of the cutoff glass transition, resembles light-scattering experiments
on colloidal systems, and can exhibit a “slower-than-a” relaxation feature hinted at there. We also consider
what happens when a similar but incomplete decay occurs, so that a significant level of quadratic coupling
remains for > 7;. In this case the correlator acquires a third, weaker relaxation mode at intermediate times.
This empirically resembles the 8 process seen in many molecular glass formers. It disappears when the initial
as well as the final quadratic coupling lies on the liquid side of the glass transition, but remains present even
when the final coupling is only just inside the liquid (so that the « relaxation time is finite, but too long to
measure). Our results are suggestive of how, in a cutoff glass, the underlying “ideal” glass transition predicted

by mode-coupling theory can remain detectable through qualitative features in dynamics.
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I. INTRODUCTION

Many aspects of the slowing down of the dynamics of a
liquid as it is cooled or compressed towards its glass transi-
tion are accurately captured by mode-coupling theory (MCT)
[1,2]. Although cast in terms of collective coordinates (Fou-
rier components of density), MCT is often thought to model
the formation of “cages” whereby a given particle is con-
strained by its neighbors in real space. However, the theory,
at least in its simplest (“standard”) form (SMCT), breaks
down in the final approach to the glassy state (see, for ex-
ample, Refs. [3-5]). In particular, MCT predicts a complete
arrest of density fluctuations at long times [1,2]; this ideal
glass transition occurs at weaker coupling (higher tempera-
tures and lower densities) than the experimental glass transi-
tion. The continued decay of fluctuations at stronger cou-
plings is wusually attributed to activated (“hopping”)
processes, not captured by SMCT [6]. In their simplest form,
these could involve escape from a cage by activation over a
local barrier, which would give an Arrhenius factor cutting
off the divergence of the relaxation time. However, in many
glasses, the relaxation time shows a stronger-than-Arrhenius
dependence far into the regime beyond the ideal glass tran-
sition, suggesting a collective aspect to the hopping dynam-
ics. Much current research addresses many-body activated
processes at a supracage scale, often referred to as dynamical
heterogeneity [7].

Most recent efforts to understand these extra relaxation
pathways fall into two broad categories: analysis of micro-
scopic molecular dynamics simulations in the light of free-
energy landscape ideas [4,8,9], and study of coarse-grained
models [10-12] aimed to directly address dynamical hetero-
geneity. Despite the new insights afforded by these methods,
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we believe that the success of MCT in describing the viscous
liquid state means that one should not abandon attempts to
extend its validity beyond the ideal glass transition. Indeed,
several programs along these lines have been carried out,
either by avoiding some of the approximations of MCT [13],
introducing new decay modes into the full MCT formalism
[creating “extended MCT” (eMCT)] [14], or adding relax-
ation processes not easily described through mode coupling
to a simplified version of the theory (see, e.g., Refs. [15,16]).

In this paper we take a related route: we make a specific
ad hoc adjustment to a set of equations that, unmodified, are
an accepted “schematic” representation of SMCT [17]. The
adjustment we propose is inspired by recent theoretical work
[18] which addresses not just whether, but how activated
processes (“instantons”) can violate the central approxima-
tion of SMCT. The latter involves factoring a four-point cor-
relator into the product of two two-point correlators [6].
Cates and Ramaswamy argued that, in an instanton-
dominated regime, the four-point correlator should be better
approximated by a single two-point correlator. A crossover to
a regime in which that approximation holds, in place of the
MCT one, can gradually weaken the density-density cou-
pling and hence can switch off the feedback that drives the
arrest. This line of reasoning gives a cutoff glass transition,
but one with a different mathematical structure from those
proposed in connection with various forms of eMCT
[14,19,20]. The resulting model structure is also different
from that found by multiplying either the MCT correlator or
the MCT memory function by an independent decay func-
tion.

Below we explore in more depth the consequences of a
crossover, on an instanton time scale 7;, from a quadratic to
a linear dependence of four-point correlators on two-point
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correlators. This we do within the framework of a schematic,
single-mode model. The simplicity of this framework intro-
duces several artificial features precluding any detailed com-
parison with experimental data; however, a wide range of
glassy relaxation scenarios can be found within this simple
model. Though not done here, this suggests that the pursuit
of similar ideas within a full (multimode, wave-vector-
dependent) MCT could be a fruitful avenue of future re-
search.

Section II gives a sketch of the mode-coupling theory of
the glass transition, and its schematic versions are outlined in
Sec. III. We introduce the model with cutoff in Sec. IV and
the phenomenology and existing theory of the relevant
glassy relaxation scenarios in Sec. V. Our numerical proce-
dures are detailed in Sec. VI, and results (Sec. VII) and con-
clusions (Sec. VIII) follow.

II. MODE-COUPLING THEORY OF THE GLASS
TRANSITION

We now present a brief outline of the mode-coupling
theory of the glass transition, reviewed in depth elsewhere
[6,21,22]. As a glass-forming liquid is cooled or compressed,
the viscosity and, more generally, the relaxation times for
density fluctuations in the system increase rapidly. As the
glass transition is reached, unequal-time density correlators
that would, in an ergodic material, decay to zero at late times
are no longer able to do so on the time scale of the experi-
ment. A proportion of the density fluctuations are then ar-
rested or “frozen,” although the system remains amorphous.

The theory describes this through a feedback mechanism
driven by couplings among density fluctuations, often
thought to be associated with the caging of a particle by its
neighbors. To quantify the effect, MCT uses the normalized
autocorrelation functions of density fluctuations at wave vec-
tor g, defined as

¢q(t) = <Pq(f)P;(O)>/<|Pq|2>» (1)

where the angular brackets denote equilibrium averages. The
¢, evolve according to

By(1) + 7, 5(0) + Q2 (1) + O f my(t 1)), (t')dt’ =0.
0

2)

This is derived from the Newtonian equations of motion for
N interacting particles and represents their averaged dynam-
ics exactly. (Alternatively, the second-derivative term may be
dropped; the equation then describes a system of interacting
Langevin particles with uncorrelated local noise terms. The
latter can be used to describe a system of Brownian colloids
in the absence of hydrodynamic interactions.) The micro-
scopic frequencies (), may be calculated from the static
properties of the liquid and v, is a regular damping term
separated from the memory kernel m, so that the latter de-
scribes only the dominant effects near the glass transition.
Approximations must be made to allow m, to be calculated.
The vital step in MCT is the identification of the density
fluctuation pairs &p, dp,, (With ¢,+¢,=¢) as the major con-
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tributions to the memory kernel; those parts of m, uncorre-
lated with these are dropped. Further approximations, includ-
ing notably the factorization of the four-point correlation
functions arising from these product modes, lead to an ex-
pression for m, whose only input is the mean density p and
structure factor S(q):(pq(O)p;(O» of the equilibrium liquid
state (see, e.g., Ref. [23]). As the static correlations described
by S(q) increase, the feedback becomes stronger, and the
decay of ¢,(1) stretches out to longer times. Eventually, at
the ideal glass transition T.(p) [or p.(T)], the fluctuations
never decay entirely, and lim,_., ¢,(¢)=f,>0. (The residual
value f, is the g-dependent nonergodicity parameter.) S(q)
remains regular at 7,.: mode-coupling theory does not require
a thermodynamic singularity to trigger the glass transition.

This approach has had remarkable success in modeling
the detailed time- and wave vector-dependence of the ¢, ()
as the glass transition is approached, especially in colloidal
fluids [21], where it also provides a coherent description of a
glass-to-glass transition between arrested phases dominated
by interparticle repulsion and attraction, respectively
[24-26]. Tt successfully predicts the two-step decay of den-
sity correlations near the glass transition, where a fast initial
relaxation towards a plateau (extending to infinite times at
T.) is followed by a slower-than-exponential final decay. Fur-
thermore, several aspects of this relaxation are fixed by a
single exponent parameter \, calculated from S(q).

Despite the success of mode-coupling theory in describ-
ing the viscous liquid state, agreement between the
asymptotic decay laws of SMCT and experiment rapidly
worsens at temperatures around 1.27T, [27-34]. This problem
is often attributed to the presence of additional relaxation
processes not captured in the theory (sometimes referred to
as hopping in molecular systems). This school of thought
argues that SMCT captures the physics of an ideal glass
transition (at T,~1.2T,) which is avoided in reality but
which would arise in a world where such additional pro-
cesses did not exist; worsening agreement at 7=~ 1.27, is
then taken to signify a qualitative change in transport mecha-
nism from collective to hopping processes (see, for example,
[9,27,28,30,31,33)).

III. SCHEMATIC MCT MODELS OF THE GLASS
TRANSITION

Many features of the full (wave-vector-dependent) SMCT
can be captured by simple schematic models. In these, Eq.
(2) is reduced to

r?tzd)(t) + vQ02%0,0(1) + Q* (1) + szl dim(t—7)9,¢(7) =0,

0
3)

where all ¢ dependence has been dropped. This single cor-
relator is usually associated with density fluctuations at the
wavelength of the peak in the structure factor [2].

In contrast to the full theory, there is no clear microscopic
prescription for the form of m in schematic models. The
simplest memory kernel giving a reasonably realistic picture
of the glass transition is m(t)=v,¢(t)?, with v, an adjustable
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coupling parameter. Together with Eq. (3), this defines the F,
model [1]. The quadratic term is a simple representation of
the density-density coupling in the full SMCT. The F, model
gives a discontinuous jump of the nonergodicity parameter
f=Ilim,_., ¢(r) at a critical value of the control parameter
(v,=4) (a type B transition), and also yields a good qualita-
tive description of the characteristic two-step decay of ¢(r)
in the approach to the glass transition. However, the detailed
form of this decay is rather firmly fixed, and in some respects
is unrealistic. In particular, the height of the intermediate-
time plateau f° in ¢(z) is always 0.5 in the liquid (although
this, and hence also the long-time limit f, may be >0.5 in the
glass), and the slow («) decay at long times is described by
a simple exponential rather than by some slower function
(most experimental data in this regime may be well fitted by
stretched exponentials [35]).

The F, model can be made more flexible by the addition
of a linear term to the memory kernel, giving m(¢)=v,¢(z)
+v,¢(t)>. Note that although the quadratic term has a clear
analog in the full SMCT, the same is not true of the linear
term. This model, called F, [17], allows the plateau height
f¢ and the form of the decay to and from the plateau to be
adjusted, and also gives a (close to) stretched exponential
form for the long-time relaxation. However, the functional
form of the decay cannot be varied independently of the
plateau height, which itself is restricted to f©<0.5. A glass
transition, albeit a rather unrealistic one, is also present in the
F, model, where m(t)=v,¢(t) [17]. Here, f does not have a
jump as v, is varied but grows continuously for v;=1 (a
type A transition), and vanishes for v;<1. There is no
intermediate-time plateau in the correlator. The long-time re-
laxation may be very slow, and a power-law decay is seen
close to the transition. The model cannot produce stretched-
exponential decay [36].

IV. SCHEMATIC MODEL OF THE CUTOFF GLASS
TRANSITION

As discussed above, the ideal glass transition (to a per-
fectly arrested state with f>0) predicted by SMCT is not
observed in real glass formers. Instead, it is cut off by relax-
ation processes not captured by the mode-coupling approxi-
mation. An important question is, what exactly goes wrong
with SMCT in this region?

For Newtonian systems the SMCT equations can be de-
rived by several routes, but one of these [37] is particularly
revealing, as discussed by Cates and Ramaswamy [18]. This
approach allows the memory function to be written formally
as a sum of a standard contribution, which involves four-
point density correlators, plus a second contribution derived
from the coupling of configurational to kinetic degrees of
freedom. The standard contribution reduces (essentially) to
the MCT form when the four-point density correlators are
factored into products of two-point correlators. Cates and
Ramaswamy additionally gave arguments for why the sec-
ond, nonstandard term is negligible in the glassy regime. If
their arguments are accepted, then for the ideal glass transi-
tion to be avoided, it is necessary that the factorization of the
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four-point correlator becomes a qualitatively wrong approxi-
mation as the transition is approached.

Interestingly, in any regime dominated by localized acti-
vated processes (hopping), this approximation does indeed
become qualitatively wrong [18]. When hopping occurs in
a system that would otherwise be fully arrested, the
generic relaxation process in any local neighborhood in-
volves a long wait while nothing happens. Then, after some
randomly distributed time, a large local change occurs that
reconfigures the density nonperturbatively (an instanton).
This decorrelates all powers of the density at the same in-
stant. Indeed, if such decorrelation is complete, one has
(p*(x,0)p*(x,0)/{p*) ={p(x,0)p(x,1))/{p*): the four-point
correlator (at least, the one involving squared local densities)
decays as the two-point correlator, not as its square. This is
the extreme opposite of a Gaussian fluctuation process,
whereby p correlations decay continuously by infinitesimal
increments, and the factorization of the four-point correlator
as adopted in SMCT is rigorously correct [37].

In a general glassy relaxation process some intermediate
behavior can be expected; for instance, if several instanton
visits are required to achieve complete relaxation, rather than
just one, a limiting approximation combining linear and qua-
dratic terms may remain appropriate even as the ideal glass
transition is approached. Additionally, while the squared-
density correlator ((p?(x,0)p*(x,?))) does enter some early
forms of MCT [19], this in fact describes the case of a per-
fectly flat S(g). (Equivalently, it describes a system where the
direct correlation function ¢(r), with 1 -Nc(q)/V=1/5(q) is
a ¢ function in real space.) Within SMCT, which addresses
general forms for S(g), the four-point correlator entering the
exact expression of [37] for the memory function is not the
autocorrelator of p®, but that of a bilinear convolution of
densities with a kernel whose range is fixed by c(r). This
nonlocality, unless negligible on the (uncertain) length scale
of an instanton relaxation event, could also lead to a qua-
dratic plus linear behavior of the relevant four-point cor-
relator.

Based on these ideas, Cates and Ramaswamy [ 18] argued
that a model of the cut-off glass transition might include a
kernel in which quadratic terms are gradually replaced by
linear ones, in such a manner that the system approaches the
ideal glass state, acquiring some of its properties, before re-
verting to the liquid. A suitable choice is given by

m(t) = v, (t/7) $(1) + v, (t/ ) $*(1), (4)

where v and v, are time-dependent coefficients and 7; is an
“instanton time scale.” Note that 7; need not be as long as the
typical waiting time for an instanton event: it describes the
time scale beyond which incremental, collective decay
modes are negligible compared to instanton-mediated relax-
ation. Hence 7; must lie well beyond the time for the plateau
in ¢(7) to be reached but in principle need not be as long as
its eventual decay.

We note that this cutoff mechanism preserves an impor-
tant prediction of SMCT—the growth of the plateau height
on the glass side of the ideal transition with a square-root
dependence on the distance from the transition line (p,,7.)
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FIG. 1. Phase diagram of the F{, model in terms of the coupling
coefficients v, and v,, showing sample trajectories for our model.
The dotted line shows the continuous type A transition associated
with the purely linear F; model; the full line shows the discontinu-
ous type B transition. Trajectory (a) shows gradual replacement of
quadratic by linear correlation. Trajectory (b) remains close to the
glass transition line at all times. In Sec. VII, we will associate (a)
with colloidal systems, and (b) with molecular systems.

(see, e.g., Ref. [17]). Experimental data are consistent with
this singularity [21].

This model, which we explore in detail here, thus defines
trajectories in the phase diagram of the F, model (shown in
Fig. 1), with #/7; as the curve parameter. As the system
moves along such a trajectory, it will accumulate memory of
all previous states along the path. We might thus expect its
behavior to differ strongly from that seen in the pure Fi,
model with parameters set at either the initial or the final
points on such a trajectory.

As is traditional with schematic models, we put con-
straints on the model parameters (or here, the trajectory) to
ensure that the desired physics is recovered. To avoid perma-
nent arrest, we must choose v,(t—o/7)<4 and v, (¢
HOO/TI)<20i/2(l*>00)—l)2(l*>00) [17], so that the system
moves into the liquid state at long times > 7; (see Fig. 1). To
have a cut-off glass transition, rather than simply a crossover
from one set of liquidlike parameters to another, we must set
v(t=0) >v;/2(t=0)—v2(t=0), which ensures the system be-
gins its trajectory within the ideal glass (although we will
also consider trajectories starting close to the ideal glass tran-
sition on the liquid side). We of course require the model to
start with some quadratic correlations, so that v,(¢=0)>0.
We also demand v,(r— ) >0, so that some linear correla-
tion remains at long times.

Within the above constraints, there is still considerable
freedom in the choice of initial and final states, in the path
taken between them, and in the time spent on different sec-
tions of that path. Thus we may begin with an F, or F,
model of the ideal glass, and leave differing amounts of lin-
ear and quadratic correlation in the final state. For the
present, we shall restrict ourselves to straight paths in the
(v1,v,) plane of the general form
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U{,z + (Ui1,2 - U{,Z)f(t/TI)» (5)

where f(t/7;) is a crossover function satisfying f(0)=1 and
f(t—o/7)=0, and i and f superscripts denote initial and
final states, respectively. Sample trajectories are shown in
Fig. 1. Trajectory (a) remains closest to the original theoret-
ical arguments [18], with all quadratic contributions gradu-
ally replaced by linear contributions. Trajectory (b) remains
close to the ideal glass transition line at all times, crossing
from just inside the glass to just inside the liquid: the moti-
vation for this will be discussed later.

V. PHENOMENOLOGY AND THEORY OF MULTISTEP
RELAXATION

In the preceding section, we introduced an MCT model,
which contains an extra decay process associated with in-
stanton relaxation. It then seems natural to ask whether this
model may be applied to systems that show multistep relax-
ation patterns (with three or more decay processes) rather
than the two-step relaxation predicted by SMCT. We will not
be able to provide detailed justification of why a given tra-
jectory of our model should describe a particular system.
However, as shown later (Sec. VII), our results qualitatively
resemble certain multistep relaxation processes, which we
now introduce.

Firstly, hard-sphere colloid [38,39] experiments show a
decay regime on the fluid side of the glass transition in which
the deviations from SMCT fits to the slow « process suggest
an even slower relaxation at late times. This additional pro-
cess is also hinted at in microgel experiments [40-42], al-
though here the « relaxation is less well resolved.

Turning to molecular systems, glassy relaxation at inter-
mediate times often shows additional processes not ac-
counted for by SMCT when applied to density correlators
only (see Ref. [43] for an overview). These relaxations are
usually discussed in terms of the susceptibility spectrum
X'(w) (measured in light-scattering experiments) or the di-
electric response €’(w). The former is given by the product
of the frequency w and the Fourier cosine transform of ¢(z).
Its peaks correspond to the troughs of d,¢(7); that is, to each
decay process. The peak shapes reveal the functional form of
the relaxation; in particular, exponential decay gives a sym-
metric (Lorentzian) peak of width 1.14 decades, while
stretched exponentials appear broader and asymmetric.

Such intermediate-frequency relaxations are often classed
into two groups. The first of these comprises positive-
curvature “wings” [27,29,30] on the high-frequency side of
the spectral peak corresponding to the a process. The second
group includes B peaks [44—48], appearing between the ini-
tial fast and final o relaxation processes. The B peak is
broader and weaker than the a peak, and tends to be rather
symmetric if the frequency is plotted on a logarithmic scale
[43,44]. These weakly temperature-dependent [44] peaks
were initially attributed to the relaxation of intramolecular
degrees of freedom; however, they were subsequently shown
to occur in a wide range of substances composed of rigid
molecules [44] and postulated to be a universal feature of
glassy relaxation. The microscopic origin of both wings and
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peaks remains unclear (see Refs. [47,49] for discussions), as
does the extent to which they are manifestations of a single
underlying phenomenon (see, e.g., Refs. [50,51]).

Although most discussion of S relaxation is in the experi-
mental literature, a number of theories containing
intermediate-time processes have been proposed. In particu-
lar, the “coupling model” [52,53] predicts a relation between
the form of the final a process and the [ relaxation time, in
good agreement with experiment.

Intermediate-time decays are present in schematic SMCT
models with a second correlator introduced to model the cou-
pling to a probing variable [54,55]. Using this approach, ex-
cellent fits to optical Kerr effect data including wing features
above the estimated 7, have been obtained [54]. By increas-
ing the couplings, these wings were transformed into realis-
tically broad and symmetric 8 peaks, although these results
correspond to lower temperatures than those considered in
the experiment [56].

The B relaxation has also been studied [57] using a simple
memory equation, with a memory kernel consisting of the
sum of two exponentials (decaying in time). A gradual sepa-
ration of « and B relaxation (see, e.g., Ref. [46]) as the
couplings are increased is produced. The simple form of the
kernel means that both these processes are purely exponen-
tial.

Note additionally that several systems (see Ref. [58] for a
discussion) show multiple stretched-exponential « processes,
but these fall outside our scope.

VI. NUMERICAL PROCEDURE

We solve the cutoff schematic MCT equation of motion
[Egs. (3) and (4)] in the time domain using an algorithm
introduced and discussed in detail in Ref. [58]. This proce-
dure is based on the fact that ¢(z) is fixed by @(t' <t) and
m(t' <t). It contains two important technical steps: the sepa-
ration of slow and fast variations in the memory integral, and
the use of decimation. The decimation allows the equation of
motion to be solved on progressively coarser grids as ¢ is
increased: any fast decay occurs at short times and requires
fine resolution, while slow decay occurs at long times and
can be calculated on a coarser mesh. First, the equation is
solved for N points with step size &t over an interval 7. The
solution is then transferred to a grid of N/2 points with step
size 20t by taking the weighted average of groups of neigh-
boring points, and Egs. (3) and (4) are then solved up to 27.
The procedure is repeated until the final relaxation has been
resolved. At short times, a Taylor series expansion for ¢(7) is
used. The time derivatives are discretized using interpolation
polynomials (see, e.g., Ref. [59]). At each time step, ¢(z) is
recalculated until it converges to a relative accuracy of 1072,
a maximum of 1000 iterations being allowed. We use a grid
of 60 to 100 blocks of 256 points each. The step size in the
first block is 1072, increasing to 2 X 107? in the second, and
so forth. The first 50 points are calculated using the short-
time expansion. All Fourier-transformed quantities are calcu-
lated using a simplified Filon algorithm with linear (rather
than quadratic) interpolation [60]. Here, we use up to 24
blocks of 180 points, each block corresponding to a decade
in frequency.
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A representative sample of the results for ¢(z) was then
reproduced using a (much slower) iterative procedure based
on the Laplace transform of Egs. (3) and (4) [61], with the
same numerical parameters as the Filon algorithm. These
checks, combined with those made by previous authors who
have used and developed such algorithms, inspires confi-
dence that the numerical results reported below are accurate
solutions of the governing equations.

VII. RESULTS

We divide our results according to whether the final point
on the trajectory has or has not a nonzero value of the qua-
dratic coupling coefficient v,(r— ).

A. Crossover to pure linear coupling

To begin, we concentrate on trajectories [such as (a) in
Fig. 1] where quadratic coupling is entirely removed at long
times. These maintain the closest connection with the origi-
nal theoretical motivation of the model [18].

Several features of Eq. (5) (starting and finishing points,
crossover function, decay time) may, in principle, be freely
adjusted. The microscopic frequency () and the damping
term v are also free; however, () serves simply to fix the unit
of time and » only has significant influence on the short-time
dynamics [62]. In the following, we choose =1 and v
=10 (to avoid pronounced oscillations at short times). A se-
lection of results were checked with v=20; as expected, this
only appreciably changed the initial relaxation.

We now determine in what way, and how strongly, adjust-
ing Eq. (5) affects the calculated form of ¢(z). Here, and in
the following, we will often show our results as plots of
—In[¢(t)/ p,] vs t on a log-log scale; here ¢, is the value of
¢(r) on the plateau of the decay. This representation [61] is
designed to isolate the final relaxation away from the pla-
teau. Stretched exponential relaxation («cexp[—(¢/7)#], with 7
some characteristic time scale) will appear as a straight line,
with slope equal to the stretching exponent 8. The standard
¢(1) vs log t plots will be shown in insets.

Some considerations concerning the structure of our
model allow us to restrict the choice of starting point. We
wish to study the crossover from a model with significant
quadratic correlation: this rules out starting near the type A
transition where linear correlation is dominant. We also fol-
low early work on schematic models [61] in starting close to
(within £0.2 of) the type B transition. Starting at higher cou-
plings would introduce a substantial region of decay deter-
mined entirely by the arbitrary crossover function f(¢/7;) and
the properties of the SMCT model deep in the (unrealistic)
ideal glass. Furthermore, the effects of such a decay would
propagate through to all later times. In Sec. VII A we will
specialize further to paths with v"l:O. This is the most literal
implementation of our theoretical arguments. In addition, al-
though we have verified that the results for trajectories with
v{ # 0 are broadly similar, the crossover phenomena we wish
to discuss emerge most clearly when the initial state contains
no linear correlation.
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FIG. 2. Long-time decay for a range of end points. In all cases,
the start point is (v} =0, v5=4.01). From top to bottom, (=0, v}
=0), (0.2, 0), (0.4, 0), (0.6, 0), (0.8, 0), (0.99, 0). f=exp(—t/p);
7,=108. Dotted lines show exponential decays.

0.01

The system shows very strong sensitivity to the finishing
point of the trajectory. Figure 2 shows decay curves for fixed
starting point (v} =0, vy=4.01), fixed v4=0, v} varying from
0 to 0.8 in steps of 0.2, and an additional value of v{=0.99
(just within the liquid). In all cases, 7,=10%. For v} =0 (top
curve), the final decay is purely exponential. However, as v{
increases, a region of slower-than-exponential decay devel-
ops at t~ 7. For larger v*’lc, this decay becomes extremely
slow, as may also be seen from the inset in Fig. 2. This
behavior may be attributed to the growth of linear correla-
tions: having moved away from one glass transition, the sys-
tem approaches another (that of the F; model), and its dy-
namics acquire an additional slow contribution. At very long
times, the decay becomes exponential. This is a generic fea-
ture of all MCT models with discrete wave vectors [62]
(which naturally includes single-correlator models).

The relative importance of the trajectory end point in de-
termining the decay of ¢(f) might be expected: for any rea-
sonable choice of crossover function, the system will spend
an infinite amount of time on the final section of the path,
however small this is taken to be.

We now check the sensitivity of the system to the choice
of crossover function f(¢/7;). Figure 3 shows two trajecto-
ries: both start at (v}=0, v5=4.2) and finish at v}=0. The
upper trajectory has v{ =0.05 (very far from the type A tran-
sition), and the lower has v/=0.95 (close to the type A tran-
sition). Each trajectory is plotted for an exponential cross-
over function (solid line), a power law [oc1/(1+1¢/7;)] (dotted
line), and a very sharp logistic law (oc1/{1+exp[5(¢
—1)/7]}) (dashed line). In all cases, 7,=10°. At longer times
(7=10°), the influence of f(t/7;) is not strong, all trajectories
lie close to parallel, and the choice of final coefficients plays
the most important role in fixing the behavior of ¢(¢). This is
reassuring, given that theory provides no clear arguments as
to how f(#/7;) should be chosen. The crossing of the expo-
nential and power-law lines for v|=0.95 can be understood
by realizing that while the exponential gives a quicker initial
decay, it also approaches the type A transition more rapidly,

PHYSICAL REVIEW E 75, 051503 (2007)

100 e

T 7 T

L

\\ N
\ O™

o) ;

_In (6()/9,)

[S—

ANl B
6 8
10

e Loy LY i (I
10" 10° 10° 10"

Q)

FIG. 3. Range of crossover functions f(z/7;). All start at (vi1
=0, v§=4.2) and finish at v-§=0‘ The upper trajectory has v-{'=0.05
and the lower has vff =0.95. Each trajectory is plotted for an expo-
nential crossover function (solid line), a power law [<1/(1+¢/7;)]
(dotted line) and a very sharp logistic law (oc1/{1+exp[5(¢
—1)/7]}) (dashed line). In all cases, 7,=10°. The dotted lines on
the left of the plots show exponential decay.
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thereby acquiring an additional slow contribution at earlier
times than the power-law trajectory.

However, the situation is different at times ~7;. In this
region, the decay curves fall into groups according to the
choice of f(z/7;). This means that the detailed form of the
initial decay from the plateau will be sensitive to the cross-
over function: we return to this point later. Unless otherwise
stated, we use an exponential crossover in the following.

The final free quantity in the model is the decay time 7;.
On the glass side of the ideal transition, this directly sets the
time scale of the final relaxation (see the rightmost four tra-
jectories in Fig. 4, where 7,=10%), and varying 7; leaving the
other model parameters fixed simply serves to shift the final
decay along the time axis. Close to the transition on the
liquid side, the role of 7; depends on how close it is to the
time scale of the « relaxation in the unmodified schematic
model. In Fig. 4, we plot a series of trajectories, all with a
rather large decay time (7;,=10%) and all finishing at (v/
=0.9, v5=0) (close to the type A transition). The starting
point is varied from (v =0, v5=3.8) to (v}=0, v5=4.2) in
steps of 0.05, crossing the ideal glass transition at v,=4. In
this case, 7; is too long to interfere significantly with the
relaxation in the approach to the ideal transition from the
liquid side, and the ¢(r) here are very close to those of the
unmodified F, model. In particular, they do not show the
extra slow process at long times discussed above, which only
appears on the glass side of the ideal transition.

If we choose a shorter decay time 7;=10° (still much
greater than the time required to reach the plateau) (Fig. 5),
the « relaxation close to the ideal transition on the liguid side
may also be affected by the cutoff, acquiring an additional
slow process at long times as described above. Again, the
time scale of the relaxation on the glass side of the ideal
transition is directly set by 7;.
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FIG. 4. Range of starting points on either side of the ideal glass
transition, moving from (v§=3.8) to (v§=4.2) in steps of 0.05. In all
cases, vi] =0, (v-’;=0.9, vé:O), and 7;=108. For this large value of 7,
trajectories starting on the liquid side of the line are only weakly
affected by the cutoff; those on the glass side show extra slower-
than-exponential relaxation at long times. The dotted lines show
exponential decay.

All these trajectories retain no quadratic coupling as ¢
— o0, All such trajectories starting within the ideal glass (or
close to it and with a sufficiently short 7;) and finishing with
v{ # 0 display certain generic long-time properties: an initial
exponential decay from the plateau (inherited from the F,
model) followed by a rather rapid crossover to a slower-than-
exponential decay. This produces a characteristic kink in the
—In[(t)/ p,] vs t plots. Such behavior is straightforward to
rationalize in terms of crossover between the starting and
finishing models.

Also, it is not unlike the behavior seen in light-scattering
experiments on colloidal systems [38,39]. Note that these
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FIG. 5. Range of starting points on either side of the ideal glass
transition, moving from (v;=3.8) to (v;=4.2) in steps of 0.05. In all
cases, v} =0, (v)=0.9, v4=0), and 7,=10°. For this smaller value of
7y, trajectories on both sides of the SMCT transition line show extra
slower-than-exponential relaxation at long times. The dotted lines
show exponential decay.
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colloid data are usually fitted to SMCT with shifted param-
eters, chosen to bring the ideal and the actual glass transition
into register. This gives reasonable agreement, but, as men-
tioned before, the deviations suggest an unaccounted slow
process beyond the a relaxation time. (Note, however, that
the number of data points at these long times is often lim-
ited.) One alternative viewpoint is to assert that for densities
between the ideal and the actual glass transition p, <p< p,,
the observed «a relaxation is the result of an instanton-
induced cutoff and should be calculated accordingly, not by
shifting parameters in SMCT. For suitably chosen trajecto-
ries within the schematic model, this could account, in prin-
ciple, for the deviations.

However, there is considerable experimental evidence to
support the original identification of the arrest in colloidal
fluids with the SMCT transition [38,39]. In these materials,
the absolute values of the viscosity are very high, and the
system appears arrested even when the slow relaxation cov-
ers only around five decades after the microscopic relaxation
(in contrast to more than ten decades in molecular glasses).
This means that the system may become glassy at (relatively
speaking) lower couplings, and the experimentally observed
arrest may occur close to p,.

Furthermore, the scaling properties of ¢(7) (see, e.g., Ref.
[17]) are verified on this assumption (i.e., p,=p.). In addi-
tion, the plateau becomes clearer at p. and its subsequent
growth is consistent with the MCT cusp singularity [17,21]).
It may therefore be that a scenario such as that shown in Fig.
5 is more appropriate. Here, 7; is shorter, and the cutoff
interferes with the « relaxation close to the transition on the
liquid side, producing a slow final relaxation. It should be
noted that the above figures should not be interpreted liter-
ally as sets of results for a colloidal system at different den-
sities. For each figure, the relaxation time 7; is fixed, but in
real systems some density dependence would be expected.

B. Crossover to mixed coupling

We now consider another class of trajectories [such as (b)
in Fig. 1]. These also begin on the glass side of the type B
transition and cross over to the liquid. However, we now
choose the final point to lie fairly close to the liquid-glass
transition line, so that both quadratic and linear coupling
remain at long times. Though moving away somewhat from
the arguments originally presented in Ref. [18], a rationale
for retaining some quadratic coupling was given in Sec. IV
above. Additionally, the connection between the full and
schematic memory kernels is not completely clear, so that an
end point with a reduced but nonzero quadratic coupling
might in fact be the best schematic representation of a full
g-dependent model with purely linear coupling (rather as the
F, model is, by common consent, the best schematic repre-
sentation of the full model with purely quadratic coupling).
One might further argue that, as soon as instanton processes
have made the system fluid, the dynamics should again be
determined by SMCT. Also, to our knowledge, the “slower-
than-a” process discussed above does not occur in molecular
glasses, and the low-frequency side of the a peak is well
described by SMCT both above and below T,. It then seems
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FIG. 6. Range of loss spectra showing an intermediate-
frequency decay process. These results should be compared with
the dielectric data of Refs. [46,48,63,64]. The inset shows the same
trajectories plotted as —In[¢(z)/ ¢,] vs ¢, with the dotted lines show-
ing exponential decay. The stretched-exponential nature of the final
relaxation is clearly visible. In all cases, v'i:v-’f:O.S, v§=2.9242,
and f=exp(~t/7;) with 7,=10°. v} is varied from 2.9042 to 2.9122
in steps of 0.002 (running from right to left in the main figure and
left to right in the inset). These trajectories start and finish rather
close to the glass transition line.

reasonable to consider trajectories finishing close to the ideal
transition line with the intention of preserving this agree-
ment. To obtain a stretched exponential final decay, we use
v} # 0, corresponding to an F, model.

In atomic and molecular (as opposed to colloidal) sys-
tems, glassy relaxation is often discussed in terms of the
spectrum x”(w), defined in Sec. V, and we will adopt this
representation in the following.

Sample x”(w) for short trajectories starting and finishing
close to the glass transition line are shown in Fig. 6, and the
corresponding In[¢(7)/ ¢,] plots are shown in the inset. The
final slow decay process associated with the dominance of
linear coupling is now absent, leaving a standard stretched
exponential « relaxation (see the inset in Fig. 6), which
moves out to longer times as the end of the trajectory is
moved closer to the ideal glass line. However, a weaker pro-
cess now emerges at intermediate times.

Again, it is straightforward to rationalize the relaxation
behavior in terms of the contributions of different stages of
the trajectory. Thus ¢(z) first decays to a plateau set by the
glass side of the ideal transition. At times 7~ 7, it crosses to
a conventional F, viscous liquid state, which now domi-
nates the long-time dynamics and leads to a standard final «
relaxation. To understand the form of the intermediate-time
relaxation, we note that the plateau height in the viscous
liquid is constant within MCT, but grows (with a square-root
dependence on the distance from the transition line) in the
glass [6]. This means that, on crossing the ideal glass line,
¢(r) falls from the glass plateau value to that of the liquid,
leading to a decay at times 7~ 7;. This mimics the B relax-
ation discussed earlier and gives a good qualitative agree-
ment with dielectric loss experiments on intermediate-

PHYSICAL REVIEW E 75, 051503 (2007)

0.2 — — —- —-

| I L
10" 10t 10°

0/Q

0 -14 -12

10 10

FIG. 7. Spectra showing the sudden appearance of the
intermediate-frequency relaxation as the starting point of the trajec-
tory is moved to the glass side of the glass transition line. The
mode-coupling transition can thus be associated with a qualitative
change in the dynamics of the system. v}=0v{=0.5, v4=2.864, and
7,=10° v5=2.914 (full line) and v5=2.864 (dotted line). For this
vy, the glass transition occurs at v,=~2.91421.

fragility liquids with a degree of hydrogen bonding (compare
Fig. 6 with, for example, [46,48,63,64]), with a weak S-like
relaxation that persists, remaining at a constant frequency, as
the a relaxation moves to lower frequencies.

The association of the intermediate-time process with the
ideal glass transition line is demonstrated in Fig. 7. Here, we
plot the loss spectra of two trajectories, both finishing at the
same state point in the viscous liquid. One begins in the
glass; the other begins in the liquid very close to the transi-
tion line. The former trajectory shows a clear “$” process; in
the latter, it is completely absent. The intermediate decay
thus emerges as a precursor to the final relaxation, present
only below T..

A similar connection between the ideal SMCT glass tran-
sition and a qualitative change in dynamics (often involving
the emergence of an intermediate-time relaxation) has been
made many times in the experimental and simulation litera-
ture [4,9,27,28,30,31,33]. However, we must state that the
relation between experimental variables (density and tem-
perature) and the trajectories chosen within our model—
particularly the values of the couplings in the final state—
remains unclear. We might associate increasing coupling
with increasing density and decreasing temperature, but it is
not obvious how to be more precise than this.

The fact that our intermediate-time process arises from
the crossing of the ideal glass line implies that this relaxation
should be present for all trajectories finishing on the liquid
side of the line, including those that end only just within the
liquid, so that the subsequent « decay is pushed out to un-
observably long times. This type of model has interesting
properties which we now discuss, although these become
increasingly remote from the original conception of the
instanton-mediated cutoff. Specifically, we are now talking
about a model where the instanton relaxation only just man-
ages to carry the parameters into the fluid phase, such that
the resulting « relaxation remains much slower than the in-
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frequency process as the final decay is moved to very low frequen-
cies. v} =v/=0.5, v5=2.9242, and 7;=10°. v}, is moved very close to
the transition line: the values used are 2.9142, 291421, and
2914 213.
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stanton time itself. This behavior could perhaps arise at tem-
peratures well below 7., but if so, decreasing temperature
further should create a trajectory where even the final state
lies within the ideal glass. This would cause not only the
final divergence of the « relaxation time (which could be too
long to measure far before that) but also the divergence of
the B-like relaxation time.

Until this point is reached, however, the $-like relaxation
arising from the instanton cutoff mechanism should persist at
all temperatures below the mode-coupling transition, even
when the system is arrested (no visible a decay) on experi-
mental time scales. To demonstrate this, we plot (in Fig. 8)
the loss spectrum for three trajectories ending very close to
the glass transition line on the liquid side. The intermediate
peak persists even when the « peak occurs at frequencies
twelve orders of magnitude lower.

As in the case of the earlier trajectories with vf=0, the
qualitative form of our results is largely determined by the
couplings in the final state of the system, provided the tra-
jectory begins in the glass phase. However, there are a num-
ber of differences between the two classes of trajectory in the
way the various adjustable parameters affect the relaxation.

Firstly, the role of the decay time 7; can be different in the
shorter trajectories. Figure 8 demonstrates this: here, 7; sets
the intermediate relaxation time, but the difference between
this time and that of the « relaxation is determined by the
distance between the finishing point and the glass transition
line. This is in contrast with the v/ =0 case, where the influ-
ence of the transition region is much weaker and the only
way of significantly changing the time scale of the final re-
laxation on the glassy side of the ideal transition is through
adjustment of 7.

The second point concerns the crossover function f(¢/ ;).
As discussed earlier, this strongly affects the relaxation at
times ~7;: the time scale (by construction) of our
intermediate-time process. This is demonstrated in Fig. 9: the
use of a slower crossover function [here, a power law
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FIG. 9. Sections of spectra for exponential (full line, narrower
peak) and power-law (dotted line, broader peak) crossover functions
f(t/7). In both cases, v}=v]=0.5, v5=2.924213 55, v}=2.9142,
and 7;=108. These trajectories are chosen to give a well-separated
intermediate-frequency process, and so finish very close to the glass
transition line.

oc1/(1+1t/7)] broadens the intermediate peak. A theory of
f(¢t/7;) would be necessary in order to make detailed com-
parisons of a cutoff model with experimental data: at present,
our rather narrow and asymmetric peaks are far from the
broad and (usually) symmetric features seen in experiment.

We note that it is possible to obtain qualitatively similar
relaxation patterns (weak intermediate process followed by
stronger « decay) regardless of the angle of approach to the
glass transition line, even if the strength of the linear, rather
than the quadratic coupling is reduced. Although this moves
even further away from our original theoretical motivation, it
reinforces the view that the intermediate-time process is
broadly insensitive to the details of the trajectory.

Finally, mindful of the fact that we have focused in this
section exclusively on trajectories finishing close to the type
B transition, we examine briefly the behavior as the final
quadratic coupling is reduced back toward zero. Figure 10
shows a series of decays with starting point (v’i:O, vg
=4.01), 7;=108, and end points along a diagonal line running
across the liquid region of the phase diagram from (v,=0,
v,=4 to (v,=1, v,=0). The end points shown are (0.0025,
3.99) (lowest curve), (0.1125, 3.5), (0.5, 2), and (0.9, 0)
(highest curve). Although the (0.0025, 3.99) trajectory shows
a marked B-like process, such a relaxation is completely ab-
sent from the (0.1125,3.5) trajectory, which (despite finishing
rather close to the type B transition) gives a straight line in
the logarithmic plot corresponding to a slightly stretched ex-
ponential decay. The appearance of the intermediate-time
process thus requires the trajectory to finish very close to the
type B transition (although this requirement is less strict for
higher initial coupling constants, e.g., 03%4.2). For the “cen-
tral” end point at (0.5,2), the influence of the type A transi-
tion is already noticeable, and the additional slow process at
long times has started to appear. This process is very obvious
in the trajectory finishing at (0.9,0). We have found no tra-
jectories showing both the final slow process and a B-like
relaxation.
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FIG. 10. Range of end points lying along a diagonal line in the
phase diagram running from (v} =0, v)=4) to (v}=1, v4=0). In all
cases, the starting point is (v}=0, v,=4.01) and 7,=10%. The end
points shown are (moving upwards) (v’f =0.0025, v£=3.99),
(0.1125, 3.5), (0.5, 2), and (0.9, 0). The dotted lines show exponen-
tial decay.

=)

0.01

VIII. CONCLUSIONS

We have studied a simple schematic mode-coupling equa-
tion with cutoff, based on the well-studied F;, model but
with coupling constants in the memory kernel m(r) that
themselves have explicit ¢ dependence. The quadratic coeffi-
cient in the expression relating the memory kernel to the
density-density correlator gradually decays, cutting off the
ideal glass transition at long times. This leads to two new
decay scenarios, both of which qualitatively resemble experi-
mental data in different regimes.

In the first of these scenarios, the decay of the quadratic
coupling is complete, leaving a purely linear memory kernel
at long times. This is close to the conception of Cates and
Ramaswamy concerning the likely form of the memory func-
tion in the hopping-dominated regime [18]. For systems that
standard MCT would predict to lie within or close to the
ideal glass, but where a long time « decay is nonetheless
observable on experimental time scales, this can result in
decay curves showing an additional slow relaxation feature
at long times. Although the experimental data is not conclu-
sive, such features are hinted at in several of the earliest
papers on hard-sphere colloidal glasses [38—42]. There, they
appeared as an upward deviation between ¢,(7) and the re-
laxation predicted by a SMCT calculation with parameters
shifted somewhat, so as to make the « time scale finite.

In the second scenario, the decay of the quadratic cou-
pling again carries one through the ideal glass transition line,
but saturates at values not far from that line so that the final
a process does indeed resemble the MCT prediction with
shifted parameters. Theoretical motivation for this type of
model is less clear, but the results are intriguing nonetheless.
Specifically, a weaker relaxation process appears at interme-
diate times, as a precursor of the final « relaxation. This may
be connected with the [ relaxation and/or the “excess wing”
seen in many molecular glass formers (see, for example,
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Refs. [46,48,63,64]), whose appearance is clearly connected
to an underlying ideal mode-coupling glass transition (cf.
Refs. [4,9,27,28,30,31,33]]. Our schematic model predicts
the B-like relaxation to persist even as the final « relaxation
time becomes unmeasurably long.

This second scenario requires that significant quadratic
coupling remains within the memory function even as t
— oo, If this does happen, one might expect the strength of
this coupling to increase as one moves further into the glass,
just as the initial (=0) quadratic coupling does (unless there
is a balancing compensation in the strength of the decay).
The result would be that at some low enough temperature the
a relaxation time actually diverges; if so, that of the B-like
process does also. This is because the intermediate time scale
corresponds to that on which the parameter decay takes the
system across the ideal glass transition, and a divergent «
relaxation time signifies that this line is never crossed.

Although the case for residual quadratic coupling within
the schematic model remains somewhat unclear, several ar-
guments in favor were presented in Secs. V and VII B. An
additional, speculative idea is that a stronger residual cou-
pling would result from stronger static correlations in the
system, perhaps due to intermolecular attractions (e.g., hy-
drogen bonding), as often occur in molecular glasses. In that
case, one might find that in hard-sphere glasses, where inter-
molecular attraction is absent, the reduction of quadratic cou-
pling becomes the slowest process in the system, and deter-
mines its long-time behavior (scenario 1 above). In the
molecular glasses, where attraction and bonding may en-
hance arrest, it is only the second slowest, and manifests
itself as an intermediate relaxation (scenario 2).

The cutoff procedure studied here applies regardless of
the microscopic dynamics of the system (see discussions in
Refs. [13,65]). In particular, we have introduced no coupling
to density currents [14,19], which are present in Newtonian
but not Brownian systems. In fact, the experimental results
on colloidal systems [38,39] that suggest an extra decay pro-
cess at long times (as predicted by our model) could be taken
to indicate the presence of non-MCT relaxation processes in
simple systems with Brownian dynamics and hard-sphere in-
teractions.

A criticism that might be made of our work is that the
memory kernel of our model now contains an extra nonmi-
croscopic relaxation process introduced by hand (in contrast
to SMCT) and so the fact that we predict an extra relaxation
process in ¢(f) is hardly surprising. However, we believe
that our approach has sufficient theoretical motivation [18],
and captures enough interesting features of glassy relaxation,
for its study to be justified. We also have no method of cal-
culating the relaxation time 7;, which, for example, precludes
a study of the connection between « and [3 relaxation times.
However, since 7; is connected with the breakdown of MCT,
we do not expect it to be calculable by MCT-like methods; to
whatever extent instanton dynamics (hopping) is actually in-
volved in the S process, agreement with models that omit it
must be fortuitous.

Our model also has several limitations inherited directly
from the F, model: these are restrictions in plateau height,
in the form of the « decay, and in the connections between
the two. The form of the F|, phase diagram (Fig. 1) is also
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rather specific to this model [17]. However, we believe that
the broad features of our results should be independent of the
details of Fig. 1. The appearance of the “slower-than-a” pro-
cess in our first relaxation scenario depends only on the pres-
ence of significant linear correlations at long times, not on
the form of the path taken across the phase diagram. As
discussed toward the end of Sec. VII, the intermediate pro-
cess is produced whenever the system crosses the type B
transition line and remains sufficiently close to it, regardless
of the details of the trajectory.

Given the sensitivity of the predicted intermediate-time
relaxation to the crossover function f(#/7;), theoretical work
on the likely form of this would be useful. This might allow
connections to be made between our approach and facilitated
dynamics models [10,12], which provide information on the
behavior of strongly and weakly correlated regions as a sys-
tem relaxes.

Nonetheless, the lack of microscopic detail in our model
might be seen as an advantage. For instance, it provides a
simple mechanism by which a single generic correlator can
acquire an intermediate-time relaxation (triggered by the
ideal MCT transition and persisting even if the system is
arrested on experimental time scales), without appealing to
any detailed properties of the material or a coupling to a
probing variable. This is intriguing given recent experimental
results [66] suggesting an intermediate-time process in a me-
tallic glass. These experiments are not based on scattering or
dielectric loss, but instead involve mechanical measurements
of the shear modulus. Furthermore, the atoms of these mate-
rials (at least with respect to their slow dynamics at high
densities) are expected to behave as spheres with almost
purely metallic interactions [66]. Since our model predicts a
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separate intermediate-time process in the main ¢(¢), rather
than in a second probing correlator [54,55], it also implies
that intermediate-time decay should be observable in simu-
lations, where ¢(f) is measured directly. However, resolving
an intermediate-time process in simulations may prove tech-
nically difficult: these decays are often small in amplitude
and the intermediate-time regime may be affected by oscil-
lations caused by the short-time dynamics (although this
might be avoided by the use of overdamped dynamics) or the
finite size of the simulation box [67].

More generally, we believe that the wide range of relax-
ation scenarios predicted by our model motivates continued
investigations along these lines. Given that SMCT two-
correlator approaches concentrate only on temperatures
above T, [54,68], a possible future direction would be to add
an extra correlator to our model and attempt to fit data at
lower temperatures. This might provide, for instance, a
mechanism by which both wing and peak features may be
produced in the same spectrum, as seen in the experiments of
Refs. [45,50]. Although far more complicated to implement,
an extension of the same approach to address a nonsche-
matic, wave-vector-dependent description would also be
highly desirable.

ACKNOWLEDGMENTS

This work was funded by EPSRC Grant No. GR/S10377.
The authors thank Th. Voigtmann for invaluable discussions
and for supplying the time-domain algorithm; M.J.G
also thanks R. A. Blythe and T. Hanney for discussions
and the DTI for financial support. M.E.C. thanks Sriram Ra-
maswamy for discussions.

[1] E. Leutheusser, Phys. Rev. A 29, 2765 (1984).
[2] U. Bengtzelius, W. Gotze, and A. Sjdlander, J. Phys. C 17,
5915 (1984).
[3] C. A. Angell, Science 267, 1924 (1995).
[4] P. G. Debenedetti and F. H. Stillinger, Nature (London) 410,
259 (2001).
[5] D. R. Reichman and P. Charbonneau, J. Stat. Mech.: Theory
Exp. 2005, 05013.
[6] W. Gotze and L. Sjogren, Rep. Prog. Phys. 55, A1 (1999).
[7] F. Ritort and P. Sollich, Adv. Phys. 52, 219 (2003).
[8] E. H. Stillinger, Science 267, 1935 (1995).
[9] S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Nature (Lon-
don) 393, 554 (1998).
[10]J. P. Garrahan and D. Chandler, Phys. Rev. Lett. 89, 035704
(2002).
[11] X. Xia and P. G. Wolynes, Phys. Rev. Lett. 86, 5526 (2001).
[12] P. L. Geissler and D. R. Reichman, Phys. Rev. E 71, 031206
(2005).
[13] P. Mayer, K. Miyazaki, and D. R. Reichman, Phys. Rev. Lett.
97, 095702 (2006).
[14] W. Gotze and L. Sjogren, Z. Phys. B: Condens. Matter 65, 415
(1987).
[15] S. M. Bhattacharyya, B. Bagchi, and P. G. Wolynes, Phys. Rev.

E 72, 031509 (2005).

[16] K. S. Schweizer and E. J. Saltzman, J. Chem. Phys. 119, 1181
(2003).

[17] W. Gétze, in Liquids, Freezing and the Glass Transition, edited
by J. P. Hansen, D. Levesque, and J. Zinn-Justin, Les Houches
Summer Schools of Theoretical Physics Session LI (1989)
(North-Holland, Amsterdam, 1991) pp. 287-503.

[18] M. E. Cates and S. Ramaswamy, Phys. Rev. Lett. 96, 135701
(2006).

[19] S. P. Das and G. F. Mazenko, Phys. Rev. A 34, 2265 (1986).

[20] S. P. Das, Rev. Mod. Phys. 76, 785 (2004).

[21] W. Gétze, J. Phys.: Condens. Matter 11, A1 (1999).

[22] H. Z. Cummins, J. Phys.: Condens. Matter 11, A95 (1999).

[23] T. Franosch, M. Fuchs, W. Gotze, M. R. Mayr, and A. P.
Singh, Phys. Rev. E 55, 7153 (1997).

[24] K. Dawson, G. Foffi, M. Fuchs, W. Gotze, F. Sciortino, M.
Sperl, P. Tartaglia, T. Voigtmann, and E. Zaccarelli, Phys. Rev.
E 63, 011401 (2001).

[25] J. Bergenholtz and M. Fuchs, Phys. Rev. E 59, 5706 (1999).

[26] K. N. Pham, A. M. Puertas, J. Bergenholtz, S. U. Egelhaaf, A.
Moussaid, P. N. Pusey, A. B. Schofield, M. E. Cates, M.
Fuchs, and W. C. K. Poon, Science 296, 104 (2002).

[27]J. Wiedersich, N. V. Surovtsev, and E. Rossler, J. Chem. Phys.

051503-11



M. J. GREENALL AND M. E. CATES

113, 1143 (2000).

[28] S. Adichtchev, T. Blochowicz, C. Gainaru, V. N. Novikov, E.
A. Réssler, and C. Tschirwitz, J. Phys.: Condens. Matter 15,
$835 (2003a).

[29] S. Adichtchev, T. Blochowicz, C. Tschirwitz, V. N. Novikov,
and E. A. Rossler, Phys. Rev. E 68, 011504 (2003).

[30] T. Blochowicz, C. Tschirwitz, S. Benkhof, and E. A. Rossler, J.
Chem. Phys. 118, 7544 (2003).

[31] E. Rossler, U. Warschewske, P. Eiermann, A. P. Sokolov, and
D. Quitmann, J. Non-Cryst. Solids 172-174, 113 (1994).

[32] C. Hansen, F. Stickel, T. Berger, R. Richert, and E. W. Fischer,
J. Chem. Phys. 107, 1086 (1997).

[33] S. V. Adichtchev, N. Bagdassarov, S. Benkhof, T. Blochowicz,
V. N. Novikov, E. Réssler, N. V. Surovtsev, C. Tschirwitz, and
J. Wiedersich, J. Non-Cryst. Solids 307-310, 24 (2002).

[34] A. Brodin and E. A. Réssler, Eur. Phys. J. B 44, 3 (2005).

[35] H. Z. Cummins, G. Li, Y. H. Hwang, G. Q. Shen, W. M. Du, J.
Hernandez, and N. J. Tao, Z. Phys. B: Condens. Matter 103,
501 (1997).

[36] R. L. Jacobs, J. Phys. C 19, L119 (1986).

[37] E. Zaccarelli, G. Foffi, F. Sciortino, P. Tartaglia, and K. A.
Dawson, Europhys. Lett. 55, 157 (2001).

[38] W. van Megen and S. M. Underwood, Phys. Rev. Lett. 70,
2766 (1993).

[39] W. van Megen and S. M. Underwood, Phys. Rev. E 49, 4206
(1994).

[40] E. Bartsch, V. Frenz, and H. Sillescu, J. Non-Cryst. Solids
172-174, 88 (1994).

[41] E. Bartsch, V. Frenz, S. Moller, and H. Sillescu, Physica A
201, 363 (1993).

[42] E. Bartsch, M. Antonietti, W. Schupp, and H. Sillescu, J.
Chem. Phys. 97, 3950 (1992).

[43] H. Z. Cummins, J. Phys.: Condens. Matter 17, 1457 (2005).

[44] G. P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372
(1970).

[45] A. Kudlik, S. Benkhof, T. Blochowicz, C. Tschirwitz, and E.
Rossler, J. Mol. Struct. 479, 201 (1999).

PHYSICAL REVIEW E 75, 051503 (2007)

[46] N. B. Olsen, J. Non-Cryst. Solids 235-237, 399 (1998).

[47] K. L. Ngai and M. Paluch, J. Chem. Phys. 120, 857 (2004).

[48] R. Nozaki, D. Suzuki, S. Ozawa, and Y. Shiozaki, J. Non-
Cryst. Solids 235-237, 393 (1998).

[49] G. P. Johari, J. Non-Cryst. Solids 307-310, 317 (2002).

[50] R. Casalini and C. M. Roland, Phys. Rev. Lett. 91, 015702
(2003).

[51] P. Lunkenheimer, R. Wehn, T. Riegger, and A. Loidl, J. Non-
Cryst. Solids 307-310, 336 (2002).

[52] K. L. Ngai and C. T. White, Phys. Rev. B 20, 2475 (1979).
[53] K. L. Ngai, P. Lunkenheimer, C. Leén, U. Schneider, R.
Brand, and A. Loidl, J. Chem. Phys. 115, 1405 (2001).

[54] M. Sperl, Phys. Rev. E 74, 011503 (2006).

[55] G. Buchalla, U. Dersch, W. Gétze, and L. Sjogren, J. Phys. C
21, 4239 (1988).

[56] H. Cang, V. N. Novikov, and M. D. Fayer, J. Chem. Phys. 118,
2800 (2003).

[57] X.-C. Zeng, D. Kivelson, and G. Tarjus, J. Non-Cryst. Solids
172-174, 61 (1994).

[58] M. Fuchs, W. Gotze, 1. Hofacker, and A. Latz, J. Phys.: Con-
dens. Matter 3, 5047 (1991).

[59] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables
9th ed. (Dover, New York, 1964).

[60] E. O. Tuck, Math. Comput. 21, 239 (1967).

[61] W. Gétze and L. Sjogren, J. Phys. C 21, 3407 (1988).

[62] W. Gétze and L. Sjogren, J. Phys. C 20, 879 (1987).

[63] R. Nozaki, H. Zenitani, A. Minoguchi, and K. Kitai, J. Non-
Cryst. Solids 307-310, 349 (2002).

[64] S. Sudo, M. Shimomura, N. Shinyashiki, and S. Yagihari, J.
Non-Cryst. Solids 307-310, 356 (2002).

[65] G. Szamel and E. Flenner, Europhys. Lett. 67, 779 (2004).

[66] P. Rosner, K. Samwer, and P. Lunkenheimer, Europhys. Lett.
68, 226 (2004).

[67] S. H. Chen, C. Liao, F. Sciortino, P. Gallo, and P. Tartaglia,
Phys. Rev. E 59, 6708 (1999).

[68] W. Gétze and T. Voigtmann, Phys. Rev. E 61, 4133 (2000).

051503-12



