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Continuing on recent computational and experimental work on jammed packings of hard ellipsoids �Donev
et al., Science 303, 990 �2004�� we consider jamming in packings of smooth strictly convex nonspherical hard
particles. We explain why an isocounting conjecture, which states that for large disordered jammed packings

the average contact number per particle is twice the number of degrees of freedom per particle �Z̄=2df�, does
not apply to nonspherical particles. We develop first- and second-order conditions for jamming and demon-
strate that packings of nonspherical particles can be jammed even though they are underconstrained �hypocon-

strained, Z̄�2df�. We apply an algorithm using these conditions to computer-generated hypoconstrained ellip-
soid and ellipse packings and demonstrate that our algorithm does produce jammed packings, even close to the
sphere point. We also consider packings that are nearly jammed and draw connections to packings of deform-
able �but stiff� particles. Finally, we consider the jamming conditions for nearly spherical particles and explain
quantitatively the behavior we observe in the vicinity of the sphere point.
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I. INTRODUCTION

Jamming in disordered hard-sphere packings has been
studied intensely in the last few years �1–3�, and recently
packings of nonspherical particles have been investigated as
well �4,5�. Computer simulations and experiments performed
for packings of hard ellipsoids in Ref. �4� showed that asphe-
ricity, as measured by the deviation of the aspect ratio �
from unity, dramatically affects the properties of jammed
packings. In particular, it was observed that for frictionless
particles the packing fraction �density� at jamming �J and

the average coordination �contact� number per particle Z̄ in-
crease sharply from the typical sphere values �J�0.64 and

Z̄=6 when moving away from the sphere point �=1. If one

views �J and Z̄ as functions of the particle shape, they have
a cusp �i.e., they are nondifferentiable� minimum at the
sphere point.

It has been argued in the granular materials literature that
large disordered jammed packings of hard frictionless
spheres are isostatic �6–8�, meaning that the total number of
interparticle contacts �constraints� equals the total number of
degrees of freedom and that all of the constraints are �lin-
early� independent. This property implies that the average
number of contacts per particle is equal to the number of

degrees of freedom per particle Z̄=2d in the limit as the
number of particles gets large. This prediction has been veri-
fied computationally with very high accuracy �2,3�. Most of
the previous discussions of isostaticity have been restricted
to systems of spheres �6,7�, frictional systems �9�, or systems
of deformable particles �10�. For a general hard frictionless
particle shape, the obvious generalization of the arguments

that have been used for hard frictionless spheres would pro-
duce the expectation Z̄=2df, where df is the number of de-
grees of freedom per particle �df =2 for disks, df =3 for el-
lipses, df =3 for spheres, df =5 for spheroids, and df =6 for
general ellipsoids�. Although it has already been noted in
Ref. �8� that the arguments for isostaticity only rigorously
apply to perfectly spherical systems, this does not appear to
be widely appreciated, and there appears to be a wide-spread

expectation that Z̄�2df for large disordered jammed pack-
ings of hard frictionless particles. We refer to this expecta-
tion as the isocounting conjecture, since it is based on the
expectation that the total number of �independent� con-
straints equals the total number of degrees of freedom, that
is, that the packings are isoconstrained. We have referred to
this conjecture in the past as the isostatic conjecture �4�;
however, here we give a more mathematically precise mean-
ing to the term “isostatic,” as explained in Sec. IV.

Since df increases discontinuously with the introduction
of rotational degrees of freedom as one makes the particles

nonspherical, the isocounting conjecture would predict that Z̄
would have a jump at �=1. Such a discontinuity was not
observed in Ref. �4�; rather, it was observed that ellipsoid

packings are hypoconstrained, Z̄�2df near the sphere point,
and only become close to being isoconstrained for large as-
pect ratios �but still remain hypoconstrained�. These findings
support the theoretical predictions in Ref. �8� that, in general,
systems of nonspherical particles would be hypoconstrained
and that the properties of packings should depend mildly on
the exact particle shape.

The isocounting conjecture, as expressed by several of
our colleagues, appears to be based on several wrong as-
sumptions arising because of the use of linearization in the
treatment of the interparticle impenetrability constraints.
Reference �8� terms this linearization as the “approximation*Electronic address: torquato@electron.princeton.edu
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of small displacements” �ASD�. First, it has been stated that
a hypoconstrained packing cannot be rigid �jammed� due to
the existence of floppy modes �10�, which are unjamming
motions �mechanisms� derived within a linear theory of ri-
gidity. Additionally, various force-based arguments have
been given �9� without realizing that forces themselves are
first-order Lagrange multipliers and do not necessarily exist
when one considers perfectly hard particles outside of the
linear �first-order� approximation. Reference �8� states that
the ASD approximation is “indispensable if one wishes to
deal with linear problems … In the case of granular systems,
it will also lead to a linearization of the problems, for the
curvature of configuration spaces will be ignored.” The ob-
servation that terms of order higher than first need to be
considered is emphasized in Ref. �8�: “When floppy modes
exist …, they appear as marginally unstable and one cannot
tell whether, to higher orders, they actually destabilize the
equilibrium configuration.” However, the mathematical
analysis extending beyond the ASD is not developed except
for spheres �8�. If the curvature of the particles at the point of
contact is included in a second-order approximation �still for
infinitesimally small displacements�, then it can be seen that
hypoconstrained packings of nonspherical hard packings can
in fact be rigid, jammed, or stable �these terms are defined in
Sec. IV�. One does not need to consider particle deformabil-
ity, friction, large displacements, or stability under a specific
applied load such as gravity, in order to see why packings of
nonspherical particles are generally hypoconstrained.
Through the second-order mathematical analysis it will be-
come clear that preexisting �internal� stresses inside the
packing are essential, as already realized in Ref. �10�. While
this prestress is merely a mathematical tool for static pack-
ings of perfectly hard frictionless particles, for realistic sys-
tems particle deformability, history of preparation, and ap-
plied loads all bear a strong influence on the internal stresses
in the packing and thus the mechanical properties of the sys-
tem.

In this paper, we generalize our previous theoretical and
computational investigations of jamming in sphere packings
�2,11� to packings of nonspherical particles and, in particular,
packings of hard ellipsoids. We generalize the mathematical
theory of rigidity of tensegrity frameworks �12,13� to pack-
ings of nonspherical particles, and demonstrate rigorously
that the computer-generated ellipsoid packings we studied in
Ref. �4� are jammed even very close to the sphere point.
Armed with this theoretical understanding of jamming, we
also obtain a quantitative understanding of the cusplike be-

havior of �J and Z̄ around the sphere point. Specifically, we
do the following.

�i� Explain why the isocounting conjecture does not apply
to nonspherical particles.

�ii� Develop first- and second-order conditions for jam-
ming, and demonstrate that packings of nonspherical par-
ticles can be jammed even though they are hypoconstrained.

�iii� Design an algorithm that uses the jamming conditions
to test whether computer-generated hypoconstrained ellip-
soid and ellipse packings are jammed, and demonstrate nu-
merically that our algorithm does produce jammed packings,
even close to the sphere point.

�iv� Study the thermodynamics of packings that are nearly
jammed and draw connections to packings of deformable
�but stiff� particles.

�v� Develop first-order expansions for nearly spherical
particles and explain quantitatively the behavior we observe
in the vicinity of the sphere point.

A. Random jammed packings of hard ellipsoids

The packing-generation algorithm we employ generalizes
the Lubachevsky-Stillinger �LS� sphere-packing algorithm
�14� and is described in detail in Ref. �15�. The method is a
hard-particle molecular dynamics �MD� algorithm for pro-
ducing dense disordered packings. Initially, small particles
are randomly distributed and randomly oriented in a box
with periodic boundary conditions and without any overlap.
The particles are given velocities �including angular veloci-
ties� and their motion followed as they collide elastically and
also expand uniformly. As the density approaches the jam-
ming density, the collision rate diverges. In the jamming
limit, the particles touch to form the contact network of the
packing, exerting compressive forces on each other but not
being able to move despite thermal agitation �shaking�. If the
rate of particle growth, or expansion rate �, is initially suffi-
ciently large to suppress crystallization, and small enough
close to jamming to allow for local relaxation necessary for
true jamming, the final packings are disordered and represen-
tative of the maximally random jammed �16� �MRJ� state
�17� �corresponding to the least ordered among all jammed
packings�.

Note that the computational methodology presented in
Ref. �2� applies to ellipsoids as well and we do not repeat the
details presented there. The ellipsoid packings produced by
the algorithm do not show signs of local or global crystalli-
zation. The exact phase diagram for hard ellipsoids is not
known and, in particular, it is not known what the high-
density crystal phase is �18�; however, it is expected that
nematic ordering is present at high densities. The produced
packings do not show �global� nematic order to within sta-
tistical accuracy �4,19�. A more detailed analysis of the local
�translational and orientational� correlations in truly jammed
ellipsoid packings has not been performed to our knowledge,
however, based on our experience with spheres we expect
our algorithm to supress crystallization under appropriate
conditions �2�. Sphere packings have been observed to have
a substantial fraction of rattling particles ��2.5% � �2�, and
such rattlers are also observed in packings of nearly spherical
ellipsoids. However, the fraction of rattlers appear to rapidly
decrease as asphericity is increased, so that the majority of
ellipsoid packings we have generated do not have any rattlers
at all. For spheres, the packings produced with the MD al-
gorithm can be very close to the jamming point, so that the
interparticle gaps are close to numerical precision ��10−15�
�2�. Similar precision can be achieved for ellipsoids, how-
ever, this takes at least an order of magnitude more compu-
tational effort �or even two orders of magnitude for very
aspherical ellipsoids�. Typically we have jammed the pack-
ings to a reduced pressure p�106−109, which ensures that
the distance to jamming is on order of 10−9−10−6. To really

DONEV et al. PHYSICAL REVIEW E 75, 051304 �2007�

051304-2



identify the exact contact network in the jamming limit re-
quires even higher pressures for larger packings due to exis-
tence of a multitude �more specifically, a power-law diver-
gence� of near contacts in disordered packings �2�. However,

with reasonable effort the average coordination number Z̄
can be identified within 1% even for systems of N=105 el-
lipsoids. Those packings for which we perform an exact
analysis of the contact network �such as, for example, rigor-
ously testing for jamming� have been prepared carefully and
are sufficiently close to the jamming point to exactly identify
all of the true contacts.

In Fig. 1 we show newer results than those in Ref. �4� for

the jamming density �J and contact number Z̄ of jammed
monodispersed packings of hard ellipsoids in three dimen-
sions. The ellipsoid semiaxes have ratios a :b :c=1:�� :�
where ��1 is the aspect ratio �for general particle shapes, �
is the ratio of the radius of the smallest circumscribed to the
largest inscribed sphere�, and 0���1 is the “oblateness” or
skewness ��=0 corresponds to prolate and �=1 to an oblate
spheroid�. It is seen that the density rises as a linear function
of �−1 from its sphere value �J�0.64, reaching densities as
high as �J�0.74 for the self-dual ellipsoids with �=1/2.
The jamming density eventually decreases again for higher
aspect ratios, however, we do not investigate that region in
this work. The contact number also shows a rapid rise with
�−1, and then plateaus at values somewhat below isocon-

strained, Z̄�10 for spheroids, and Z̄�12 for nonspheroids.
In Sec. IX we will need to revert to two dimensions �ellipses�
in order to make some analytical calculations possible. We
therefore also generated jammed packings of ellipses, and
show the results in Fig. 2. Since monodispersed packings of
disks always crystallize and do not form disordered jammed
packings, we used a binary packing of particles with one
third of the particles being 1.4 times larger than the remain-
ing two thirds. The ellipse packings show exactly the same
qualitative behavior as ellipsoids.

B. Nontechnical summary of results

In this section, we provide a nontechnical summary our
theoretical results and observations discussed in the main
body of the paper. This summary is intended to give readers
an intuitive feeling for the mathematical formalism devel-
oped in this work and demonstrate the physical meaning and
relevance of our results. We will refer the interested reader to
appropriate sections to find additional details.

One aim of this paper is to explain the numerical results
presented in Sec. I A. In particular, we will explain why
jammed disordered packings of ellipsoids are strongly hypo-
constrained near the sphere point, and also why, even far
from the sphere point, ellipsoid packings are hypocon-
strained rather than isoconstrained as are sphere packings.
By a “jammed packing” we mean a packing in which any
motion of the particles, including collective combined trans-
lational and rotational displacements, introduces overlap be-
tween some particles. Under appropriate qualifications, a
jammed packing can also be defined as a rigid packing, that
is, a packing that can resolve any externally applied forces
through interparticle ones.

Readers should observe that the terms “stable,” “rigid,”
and “jammed” are defined differently by different authors.
These different definitions are, however, mathematically
closely related. For example, Ref. �8� defines a rigid packing
as a packing which has no floppy modes, thus relying on
linearization of the impenetrability constraints. We prefer to
use the term “jammed” for kinematic considerations, and not
involve linear approximations so that all definitions apply to
systems of nonspherical particles. Reference �8� defines a
stable packing as one which is a strict local potential energy
minimum �where the potential energy is, for example, grav-
ity�. A precise definition of jamming based on stability is
developed mathematically in Ref. �20�. Since a packing can
be at a stable energy minimum without being jammed �see,
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FIG. 1. �Color online� Jamming density and average contact
number �inset� for packings of N=10 000 ellipsoids with ratios be-
tween the semi-axes of 1 :�� :� �see Fig. 2 in Ref. �4��. The isocon-
strained contact numbers of 10 and 12 are shown as a reference.
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density �inset� for bi-dispersed packings of N=1000 ellipses with
ratios between the semi-axes of 1 :�, as produced by the MD algo-
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for example, Fig. 13 in Ref. �8��, we use a more stringent
definition. We have chosen the more stringent definition be-
cause our focus is on locally maximally dense packings, that
is, packings where the density cannot be increased by con-
tinuously displacing the particles. Such packings are relevant
to understanding granular materials that have been vibrated
or shaken for long periods of time �21,22�, and also to un-
derstanding the inherent structures of glassy materials �3,23�.
They can be produced computationally with our molecular
dynamics algorithm and experimentally by shaking the pack-
ing container while adding more particles �4,19�. It is impor-
tant to point out that we do not wish to promote our defini-
tion of jamming as the “correct” one. It is equally “correct”
to define a jammed packing as one stable under a particular
applied load, and then study the particle rearrangements that
result when the direction of the external applied forces
change. In fact, realistic granular assemblies are not jammed
according to our strict definitions, and particles typically re-
arrange in response to external perturbations. In the limit of
infinite compaction, however, the rearrangements will cease
and the assembly will become jammed. We focus here on
understanding this terminal idealized jammed state as an im-
portant first step in understanding more realistic systems. Ad-
ditionally, we are interested in the mathematics and physics
of maximally dense disordered packings in their own right
�4�.

1. Hypostatic packings of nonspherical particles can be jammed

As explained in Sec. IV, the isoconstrained property is
usually justified in two steps. First, nondegeneracy is in-

voked to demonstrate the inequality Z̄�2df, then, the con-

verse inequality Z̄	2df is invoked to demonstrate the equal-

ity Z̄=2df. The inequality Z̄	2df is usually justified by
claiming that a packing cannot be jammed without having
more contacts �impenetrability constraints� than degrees of
freedom. A hypoconstrained packing necessarily has
“floppy” or zero modes, which are collective motions of the
particles that preserve the interparticle distances to first order
in the magnitudes of the particle displacements. It is claimed
that such floppy modes are not blocked by the impenetrabil-
ity constraints and therefore a hypoconstrained packing can-
not be jammed. Alternatively, it is claimed that externally
applied forces that are in the direction of such floppy modes
cannot be resisted �sufficiently� by the interparticle forces
and therefore the packing cannot be rigid. We will now ex-
plain, through an example, why these claims are wrong and,
in fact, why a hypoconstrained packing can be jammed/rigid
if the curvature of the particles at the point of contact is
sufficiently flat in order to block the floppy modes.

Consider an isoconstrained jammed packing of hard cir-
cular disks, as illustrated in Fig. 3. In reality, the disks would
be elastic �soft� but stiff, and let us imagine the system is
under a uniform state of compression, so that the particles
are exerting compressive forces on each other. If there are no
additional external forces, the interparticle forces would be
in force equilibrium. The packing is translationally jammed,
and the disk centroids are immobile; however, the �friction-
less� disks can freely rotate without introducing any addi-

tional overlap. That is, if we take into account orientational
degrees of freedom, the disk packing would not be jammed.
It would possess floppy modes consisting of particles rotat-
ing around their own centroids. These floppy modes are how-
ever trivial at the circle �sphere� point in that they do not
actually change the packing configuration.

Now imagine making the particles noncircular �or non-
spherical in three dimensions� and, in particular, making
them polygons, so that the point contacts between the disks
become �extended� contacts between flat sides of the poly-
gons. The floppy modes still remain, in the sense that rota-
tions of the polygons, to first order, simply lead to the two
tangent planes at the points of contact sliding along each
other without leading to overlap. However, it is clear that this
is only a first-order approximation. In reality, the polygons
cannot be rotated because such rotation leads to overlap in
the extended region of contact around the point of contact.
To calculate the amount of overlap, one must use second-
order terms, that is, consider not only the tangent planes at
the point of contact but also the curvature of the particles at
the point of contact. Low curvature, that is, “flat” contacts,
block rotations of the particles. It should be evident that even
if the radius of curvature is not infinite, but exceeds a certain
threshold �24�, the floppy modes would in fact be blocked
and the packing would be jammed despite being hypocon-
strained. In fact, the packing has exactly as many contacts as
the original disk packing.

It is important to note that contact curvature cannot block
purely translational particle displacements unless one of the
particles is curved outward, i.e., is concave �e.g., imagine a
dent in a table and a sphere resting in it, not being able to
slide translationally�. If the particles shapes are convex, a
packing cannot have fewer contacts than there are transla-

tional degrees of freedom, that is, Z̄	2d. This explains why
hypersphere packings are indeed isoconstrained. It is only
when considering rotational degrees of freedom that jammed
packings can be hypoconstrained.

FIG. 3. �Color online� A jammed packing of hard disks �yellow�
is converted into a jammed packing of nonspherical particles by
converting the disks to polygons �different colors�, without chang-
ing the contact network or contact forces. This preserves the jam-
ming property, since the floppy modes composed of pure particle
rotations are blocked by the flat contacts. Jamming would also be
preserved if the disks swell between the original shape and the
polygonal shape, so that the curvature of the particle surfaces at the
point of contact is sufficiently flat.
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Those that prefer to think about rigidity �forces� would
consider applying external forces and torques on the particles
in the example from Fig. 3. The forces would clearly be
resisted just as they were in the jammed disk packing. How-
ever, at first sight, it appears that torques would not be re-
sisted. In fact, it would seem that torques cannot be resisted
by interparticle forces since, for each of the particles, the
normal vectors at the points of contact all intersect at a single
point �the center of the hard disks� and therefore the net
torque is identically zero. This argument, however, neglects
an important physical consideration: the deformability of the
particles. Namely, no matter how stiff the particles are, they
will deform slightly under an applied load. In particular,
upon application of torques, the particles will rotate and the
normal vectors at the points of contact would change and no
longer intersect at a single point, and the packing will be able
to resist the applied torques. One may be concerned about
the amount of rotation necessary to resist the applied load. If
the packing needs to deform significantly to resist applied
loads, should it really be called rigid?

To answer such concerns, one must calculate the particle
displacements needed to resist the load. Such a calculation,
carried out for deformable particles in Sec. VIII, points to the
importance of the preexisting �i.e., internal� contact forces.
This is easy to understand physically. If the packing is under
a high state of compression, the interparticle forces would be
large and even a small change in the packing geometry �de-
formation� would resist large torques. If, on the other hand,
the internal forces �stresses� are small, the particles would
have to deform sufficiently to both induce sufficiently large
contact forces and to change the normal vectors sufficiently.
This kind of stability, requiring sufficiently large internal
stresses, is well known for engineering structures called
“tensegrities.” These structures are built from elastic cables
and struts, and are stabilized by stretching the cables so as to
induce internal stresses. Beautiful and intriguing structures
can be built that are rigid even though they appear not to be
sufficiently braced �as bridges or other structures would have
to be�.

While the above discussion focused on packings of mac-
roscopic elastic particles, similar arguments apply also to
systems such as glasses. For such systems, floppy modes are
manifested as zero-frequency vibrational modes, that is, zero
eigenvectors of the dynamical matrix. The calculations in
Sec. VIII show that for nonspherical particles, the dynamical
matrix contains a term proportional to the internal forces and
involving the contact curvatures. If the system is at a positive
pressure, the forces will be nonzero and this term contributes
to the overall dynamical matrix. In fact, it is this term that
makes the dynamical matrix positive definite, i.e., that elimi-
nates zero-frequency modes despite the existence of floppy
modes.

2. Translational versus rotational degrees of freedom

Having explained that hypoconstrained packings of non-
spherical particles can be jammed if the interparticle contacts
are sufficiently flat, we now try to understand why packings
of nearly spherical particles are hypoconstrained. The analy-
sis will also demonstrate why packings of hard ellipsoids are

necessarily denser than the corresponding sphere packings.
The first point to note is that disordered isoconstrained

packings of nearly spherical ellipsoids are hard to construct.
In particular, achieving isocounting near the sphere point re-
quires such high contact numbers �specifically, Z̄=d�d+1��
that translational ordering will be necessary. Translationally
maximally random jammed �MRJ� sphere packings have Z̄
=2d, and even if one considers the observed multitude of
near contacts �2�, they fall rather short of Z̄=d�d+1�. It
seems intuitive that translational crystallization would be
necessary in order to raise the contact number that much. In
other words, in order to gain sufficiently many constraints,
one would have to sacrifice translational disorder. Further-
more, there is little reason to expect packings of nearly
spherical particles to be rotationally jammed. Near the jam-
ming point, it is expected that particles can rotate signifi-
cantly even though they will be translationally trapped and
rattle inside small cages, until of course the actual jamming
point is reached, at which point rotational jamming will also
come into play. Therefore, it is not surprising that near the
sphere point, the translational structure of the packings
changes little.

Mathematically, jamming is analyzed by using a Taylor
expansion of the interparticle distances in the particle dis-
placements. At the first-order level, this expansion contains
first-order terms coming from translations and from rotations
and involving the contact points and contact normals. The
expansion also contains second-order terms from transla-
tions, rotations, and combined motions, involving addition-
ally the contact curvatures. And of course, there are even
more complicated higher-order terms. One should be careful
of such a Taylor expansion for two reasons. First, the expan-
sion assumes that terms coming from translations and rota-
tions are of the same order. This is clearly not true for either
the case of perfectly spherical particles, when rotational
terms are identically zero, or for the case of rods or plates,
where even a small rotation can cause very large overlap.
Second, the expansion assumes that various quantities re-
lated to the particle and contact geometry �for example, the
contact curvature radii� are of similar order. This fails, for
example, for the case of planar �flat� contacts, where even a
small rotation of the particles leads to significant overlap far
from the point of contact. These subtle points arise only
when considering aspherical particles and should caution one
from blindly generalizing the mathematical formalism of
jamming developed and tested only within the context of
sphere packings.

In Sec. IX, we will consider packings of nearly spherical
ellipsoids as a perturbation of jammed sphere packings in
which the particles, following a slight change of the particle
shape away from perfect spherical symmetry, translate and
rotate in order to reestablish contacts and jamming. While
the necessary particles’ translations are small, the particle
rotations are large. In fact, rotational symmetry is broken,
and particles must orient themselves correctly, so that con-
tacts can be reestablished, and also so that forces and torques
become balanced. This symmetry breaking is the cause of the
cusp like non analyticity of the density as a function of par-
ticle shape �4�. We will see that the particle orientations in
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the final jammed packing of nearly spherical ellipsoids are
not random, but rather, they are determined by the structure
of the initial sphere packing. Of course, as aspect ratio in-
creases, rotations become more and more on equal footing
with translations, and the packings become both truly trans-
lationally and orientationally disordered.

This picture of jamming in the vicinity of the sphere point
also explains why the density rises sharply near the sphere
point for ellipsoids. Start with a jammed sphere packing and
apply an affine transformation to obtain an aligned �nematic�
packing with exactly the same density. This packing will not
be rotationally jammed, and by displacing the particles one
will be able to open up free volume between them and there-
fore increase the density. We will show that in fact the maxi-
mal increase in the density is obtained for the choice of par-
ticle orientations that balances the torques on the particles in
addition to the forces. Therefore, the jammed disordered el-
lipsoid packings we obtain near the sphere point are the
densest perturbation of the corresponding sphere packings.
The added rotational degrees of freedom allow one to in-
crease the density beyond that of the aligned �nematic� pack-
ing, which for ellipsoids has exactly the same density as the
sphere point.

In conclusion, near the sphere point, there is a competi-
tion between translational and rotational jamming and also
between translational and rotational disorder. At the sphere
point �=1, and in this neighborhood, translational degrees of
freedom win. As one moves away from the sphere point,
however, translational and rotational degrees of freedom start
to play an equal role. For very large aspect ratios, �
1, it is
expected that rotational degrees of freedom will dominate,
although we do not investigate that region here.

C. Contents

Before proceeding, we give an overview of our notation
in Sec. II. In Sec. III, we discuss the nonoverlap conditions
between convex hard particles. In Sec. IV, we define jam-
ming and investigate the reasons for the failure of the iso-
counting conjecture for nonspherical particles. In Sec. V, we
develop the first- and second-order conditions for jamming
in a system of nonspherical particles, and then design and
use a practical algorithm to test these conditions for ellipsoid
packings in Sec. VI. In Sec. VII, we consider the thermody-
namical behavior of hypoconstrained packings that are close
to, but not quite at, the jamming point. In Sec. VIII, we
discuss the connections between jammed packings of hard
particles and strict energy minima for systems of deformable
particles. In Sec. IX, we focus on packings of nearly spheri-
cal ellipsoids, and finally, offer conclusions in Sec. X.

It is important to note that Secs. III, V, and VI are highly
technical, and may be either skipped or skimmed by readers
not interested in the mathematical formalism of jamming.
Readers interested in specific examples of hypoconstrained
packings are referred to Sec. IV B 2 and the Appendix.

II. NOTATION

We have tried to develop a clear and consistent notation,
however, in order to avoid excessive indexing and notation

complexity we will often rely on the context for clarity. The
notation is similar to that used in Ref. �15� and attempts to
unify two and three dimensions whenever possible. We refer
to reader to Ref. �15� or Ref. �25� for details on representing
particle orientations and rotations in both two and three di-
mensions.

We will use matrix notation extensively, and denote vec-
tors and matrices with bolded letters, and capitalize matrices
in most cases. Infinite-dimensional or discrete quantities
such as sets or graphs will typically be denoted with script
letters. We will often capitalize the letter denoting a vector to
denote a matrix obtained from that vector. Matrix multipli-
cation is assumed whenever products of matrices or a matrix
and a vector appear. We prefer to use matrix notation when-
ever possible and do not carefully try to distinguish between
scalars and matrices of one element. We denote the dot prod-
uct a ·b with aTb, and the outer product a � b with abT. We
denote a vector with all entries unity by e=1, so that �iai
=eTa. We consider matrices here in a more general linear
operator sense, and they can be of order higher than 2 �i.e.,
they do not necessarily have to be a rectangular two-
dimensional array�. We refer to differentials as gradients
even if they are not necessarily differentials of scalar func-
tions. Gradients of scalars are considered to be column vec-
tors and gradients of vectors or matrices are matrices or ma-
trices �linear operators� of higher rank.

A. Particle packings

A jammed particle packing has a contact network indicat-
ing the touching pairs of particles �i , j	. We will sometimes
talk about a particular particle i or a particular contact �i , j	

 ij and we will usually let the context determine what spe-
cific particle or contact is being referred to or, if deemed
necessary, put subscripts such as i or ij to make it specific
what particle or contact is being referred to. The contact ji is
physically the same undirected contact as ij, but the two
directed contacts are considered distinct.

There are two primary kinds of vectors x, particle vectors
X= �xi�= �x1 , . . . ,xN�, which are obtained by concatenating
the vectors xi �typically of size of the order of the space
dimensionality d� corresponding to each of the N particles,
and contact vectors y= �yij�= �y1 , . . . ,yM�, obtained by con-
catenating the �typically scalar� values yij corresponding to
each of the M contacts �numbered in arbitrary order from 1
to M�. Note the capitalization of particle vectors, which we
will often do implicitly, to indicate that one can view X as a
matrix where each row corresponds to a given particle. If a
contact vector agglomerates a vector quantity attached to
each contact, for example, the common normal vector n at
the point of contact of two particles, it too would be capital-
ized, e.g., N= �nij�.

1. Packing configuration

A packing is a collection of N hard particles in Rd such
that no two particles overlap. Each particle i has df configu-
rational degrees of freedom, for a total of Nf =Ndf degrees of
freedom. A packing Q= �Q ,�� is characterized by the con-
figuration Q= �q1 , . . . ,qN��RNf, determining the positions
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of the centroid and the orientations of each particle, and the
packing fraction �density� � determining the size of the par-
ticles. For spheres Q
R corresponds to only the positions
of the centroids, and df =d. For nonspherical particles with-
out any axes of symmetry there are an additional d�d−1� /2
rotational degrees of freedom, for a total of df =d�d+1� /2
degrees of freedom. In actual numerical codes particle orien-
tation is represented using unit quaternions, which are redun-
dant representations in the sense that they use d�d−1� /2+1
coordinates to describe orientation. Here we will be focusing
on displacements of the particles �Q from a reference
jammed configuration QJ, and therefore we will represent
particle orientations as a rotational displacement from a ref-
erence orientation ��. In two dimensions ��=�� simply
denotes the angle of rotation in the plane, and in three di-
mensions the direction of �� gives the axis of rotation and
its magnitude determines the angle of rotation. For simplic-
ity, we will sometimes be sloppy and not specifically sepa-
rate centroid positions from orientations, and refer to qi as �a
generalized� position; similarly, we will sometimes refer to
both forces and torques as �generalized� forces.

2. Rigidity matrix

For the benefit of readers not interested in the mathemati-
cal formalism, we briefly introduce the concepts and notation
developed in more detail in Sec. III. We denote the distance,
or gap, between a pair of hard particles i and j with 
ij. When
considering all of the M contacts together, the gradient of the
distance function 
= �
ij� with respect to the positions �i.e.,
displacements� of the particles is the rigidity matrix A
=�Q
. This linear operator connects, to first order, the
change in the interparticle gaps to the particle displacements
�
=AT�Q. We denote the magnitudes of the compressive
�positive� interparticle forces carried by the particle contacts
with f= �f ij�, f ij 	0, where it is assumed that the force vec-
tors are directed along the normal vectors at the point of
contact �since the particles are frictionless�. The total forces
and torques exerted on the particles B �alternatively denoted
by �B if thought of as force imbalance� are connected to the
interparticle forces via a linear operator that can be shown to
be the conjugate �transpose� of the rigidity matrix, B=Af.

A subtle point that we will return to later is the role of the
density �. Since we are interested in �locally� maximally
dense disordered packings, we will sometimes consider the
density as an additional kinematic degree of freedom. That
is, we will sometimes include the change in density �� in
the deformation �Q. This effectively adds an additional row
to the rigidity matrix. One may similarly include additional
global degrees of freedom, such as boundary conditions, and
add further rows to the rigidity matrix. This also adds gen-
eralized forces �stresses� as the conjugate variables to those
additional kinematic degrees of freedom �25�.

B. Cross products

In three dimensions, the cross product of two vectors is a
linear combination of them that can be thought of as matrix-
vector multiplication

a � b = Ab = − b � a = − Ba , �1�

where

A = �a�� = � 0 − az ay

az 0 − ax

− ay ax 0

 = − AT

is a skew-symmetric matrix which is characteristic of the
cross product and is derived from a vector. We will simply
capitalize the letter of a vector to denote the corresponding
cross product matrix �such as A above corresponding to a�,
or use �a�� when capitalization is not possible. In two dimen-
sions, there are two “cross products.” The first one gives the
velocity of a point r in a system which rotates around the
origin with an angular frequency � �which can also be con-
sidered a scalar ��,

v = ��r = �− �ry

�rx
� = �r , �2�

where

� = �0 − �

� 0
� = − �T

is a cross product matrix derived from �. The second kind of
“cross product” gives the torque around the origin of a force
f acting at a point �arm� r,

� = f � r = − r � f = �fxry − fyrx� = FLr , �3�

where

FL = �− fy fx� = − �FR�T

is another cross product matrix derived from a vector �the L
and R stand for left and right multiplication, respectively�.
Note that in three dimensions all of these coincide, FL=FR

=F, and also �
�, while in two dimensions they are re-
lated via a�b=Ab=−BRa.

III. NONOVERLAP CONSTRAINTS AND INTERPARTICLE
FORCES

In this section we will discuss hard-particle overlap po-
tentials used to measure the distance between a pair of hard
particles. These potentials will be used to develop analytic
expansions of the nonoverlap conditions in the displacements
of the particles. This section is technical and may be skipped
or skimmed by readers not interested in the mathematical
formalism of jamming. Interested readers can find additional
technical details on the material summarized in this section
in Chap. 2 of Ref. �25�.

A. Overlap potentials

The nonoverlap condition between a pair of particles A
and B can be thought of as an inequality between the posi-
tions and orientations of the particles. For this purpose, we
measure the distance between the two ellipsoids using the
overlap potential 
�A ,B�=
�qA ,qB�, whose sign not only
gives us an overlap criterion,
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�A,B� � 0 if A and B are disjoint,


�A,B� = 0 if A and B are externally tangent,


�A,B� � 0 if A and B are overlapping,

but which is also at least twice continuously differentiable in
the positions and orientations of A and B. An additional re-
quirement is that 
�A ,B� be defined and easy to compute for
all positions and orientations of the particles.

We define and compute the overlap conditions using a
procedure originally developed for ellipsoids by Perram and
Wertheim �26�. This procedure is easily generalized to any
convex particle shape given by the inequality 
�r��1, where
the shape function 
 is strictly convex and defined through


�r� = ���r��2 − 1,

where � is the scaling factor by which the particle needs to
be resized in order for the point r to lie on its surface. The
un-normalized normal vector to the surface at a given point
r, if the particle is rescaled so that it passes through it, is
n�r�=�
�r�. Define also the displacement between the par-
ticle centroids rAB=rA−rB, and the unit vector joining the
two particle centroids with uAB=rAB / �rAB�.

The Perram and Wertheim �PW� overlap potential is de-
fined through


 = �2 − 1 = max
0���1

min
rC

��
A�rC� + �1 − ��
B�rC�� .

For every multiplier �, the solution of the inner optimization
over rC is unique due to the strict convexity of rC, and sat-
isfies the gradient condition

�nA�rC� = − �1 − ��nB�rC� ,

which shows that the normal vectors are parallel �with oppo-
site directions�. The solution of the outer optimization prob-
lem over � is given through the condition


 = 
A�rC� = 
B�rC� ,

which means that when the particles are rescaled by a com-
mon scaling factor �=1+��=�1+
 they are in external
tangency, sharing a common normal direction n=nA / �nA�
�i.e., normalized to unit length and directed from A to B�, and
sharing a contact point rC. When focusing on one particle we
can measure rC with respect to the centroid of the particle, or
otherwise specifically denote rAC=rC−rA and rBC=rC−rB.
This is illustrated for ellipses in Fig. 4. If the particles are
touching then �=1 and the procedure described above gives
us the geometric contact point and therefore the common
normal vector. In the case of spheres of radius O the PW
overlap potential simply becomes


AB =
�rA − rB�T�rA − rB�

�OA + OB�2 − 1 =
lAB
2

�OA + OB�2 − 1, �4�

which avoids the use of square roots in calculating the dis-
tance between the centers of A and B, lAB, and is easily
manipulated analytically.

1. Derivatives of the overlap potentials

We will frequently need to consider derivatives of the
overlap function with respect to the �generalized� positions
of the particles, either first order,

�qi

 = �i
 = � �


�qi
�

or second order

�qiqj

2 
 = �ij
2 
 = � �2


�qi�qj
� .

To first order, the particles can be replaced by their �parallel�
tangent planes at the point of contact and the first order de-
rivatives can be expressed in terms of quantities relating to
the two tangent planes. To second order, the particles can be
replaced by paraboloids that have the same tangent plane, as
well as the same principal curvature axes and the same radii
of curvatures as the two particles at the point of contact. It is
therefore possible to derive general expressions for the de-
rivatives in terms of quantities relating to the normal vectors
and surface curvatures of the particles at the point of contact.

The first-order derivatives can easily be expressed in
terms of the position of the contact point rC and the �normal-
ized and outwardly directed� contact normal vector n. For
this purpose, it is easier to measure the distance between two
particles in near contact via the Euclidian interparticle gap h
giving the �minimal� surface-to-surface distance between the
particles along the normal vector. Moving one of the par-
ticles by �q= ��r ,��� displaces the contact point by �rC

=�r+���rC and therefore changes the gap by �h=
−nT�rC=−nT�r− �rC�n�T��, giving the gradient

�qh = − � n

rC � n
� .

The relation between the �small� Euclidian gap h and the
�small� gap as measured by the PW overlap potential 
 can
be seen by observing that scaling an ellipsoid by a factor �
displaces the contact point by �rC=��rC. Therefore, the
scaling factor needed to close the interparticle gap is

FIG. 4. Illustration of the common scaling � that brings two
ellipses �dark gray� into external tangency at the contact point rC.
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� �



2
�

h

�rBC − rAC�Tn
=

h

rAB
T n

,

giving the gradient of the overlap potential �q

=2��qh� / �rAB

T n�,

�A/B
 = �
2

rAB
T n

� n

r�A/B�C � n� .

For spheres the cross product is identically zero and rotations
can be eliminated from consideration.

The second-order derivatives are not as easily evaluated
for a general particle shape. In two dimensions, or in three
dimensions when the principal radii of curvatures at the point
of contact are equal, one can replace the particle around the
point of contact with a sphere of the appropriate position and
radius. However, when the radii of curvatures are different
this is not as easy to do. We will give explicit expressions for
the second-order derivatives of 
 for ellipsoids in Sec.
VI A 2. Related first- and second-order geometric derivatives
have been derived for general particle shapes �i.e., using the
normal vectors and curvature tensors of the particles at the
point of contact� in the granular materials literature in more
general contexts �20,27�; here we specialize to the case of
hard frictionless ellipsoids.

B. The rigidity matrix

When considering all of the M contacts together, the gra-
dient of the overlap potential 
= �
ij� is the important rigidity
matrix

A = �Q� .

This �Nf �M� matrix connects, to first order, the change in
the interparticle gaps to the particle displacements �

=AT�Q. It may sometimes be more convenient to work with
surface-to-surface interparticle gaps �h=AE

T�Q �the sub-
script E stands for Euclidian�, especially if second-order
terms are not considered �11�. The rigidity matrix is sparse
and has two blocks of df nonzero entries in the column cor-
responding to the particle contact �i , j	, namely, �i
ij in the
block row corresponding to particle i and � j
ij in the block
row corresponding to particle j �unless one of these particles
is frozen�. Represented schematically:

A =

�i, j	
↓

i→

j→ �
�

�i
ij

�
� j
ij

�

 .

C. Interparticle forces

Hard particles in contact can exert a compressive �posi-
tive� contact force f= fn, f 	0, directed along the normal
vector �for frictionless particles�. The total excess force and

torque exerted on a given particle i by the contacts with its
neighbors N�i� is

�bi = − �
j�N�i�

f ij� nij

�riC
ij � nij�

� = � f ij��ihij�

or, considering all particles together,

�B = AEf .

The fact that the matrix �linear operator� connecting force
imbalances to contact forces is the transpose of the rigidity
matrix is well-known and can also be derived by considering
the work done by the contact forces to displace the particles

W = �bT�Q = �Ãf�T�Q = fT�ÃT�Q� = fT�h = fT�AE
T�Q� ,

showing that Ã=AE
T. In this work we will use forces f that

are a rescaled version of the physical forces fE, f ij = �rij
Tnij�

f ij
E /2, so that Af=AEfE. This scaling is more natural for our

choice of overlap potential, and does not affect any of the
results.

In static packings that are under an applied load B, the
force/torque equilibrium condition

Af = − B and f 	 0

must be satisfied. The actual magnitudes of the forces are
determined by external loads �for example, the applied pres-
sure for a system of deformable particles�, history of the
packing preparation, etc. However, the relation between the
forces at different contacts is determined by the packing ge-
ometry, or more specifically, by A. Typically forces are res-
caled to a mean value of unity eTf=M, and it has been ob-
served that the distribution of rescaled contact forces has
some universal features, for example, there is an exponential
tail of contacts carrying a large force, and also a large num-
ber of contacts supporting nearly zero force �2,28�. We will
see later that these force chains, or internal stresses, are an
essential ingredient of jamming for hard particles.

IV. THE ISOCOUNTING CONJECTURE

In the granular materials literature special attention is of-
ten paid to so-called isostatic packings. There are several
different definitions of isostaticity, and most of the discus-
sions in the literature are specifically applied to mechanical
structures composed of elastic bars, to packings of hard
spheres, or to packings of frictional particles. In this section
we summarize several relevant definitions of and arguments
for isostaticity and generalize them to nonspherical particles.

We define a packing to be “isoconstrained” if the number
of constraints �contacts� is equal to the total number of de-
grees of freedom

Nc = Nf + 1,

where for jammed packings one should count the density �
as a single degree of freedom, in addition to the degrees of
freedom due to the particles and boundary Nf, as discussed
further in Sec. IV A 1 and IV A 2. Packings with fewer con-
tacts than isoconstrained are called “hypoconstrained” and
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packings with more contacts than isoconstrained are “hyper-
constrained.” The isocounting conjecture states that large
jammed disordered packings of hard particles are isocon-
strained. Defining what precisely is meant by a disordered
packing is difficult in itself �16,29�. Intuitively, in a disor-
dered packing there is only the minimal degree of correla-
tions between particles, as necessitated by the constraints of
impenetrability and jamming. Therefore, it is expected that in
a certain sense disordered packings are “generic” �30,31�,
and that “special” configurations with geometric degenera-
cies will not appear. Note that for large systems the majority
of the degrees of freedom come from the particles them-
selves, Nf �Ndf, and the majority of constraints come from

contacts shared between two particles, Nc�M =NZ̄ /2, giv-
ing the isocounting property

Z̄ = 2df . �5�

Equation �5� has been verified to very high accuracy for
jammed hard-sphere packings �2�. However, disordered
packings of hard ellipsoids are always hypoconstrained and
thus contradict the isocounting conjecture �4�.

The notion of an isoconstrained packing is very closely
related to the concept of an isostatic packing, which consid-
ers the �linear� independence of the constraints in addition to
their number. An isostatic packing is defined as a packing
that has an invertible �and thus square� rigidity matrix. This
definition has not been formally stated in the literature, and it
is the obvious generalization of the definition commonly
used for systems of spheres. One can include the density as
an additional degree of freedom when forming the rigidity
matrix, or exclude it, depending on the definition of jamming
that is adopted, as discussed in the next section. This choice
changes the counting arguments by 1. This definition of the
term isostatic implicitly relies on the linearization of the im-
penetrability constraints. We try to make our definitions in-
dependent of the order of approximation used in some par-
ticular expansion. Therefore, we use the simple definition of
“isoconstrained” based on counting, and qualify it with
“jammed” or “rigid.”

In this section we attempt to deconstruct previous discus-
sions of isostaticity and jamming in hard-particle packings,
and we hope that through our discussions it will become
clear why previous “proofs” of the isocounting conjecture do
not apply to nonspherical particles, or to put it the other way
around, what makes disordered sphere packings isocon-
strained.

A. Jamming, rigidity, and stability

An essential initial step is defining more precisely what is
meant by a stable, rigid, or jammed packing. All of these
terms have been used in the literature, and in fact we equate
each of them with a particular perspective on jamming.

Kinematic. A packing is jammed if none of the particles
can be displaced in a nontrivial way without introducing
overlap between some particles.

Static. A packing is rigid if it can resolve any externally
applied forces through interparticle ones, without changing
the packing configuration.

Perturbation. A packing is stable if the structure of the
packing changes smoothly for small perturbations of the
packing.

We will consider each of these approaches separately. It
will shortly become clear that all of them are closely related,
and under certain mild conditions they are actually equiva-
lent. We will use the term jamming as an umbrella term, and
later give our preferred definition of jamming, which is
based on the kinematic perspective. We note that it is impor-
tant to precisely specify the boundary conditions applied re-
gardless of the view used in considering jamming; different
boundary conditions lead to different jamming categories,
specifically local, collective, or strict jamming �11,37�. Here,
we will sometimes use local jamming in simple examples but
mostly focus on collective jamming; all collective particle
motions are blocked by the impenetrability constraints sub-
ject to periodic boundary conditions with fixed lattice vec-
tors. In order to eliminate trivial uniform translations of the
systems, we can freeze the centroid of one of the particles, to
obtain a total of

Nf = Ndf − d

internal degrees of freedom. The exact boundary conditions
affect the counting of constraints and degrees of freedom,
however, the correction is not extensive in N and therefore is
negligible for large system when considering per-particle

quantities such as Z̄.
An important point to note is that the above definitions of

jamming treat all degrees of freedom identically, in particu-
lar, translational motion �forces� is treated on the same foot-
ing as rotational motion �torques�. This is not necessarily the
most appropriate definition, as is easily seen by considering
the case of spheres, which can rotate in place freely even
though they are �translationally� jammed. This distinction be-
tween translations and rotations will become important in
Sec. VII when considering packings that are nearly, but not
quite jammed. It should also be mentioned that jammed ran-
dom particle packings produced experimentally or in simu-
lations typically contain a small population of rattlers, i.e.,
particles trapped in a cage of jammed neighbors but free to
move within the cage. For present purposes we shall assume
that these have been removed before considering the �possi-
bly� jammed remainder. This idea of excluding rattlers can
be further extended to rattling clusters of particles, i.e.,
groups of particles that can be displaced collectively even
though the remainder of the packing is jammed. In fact, we
will consider any packing which has a jammed subpacking
�called a “backbone”� to be jammed.

1. Kinematic view

The kinematic perspective considers a packing jammed if
it is not possible to continuously displace the particles in a
nontrivial way without introducing overlap. We have focused
on this perspective in our work, see Refs. �11,32�. That is,
the impenetrability conditions preclude any motion of the
particles. Here trivial motions are those that do not change
the distances between any two particles, such as global trans-
lations when periodic boundary conditions are used. We can
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assume that such trivial motions have been eliminated via
some artificial constraint, such as fixing the centroid of one
particle externally when using periodic boundary conditions.

Mathematically, for any continuous motion �Q�t� there
exists a T�0 such that at least one of the impenetrability
constraints between a touching pairs of particles

��QJ + �Q�t�� 	 0 �6�

is violated for all 0� t�T. A motion �Q�t� such that for all
0� t�T none of the constraints are violated is an unjam-
ming motion. One can in fact restrict attention to analytic
paths �Q�t�, and also show that a jammed packing is in a
sense isolated in configuration space, since the only way to
get to a different packing is via a discontinuous displacement
��Q � �0 �12�.

A similar definition of jamming was used by Alexander in
Ref. �10�. He considers a packing to be geometrically rigid if
it cannot be “deformed continuously by rotating and trans-
lating the constituent grains without deforming any of them
and without breaking the contacts between any two grains.”
This definition implies that a packing in which particles can
be moved so as to break contacts �for example, imagine a
pebble resting on other pebbles in gravity, and moving it
upward away from the floor� is jammed. Later in the paper
Alexander talks about adding constraints to block motions
that break contacts. We in fact have in a certain sense a
choice in the matter, determining whether we work with in-
equality or equality constraints. We choose to work with in-
equality constraints, since this is the natural choice for fric-
tionless hard particles; there is no cohesion between the
particles maintaining contacts. In effect, when counting de-
grees of freedom for packings, we count the density � �i.e.,
the possible collective rescaling of the particle shapes neces-
sary to maintain contacts� as a single degree of freedom, as
discussed further in Sec. IV A 2.

2. Static view

The static perspective considers a packing rigid if it can
resolve any applied forces through interparticle ones. This is
sometimes referred to as “static rigidity,” to be contrasted
with “kinematic rigidity” as defined in the previous section.
For hard particles, there is no scale for the forces, and so the
actual magnitude of the forces does not matter, only the rela-
tive magnitudes and the directions. The particles do not de-
form, but can exert an arbitrary positive contact force.

Mathematically, we consider the existence of a solution to
the force-equilibrium equations

Af = − B, where f 	 0, �7�

for all resolvable external loads B. The space of resolvable
loads is determined by the boundary conditions: certain
forces such as pulling on the walls of a container cannot be
resolved by any packing and need to be excluded. This is
similar to the definition used in Ref. �7�: A packing is me-
chanically stable “if there is a nonzero measure set of exter-
nal forces which can be balanced by interbead ones.” The
problem with this definition of rigidity and in particular Eq.
�7� is that it does not take into account the fact that the

geometry of the packing, i.e., the rigidity matrix A, changes
when an external load is applied on the packing. Physically,
forces arise only through deformation, and this deformation,
however small, together with the preexisting forces in the
packing, may need to be taken into account. Forces are in
essence Lagrange multipliers associated with the impenetra-
bility constraints in Eq. �6�; the very existence of such
Lagrange multipliers may require a change in the packing
configuration.

The above formulation also neglects the existence of
small interparticle gaps, which cannot be neglected when
analyzing the response of packings to applied loads, espe-
cially for granular materials �8,11�. While mathematically we
talk about ideal jammed packings, where geometric contacts
are perfect, in reality one should really analyze packings that
are almost jammed, i.e., where the contacts are almost
closed. This is more appropriate for granular materials,
where there is typically some room for the particles to move
freely. Alternatively, one should analyze packings where all
the contacts are indeed closed, however, the system is under
some form of global compression. This is appropriate for
glassy systems under a uniform external pressure. When in-
terparticle gaps are present, particles must displace slightly
to close the gaps so that they can exert positive contact
forces on one another and resist the applied load. The set of
contacts �i , j	 that are closed �i.e., have a positive force f ij� is
the set of active contacts. Different applied loads will be
supported by different active contact networks, and for suf-
ficiently small interparticle gaps finding the active set re-
quires solving a linear program, as discussed in Sec. V D 1.
When there is a global external compression �pressure� in the
system that keeps all contacts closed, one has one more ad-
ditional force-equilibrium equation in Eq. �7� that has the
pressure p on the right hand side. Mathematically, the pres-
sure is the conjugate �dual� variable of the density �viewed as
a degree of freedom� �25�.

Various counting arguments related to force equilibrium
constraints, starting with the seminal work of Maxwell, have
appeared in the engineering literature on mechanical struc-
tures �33�. There are, however, some important differences
between elastic structures and packings of hard particles.
Most significantly, the non-negativity of the contact forces is
an added condition, and it effectively adds +1 to the number
of contacts needed to ensure static rigidity, i.e., adds a single
degree of freedom in various counting arguments. For clas-
sical structures of elastic bars, an isostatic framework is such
that it has exactly as many bars, i.e., unknown internal bar
forces, as there are force-equilibrium equations M =Nf. That
is, the rigidity matrix is square and the solution to the force-
equilibrium equations is f=−A−1B. Finding the internal
forces therefore does not require knowing anything about the
specific elastic properties of the bars: the structure is stati-
cally determinate �34�. Reference �8� defines “isostatic struc-
tures” as “such that all problems are isostatic, whatever the
choice of the load. More precisely, one requires all loads
orthogonal to the overall rigid body degrees of freedom to be
supportable with a unique determination of internal forces.”

On the other hand, a jammed isoconstrained packing, as
we have defined it, has M =Nf +1 contacts, and the additional
one contact is needed in order to ensure that any applied load
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can be resolved by non-negative interparticle forces in the
active contact network. Assuming the existence of �infinitesi-
mally� small but positive interparticle gaps, under certain
mild non-degeneracy conditions, it can be demonstrated that
if one applies a specific load only Nf of the contacts will
actually be active, and one contact will be broken and will
carry no force. Different contacts will be broken for different
loads, however, once it is known which contact is broken
�see Sec. V D 1� the active contact network is isostatic in the
classical structural mechanics sense and the forces can be
determined, f=−Aactive

−1 B, without resorting to constitutive
elastic equations for the contacts. The additional contact ap-
pears because of our choice of definition of jamming; if one
considers stability under a single external load, then all the
contacts will be active, M =Nf. This difference has some
subtle effects that may lead to confusion when comparing to
previous results in the literature. For example, as we will see
in Sec. V, ideal jammed packings posseses a nontrivial inter-
nal stress, or self-stress f�0, Af=0. In elastic structures
such an internal stress is associated with overconstrained
�sub�structures, and such stresses do not appear in unloaded
granular piles. The fact that we observe only a single self-
stress for packings means that upon removal of any contact
from the packing there will no longer be self-stresses left,
i.e., the system will no longer be overconstrained.

Note that a positive internal �self� stress does appear in
glasses under a uniform external pressure �28�, and in those
systems indeed all Nf +1 contacts are active and participate
in the resolution of applied loads. The magnitude of the in-
ternal stresses is determined by the external pressure. For
high pressures, depending on the stiffness of the packing
elements, additional active contacts may form as particles
deform and one would have to consider the constitutive elas-
tic equations for the contacts in order to determine the inter-
particle forces.

3. Perturbation view

The perturbation perspective considers a packing to be
stable if the structure of the packing changes smoothly for
small perturbations of the packing. In particular, the structure
of the packing includes the positions of the particles and the
contact force network. Perturbations to be considered should
include changes in the grain internal geometry �deforma-
tion�, strain, and stress �external forces due to shaking, vi-
bration, or a macroscopic load�. In great generality we can
restrict our perturbations to small perturbations of the dis-
tances between contacting particles combined with small
perturbations of the applied forces. Such a perspective on
jamming was recently presented in Ref. �20�. In this work,
however, only perturbations of the applied forces were con-
sidered. However, it is realized in Ref. �20� that deformations
of the boundary conditions can easily be incorporated with-
out changing the stability conditions. In fact, arbitrary exter-
nal perturbations of the geometry of the contacts can be con-
sidered in addition to the applied load perturbations without
any significant complication.

Mathematically, we consider the sensitivity of the con-
figuration and force chains to all perturbations of the inter-
particle gaps �
 and applied forces �B away from zero, i.e.,

we look for solutions of the coupled system of equations of
preserving contacts and maintaining force equilibrium:

�A�Q + �Q���f + �f� = − ��B ,


�Q + �Q� − �
� = − ��


eT�f = 0 , �8�

where ��0 is a small number and we have assumed f�0.
Note that in Ref. �20�, �f are called the “basic statical un-
knowns” and �Q are called the “basic kinematical un-
knowns.”

Similarly to the external forces, the space of resolvable
gap perturbations is determined by the boundary conditions:
global expansions will lead to gaps that cannot all be closed
unless the particles grow by a certain scaling factor �=1
+��. It is therefore convenient to include �
��2�� as an
additional variable. An added constraint is that the normal-
ization eTf=M be maintained. It is important to note that we
explicitly account for the dependence of the rigidity matrix
on the configuration in the force-balance equation. Notice
that when we combine perturbations of the geometry and
forces together, the total number of variables is M +Nf, and
the total number of constraints is also M +Nf �here we in-
clude the global particle rescaling �
� as a degree of free-
dom�. Therefore there are no underdetermined �linear� sys-
tems as found in counting arguments that consider geometry
and forces separately, as is typically done in the literature.

B. Isocounting

In this section we will attempt to deconstruct previous
arguments in justification of an isocounting conjecture,
mostly in the context of sphere packings, and try to identify
the problems when the same arguments are applied to non-
spherical particles. The isocounting conjecture �property� is

usually justified in two steps. First, an inequality Z̄�2df is

demonstrated, then, the converse inequality Z̄	2df is in-

voked to demonstrate the equality Z̄=2df. We will demon-
strate that it is the second of these steps that fails for non-
spherical particles, however, first we recall some typical

justifications for the inequality Z̄�2df. The observation that

the inequality Z̄	2df does not generally apply to nonspheri-
cal particles is already made by Roux in Ref. �8�, as we point
out below. Roux also discusses the applicability of the con-

verse inequality Z̄�2df in significant detail; here we present
our own summary for completeness.

It is important to note that the arguments supporting the

inequality Z̄	2df given below apply only to cohesionless
particles, that is, particles for which only compressive inter-
particle contact forces are allowed. In fact, stable packings of
adhesive �frictionless� particles stability can be hypocon-
strained �8�, further reinforcing our criticism of a generally
applicable isocounting conjecture.

1. Why Z̄Ï2df applies

A packing with Z̄�2df is overconstrained, and in a cer-
tain sense geometrically degenerate and thus not “random.”

DONEV et al. PHYSICAL REVIEW E 75, 051304 �2007�

051304-12



It can be argued that such a packing is not stable against
small perturbations of the packing geometry, since all con-
tacts cannot be maintained closed without deforming some
of the particles. For example, Tkachenko and Witten �7� con-
sider hard-sphere packings with a small polydispersity, so
that particles have slightly different sizes, to conclude that
“the creation of a contact network with coordination number
higher than 2d occurs with probability zero in an ensemble
of spheres with a continuous distribution of diameters.”
Moukarzel �6,35� considers how the actual stiffness modulus
of deformable particles affects the interparticle forces and
concludes that making the particles very stiff will eventually
lead to negative forces and thus breaking of contacts, until

the remaining contact network has Z̄�2df �36�: “The contact
network of a granular packing becomes isostatic when the
stiffness is so large that the typical self-stress … would be
much larger than the typical load-induced stress … granular
packings will only fail to be isostatic if the applied compres-
sive forces are strong enough to close interparticle gaps es-
tablishing redundant contacts.” A similar argument is made
by Sir Edwards in Ref. �9� for frictional grains: “if z�4 then
there is a solution with no force on z−4 contacts, and there is
no reason why other solutions would have validity.”

These arguments apply also to nonspherical particles,
however, it is important to point out that they specifically
only apply to truly hard-particle packings or to packings
of deformable particles in the limit of zero applied pressure
�f→0�. In real physical systems particles will have a finite
stiffness and the applied forces will be non-negligible, and
such packings will have more contacts than the idealized
hard-particle construction.

2. Why Z̄Ð2df does not apply

The converse inequality, stating that a minimum of M
=Nf +1 contacts is necessary for jamming �rigidity�, does not
apply to nonspherical particles. We can demonstrate this viv-
idly with a simple example of an ellipse jammed between
three other stationary �fixed� ellipses, as shown in Fig. 5.
This example was also given in Ref. �37�, however, a de-
tailed explanation was not provided.

Jamming a disk requires at least three touching disks; the
additional rotational degree of freedom of the ellipse would
seem to indicate that four touching ellipses would be needed
in order to jam an ellipse. However, this is not true: if the
normal contact vectors intersect at a single point, three el-
lipses can trap another ellipse, as shown in Fig. 5. We will
shortly develop tools that can be used to demonstrate rigor-
ously that this example is indeed jammed. Another simple

example demonstrating that Z̄	2df does not apply is the
rectangular lattice of ellipses, which is collectively jammed

even though Z̄=4, the minimum necessary even for discs.
This example is discussed in the Appendix, where we also
demonstrate that, in fact, any isostatic packing of spheres can
be converted into a jammed packing of nonspherical par-
ticles.

The above example shows that the claim of Ref. �10� that
“One requires 4�=3+1� contacts to fix the DOF �degrees of
freedom� … of an ellipse in the plane” is wrong. Similarly, it

shows that the argument in Ref. �6�, namely, that the mini-
mum number of contacts needed for a packing of N spheres
in d dimensions to be rigid is dN, cannot be generalized to
nonspherical particles by simply replacing d with df. Claims
that the number of constraints must be larger than the num-
ber of degrees of freedom have been made numerous times
within the kinematic perspective on jamming, for example,
in Ref. �9�. Our careful analysis of the conditions for jam-
ming in the next section will elucidate why this is correct for
spheres but not necessarily correct for nonspherical particles,
and under what conditions a hypoconstrained packing can be
jammed.

The example in Fig. 5 is a geometrically degenerate con-
figuration which would usually be dismissed as a
probability-zero configuration. However, we will explain in
later sections why such apparently nongeneric �degenerate�
configurations must appear for sufficiently small aspect ra-
tios for a variety of realistic packing protocols. In Ref. �33�
geometrically peculiar examples such as this one are pre-
sented, however, they are considered to be in unstable equi-
librium, i.e., stable only under special types of loading. This
type of argument, made within the static perspective on jam-
ming �see Eq. �7��, is given in the context of granular mate-
rials in Ref. �7�: “The number of equilibrium equations Nd
should not exceed the number of force variables Nc; other-
wise these forces would be overdetermined.” The example in
Fig. 5 demonstrates why this argument cannot be applied to

FIG. 5. �Color online� A mobile ellipse �green� jammed between
three fixed ellipses �yellow�. All ellipses are of the same size and
have an aspect ratio �=2. This packing was produced by a
Lubachevsky-Stillinger–type algorithm, where the three particles
were kept fixed by giving them infinite mass and no initial veloci-
ties. The normal vectors at the points of contact intersect at a com-
mon point I, as is necessary to achieve torque balance. For the
corresponding disk example, shown in Fig. 7, the number of force
balance constraints is two, while the number of unknown forces is
three. For the ellipse case the number of unknown forces is the
same, while the number of force balance constraints is two, and the
number of torque constraints is one, giving a total of three equilib-
rium constraints. However, due to the geometric degeneracy, there
are only two independent equations of mechanical equilibrium; the
torques are always balanced. In the notation described in Sec.
V A 2, for the ellipse example above Nstresses=Nfloppy=1, while for
the corresponding disk case, Nstresses=1 but Nfloppy=0.
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nonspherical grains. Since the normal vectors at the points of
contact intersect at a point, a torque around that point cannot
be resolved by any set of normal forces between the par-
ticles. Yet the packing is jammed, and if built in the labora-
tory it will resist the torque by slight deformations of the
particles, so that the normal vectors no longer intersect in
one point and the contact forces can resist the applied torque.
The connection between the geometry of the contact net-
work, i.e., A, and the packing configuration Q, as well as the
pre-existing stresses �forces� in the packing, must be taken
into account when considering the response of hypocon-
strained packings to external perturbations. This important
observation was also recently pointed out independently in
Ref. �20�, and we elaborate on it in the next section.

V. CONDITIONS FOR JAMMING

In this section we develop first- and second-order condi-
tions for jamming, using a kinematic approach. Statics
�forces� will emerge through the use of duality theory. The
discussion here is an adaptation of the theory of first-order,
prestress, and second-order rigidity developed for tensegri-
ties in Ref. �12�. This section is technical and may be
skipped or skimmed by readers not interested in the math-
ematical formalism of jamming. In Sec. VIII the rigorous
hard-particle results are explained more simply by consider-
ing the conditions for local �stable� energy minima in soft-
particle systems.

We consider an analytic motion of the particles

�Q�t� = Q̇t + Q̈
t2

2
+ O�t3� ,

where Q̇ are the velocities, and Q̈ are the accelerations. Ex-
panding the distances between touching particles to second-
order, and taking into account that 
�QJ�=0, gives


�t� � ATQ̇t + �Q̇THQ̇ + ATQ̈�
t2

2
= 
̇t + 
̈

t2

2
, �9�

where the Hessian H=�Q
2 
=�QA can be thought of as a

higher-rank symmetric matrix.

A. First-order terms

Velocities Q̇�0 for which 
̇=ATQ̇	0 represent a first-
order flex �using the terminology of Ref. �12��. If we can find

an unjamming motion Q̇ such that 
̇�0 �note the strict in-
equality�, then the packing is first-order flexible, and there
exists a T�0 such that none of the impenetrability condi-

tions �see Eq. �6�� are violated for 0� t�T. We call such a Q̇
a strict first-order flex. If, on the other hand, for at least one

constraint 
̇�0 for every Q̇, then the packing is jammed,
since every nontrivial movement of the particles violates
some impenetrability condition for all 0� t�T for some T
�0. We call such a packing “first-order jammed.” Finally, a

Q̇ such that 
̇=0 is a null first-order flex, often referred to as
zero or floppy mode in the physics literature.

A packing is first-order jammed if and only if there are no
�nontrivial� first order flexes. A packing is first-order flexible
if there exists a strict first-order flex. Some packings are
neither first-order jammed nor first-order flexible; one must
consider higher-order terms to access whether such packings
are jammed, and if they are not, to identify an unjamming
motion. We will consider the second-order terms later; in this
section we develop conditions and algorithms to verify first-
order jamming and identify first-order flexes if they exist.
The algorithms are closely based on work in Ref. �11�.

1. Strict self-stresses

Let us first focus on a single contact �i , j	, and ask
whether one can find a first-order flex that is strict on that
contact, i.e.,


̇ij = �ATQ̇�ij = �ATQ̇�Teij = �Aeij�TQ̇ � 0,

where eij denotes a vector that has all zero entries other than
the unit entry corresponding to contact �i , j	. If it exists, such
a flex can be found by solving the linear program �LP�

max
Q̇

�Aeij�TQ̇

ATQ̇ 	 0 . �10�

If this LP has optimal objective value of zero, then there is
no first-order flex that is strict on the contact in question.
Otherwise, the LP is unbounded, with an infinite optimal
objective value. The dual LP of Eq. �10� is a feasibility prob-
lem

A�f̃ + eij� = 0

f̃ 	 0, �11�

where the contact forces f̃ are the Lagrange multipliers cor-

responding to the impenetrability constraints ATQ̇	0. If the
dual LP �11� is feasible, then the primal LP �10� is bounded.

If we identify f= f̃+eij 	0, f̃ i j 	1, we are naturally led to
consider the existence of nontrivial solutions to the force-
equilibrium equations

Af = 0 and f 	 0 . �12�

A set of non-negative contact forces f�0 that are in equi-
librium as given by Eq. �12� is called a “self-stress”�38�. In
Ref. �12� these are called “proper self-stresses,” as opposed
to self-stresses which are not required to be non-negative.
Self-stresses can be scaled by an arbitrary positive factor, so
we will often add a normalization constraint that the average
force be unity, eTf=M. A self-stress that is strictly positive on
a given contact is strict on that contact. A self-stress f�0 is
a strict-self stress. The existence of a �strict� self-stress can
be tested by solving the linear program

max
f,�

� ,

Af = 0 ,
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f 	 �e ,

eTf = M �13�

and seeing whether the optimal value is negative �no self-
stress exists�, positive �a strict self-stress exists�, or zero �a
self-stress exists�. What we showed above using linear dual-
ity is that if there is a self stress that is strict on a given
contact, there is no flex strict on that contact. In particular,
this means that packings that have a strict self-stress can only
have null first-order flexes.

We can also show that there is a first-order flex that is
strict on all contacts that do not carry a force in any self-
stress �i.e., no self-stress is strict on them�. To this end, we
look for a first-order flex that is strict on a given subset of the
contacts, as denoted by the positions of the unit entries in the
vector ẽ

max
Q̇,�

� ,

ATQ̇ 	 �ẽ . �14�

The dual program is the feasibility problem

Af = 0 ,

ẽTf = 1,

f 	 0 , �15�

which is infeasible if there is no self-stress that is positive on
at least on the contacts under consideration, since ẽTf
0.
Therefore the primal problem �13� is unbounded, that is, one
can find a self-stress that is strict �since �→�� on the given
set of contacts. This shows that packings that do not have a
self-stress are first-order flexible. In other words, the exis-
tence of force chains in a packing is a necessary criterion for
jamming.

In summary, if a packing has no self-stress, it is not
jammed, and one can easily find a strict first-order flex by
solving a linear program �11�. The analysis is simplified if
the packing has a strict self-stress, since in that case all first-
order flexes are null, i.e., they are solutions of a linear system

of equalities ATQ̇=0. This is the case of practical importance
to jammed packings, so we will focus on it henceforth.

2. Floppy modes

The linear system ATQ̇=0 has Nfloppy=Nf −r solutions,
where r=M −Nstresses is the rank of the rigidity matrix, and
Nstresses is the number of �not necessarily proper� self-stresses
�more precisely, the dimensionality of the solution space of
Af=0�. We know that Nstresses	1 for a jammed packing. If
the packing is not hypoconstrained, or more precisely, if the
number of contacts is sufficiently large

M = Nf + Nstresses 	 Nf + 1,

then there are no nontrivial null first-order flexes �floppy
modes�, Nfloppy=0. Therefore, a packing that has a strict self-

stress and a rigidity matrix of full-rank is �first-order�
jammed. We will later show that this sufficient condition for
jamming is also necessary for sphere packings, that is,
jammed sphere packings are never hypoconstrained.

However, we will see that jammed ellipsoid packings may
be hypoconstrained, M �Nf +1. Such a hypoconstrained
packing always has floppy modes,

Nfloppy = Nf + Nstresses − M 	 Nf + 1 − M .

Every floppy mode can be expressed as a linear combination
of a set of Nfloppy basis vectors, i.e.,

Q̇ = Vx for some x , �16�

where the matrix V is a basis for the null-space of AT. To
determine whether any of the null first-order flexes can be
extended into a true unjamming motion, we need to consider
second-order terms, which we do next.

B. Second-order terms

Consider a given null first-order flex ATQ̇=0. We want to

look for accelerations Q̈ that make the second-order term in
the expansion �9� non-negative, i.e.,

ATQ̈ 	 − Q̇THQ̇ . �17�

If we cannot find such a Q̈ for any first-order flex, then the

packing is second-order jammed. If we find a Q̈ such that all
inequalities in Eq. �17� are strict, than we call the unjamming

motion �Q̇ ,Q̈� a strict second-order flex, and the packing is
second-order flexible, since there exists a T�0 such that
none of the impenetrability conditions �see Eq. �6�� are vio-

lated for 0� t�T. If for all first-order flexes Q̇ at least one
of the inequalities in Eq, �17� has to be an equality, then we
need to consider even third-or higher-order terms, however,
we will see that for sphere and ellipsoid packings this is not
necessary.

1. The stress matrix

In order to find a strict second-order flex, we need to solve
the LP

max
Q̈,�

�

ATQ̈ 	 �e − Q̇THQ̇ , �18�

the dual of which is

min
f

�Q̇THQ̇�Tf ,

Af = 0 ,

eTf = 1,

f 	 0 , �19�

where the common optimal objective function is
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�* = �Q̇THQ̇�Tf = Q̇T�Hf�Q̇ = Q̇THQ̇ ,

where H=Hf is a form of reduced Hessian that incorporates
information about the contact force and the curvature of the
touching particles. The �Nf �Nf� matrix H plays an essential
role in the theory of jamming for hypoconstrained ellipsoid
packing and we will refer to it as the stress matrix following
Ref. �12�.

The stress-matrix has a special block structure, where all
of the blocks are of size �df �df�, and both the block-rows
and the block-columns correspond to particles. The block
entry corresponding to the pair of particles �i , j� is nonzero if
and only if there is a contact between them. Written explic-
itly, the stress matrix is a force-weighted sum of contribu-
tions from all the contacts

H = �
�i,j	

f ijHij ,

where the contribution from a given contact �i , j	 is

i ¯ j ,

↓ ¯ ↓ ,

Hij =

i→
]

j→ ��ii
2
ij ¯ � ji

2 
ij

] � ]

�ij
2 
ij ¯ � j j

2 
ij

 . �20�

If Q̇THQ̇�0 then �*�0 and therefore the first-order flex

Q̇ cannot be extended into a second-order flex. We say that

the stress matrix blocks the flex Q̇. If, on the other hand,

Q̇THQ̇�0, then �*�0 and by solving the LP �18� we can
find an unjamming motion, i.e., the packing is second-order
flexible. Therefore, finding an unjamming motion at the
second-order level essentially consists of looking for a null

first-order flex �floppy mode� Q̇, ATQ̇=0, that is also a posi-
tive curvature vector for the stress matrix.

Recalling that every floppy mode can be expressed as Q̇
=Vx �see Eq. �16��, we see that

Q̇THQ̇ = xT�VTHV�x = xTHVx .

If the matrix HV is negative definite, than the packing is
second-order jammed. In Ref. �12� such packings are called
prestress stable, since the self-stress f rigidifies the packing
�i.e., blocks all of the floppy modes�. If HV is indefinite, than
the packing is second-order flexible since any of the positive-
curvature directions can be converted into a strict self-stress
by solving the LP �18�.

If a packing has more than one �proper� self-stress, than it
is not clear which one to use in the stress-matrix. One can try
to find a self-stress that provides for jamming �prestress sta-
bility� by looking for a solution to Eq. �13� such that HV
�0 �i.e., HV is negative-semidefinite�. This is known as
semidefinite programming �SDP�, and is a powerful gener-
alization of linear programming that has received lots of at-
tention recently �39�. It is, however, possible that different
self-stresses are needed to block different portions of the

space of floppy modes, and this general case of a second-
order jammed packing is difficult to test for algorithmically.
In our study of disordered sphere and ellipsoid packings, we
will see that in practice the jammed packings only have one
strict self-stress. In this case, testing for jamming reduces to
calculating the smallest eigenvalue of HV. We will discuss
actual numerical algorithms designed for ellipsoid packings
in subsequent sections, but first we explain what makes
sphere packings special.

2. The stress matrix for hard spheres

For hard spheres it is easy to write down the explicit form
for Hij since the overlap function is given explicitly by Eq.
�4� and its second-order derivatives are trivial,

�ii
2Fij = � j j

2 Fij = − �ij
2 Fij = − � ji

2 Fij =
2Id

�Oi + Oj�2 ,

where Id is the �d�d� identity matrix. This implies that Hij

is a positive-definite matrix, since

ṘTHijṘ = �ṙi − ṙ j�T�ṙi − ṙ j� 	 0.

Therefore, any first-order flex in fact represents a true unjam-

ming motion, since Q̇THQ̇	0 and we can trivially use Q̈
=0 in Eqs. �18�. In other words, a sphere packing is jammed
if and only if it is first-order jammed, and therefore it cannot
be hypoconstrained. To test for jamming in hard-sphere
packings we need only focus on the velocities of the sphere
centroids and associated linear programs in Sec. V A. This
important conclusion was demonstrated using a simple cal-
culation in Ref. �11�.

For general particle shapes, however, Hij may be indefi-
nite for some contacts, and testing for jamming may require
considering second-order terms. If one considers general
convex particle shapes but freezes the orientations of the
particles, the packing will behave similar to a hard-sphere
packing. In particular, a jammed packing of nonspherical
particles must have at least as many contacts as the corre-
sponding isoconstrained packing of spheres would, that is

Z̄ 	 2d

for any large jammed packing of convex hard particles.

C. Testing for jamming

We now summarize the theoretical conditions for jam-
ming developed in this section in the form of a procedure for
testing whether a given packing of nonspherical particles is
jammed. We assume that the contact network of the packing
is known and available as input. For spherical particles, as
already discussed, second-order terms never need to be con-
sidered, and testing for jamming can be done by solving one
or two linear programs, as discussed in detail in Ref. �11�. In
the formulation below, we avoid solving linear programs un-
less necessary, but rather use basic linear algebra tools when-
ever possible.

�1� Find a basis F for the null-space of the rigidity matrix
A, i.e., find Nstresses linearly independent solutions to the lin-
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ear system of equations Af=0, normalized to mean of unity.
This can be done, for example, by looking for zero eigenval-
ues and the associated eigenvectors of the matrix ATA. If �a�
Nstresses=0, �b� Nstresses=1 but the unique self-stress is not
non-negative, or �c� Nstresses�1 but the linear feasibility pro-
gram �13� is infeasible, then declare the packing not jammed
�first-order flexible�, optionally identify an unjamming mo-

tion by solving the linear feasibility program ATQ̇	e, and
terminate the procedure. Otherwise, if the identified self-
stress f is not strict, declare the test inconclusive and termi-
nate.

�2� If Nfloppy=Nf +Nstresses−M =0, then declare the packing
�first-order� jammed and terminate the procedure. Otherwise,
find a basis V for the null-space of AT, i.e., Nfloppy linearly
independent solutions to the linear system of equations
AT�Q=0. Compute the stress matrix H using the
previously-identified strict self-stress f, and compute its pro-
jection HV on the space of null first-order flexes.

�3� Compute the smallest eigenvalue �min and associated
eigenvector xmin of the matrix HV. If �min�0, declare the
packing �second-order� jammed and terminate the procedure.
If �min�0 and Nstresses=1 declare the packing not jammed
�second-order flexible�, optionally compute an unjamming

motion by solving the LP �18� with Q̇=Vxmin, and terminate
the procedure. Otherwise, declare the test inconclusive and
terminate.

We will discuss the actual numerical implementation of
this algorithm later, and see that in practice we do not need to
solve linear programs to test for jamming in hypoconstrained
ellipsoid packings. Essentially, the packings we encounter in
our work with disordered packings of hard ellipsoids always
have a single strict self-stress and a negative-definite HV. The
rectangular lattice of ellipses offers a different kind of ex-
ample, namely, one with simple regular geometry but mul-
tiple self-stresses, and we analyze this example theoretically
in the Appendix.

D. Outside the kinematic perspective

It is worthwhile to briefly consider the connections be-
tween the jamming criteria developed above using the kine-
matic approach to jamming, and the static and perturbation
approaches.

1. Static view

We have already seen that forces appear naturally as
Lagrange multipliers corresponding to impenetrability con-
straints, in the form of a strict self-stress f�0. In the static
view, we ask whether a packing can support a given applied
external force B by a set of non-negative interparticle forces.
The key observation is that we can add an arbitrary positive
multiple of a self-stress to any set of interparticle forces that
support B in order to make them non-negative, without af-
fecting force balance. Therefore, if the rigidity matrix A is of
full rank, as it has to be for jammed sphere packings, any
�supportable� load B can be balanced with non-negative in-
terparticle forces, and kinematic and static rigidity become
equivalent �40�.

The addition of arbitrary multiples of the self-stress to f
is, however, a product of the mathematical idealization of the
packing. In fact, each specific applied load in an isocon-
strained packing with M =Nf +1 contacts will be supported
by a well-defined f. The self-stress is only physical if all
Nf +1 contacts are active, which requires that the packing
already be compressed by some pre-existing applied load.
Otherwise, the density will be slightly smaller than the jam-
ming density and upon application of an external load one of
the contacts will break and only Nf of the contacts will be
active. In general, finding the active set of contacts requires
solving the linear program �11�

min
f

eTf for virtual work

such that Af = − B for equilibrium

f 	 0 for repulsion only. �21�

At the solution, modulo degenerate situations, only Nf of the
forces will be positive, the remaining ones will be zero.

For jammed hypoconstrained ellipsoid packings, such as
the one in Fig. 5, supporting some loads may require a small
deformation of the packing, such as a slight rotation of the
mobile ellipse in the example in Fig. 5. After this small de-
formation, the normal vectors at the points of contact will
change slightly and the interparticle forces f can support the
applied force B. The larger the magnitude of the forces is,
the smaller the deformation needed to support the load is.
Therefore every jammed packing can support any applied
force in a certain generalized sense. Another way to look at
this is to observe that, if the interparticle forces are much
larger than the applied ones, the applied load will act as a
small perturbation to the packing and the static view be-
comes equivalent to the perturbation view �with �
=0�. We
consider the perturbation view next and show how the stress
matrix appears in the response of the packing to perturba-
tions.

2. Perturbation view

In the perturbation view we consider how the configura-
tion and the contact forces respond to perturbations consist-
ing of small changes of the contact geometry and small ap-
plied forces. Counting geometric and force constraints
separately, as done in the literature, is incorrect when f�0:
There is coupling between the particle positions and the in-
terparticle forces as represented by the Hessian H=Hf.

With this in mind, we can expand Eq. �8� to first order in
���Q� , ��f�	, to get the linear system of equations

�A − H 0

0 AT − 2e

e 0 0

� �f

�Q

��

 = − ���B

�


0

 . �22�

It can be demonstrated that if the reduced Hessian HV is
definite, this system will have a solution for any �B and �
.
Furthermore, if HV is negative-definite the response to per-
turbations will be stable, in the sense that applied forces will
do a positive work in order to perturb the packing. This is
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explained in greater detail in Ref. �20�, where the conditions
��Q�=O���B�� and �BT�Q�0 are stated in a more general
setting, and then a linearization of the response of the pack-
ing to perturbations is considered �recall that in Ref. �20�
�

0�.

Equation �22� can be used to find the jamming point start-
ing with a packing that is nearly jammed, i.e., a packing that
has nonzero interparticle gaps ��
 and a self-stress that has
a small imbalance ��B=Af. This works well for small pack-
ings, however, for large disordered packings, the force chains
are very sensitive to small changes in the geometry and the
linearization of the perturbation response is not a good ap-
proximation even for packings very close to the jamming
point. Additionally, we note that to first order in �, the solu-
tion to Eq. �22� has �� /�= fT�
 /2M = fE

Th /2M, which can
be used to quickly estimate the jamming gap of a nearly
jammed packing from just the interparticle gaps �
=
 and
the interparticle forces, without knowing the actual jamming
point �2�.

VI. NUMERICALLY TESTING FOR JAMMING IN
HYPOCONSTRAINED ELLIPSOID PACKINGS

In this section we will apply the criteria for jamming and
the algorithm to test for jamming from Sec. V C to our com-
putationally generated hypoconstrained packings of ellip-
soids. This section is technical and may be skipped or
skimmed by readers not interested in the mathematical for-
malism of jamming. The numerical results show that the
packings are indeed second-order jammed, even very close
to the sphere point. Before discussing the numerical details
of the algorithm, we need to calculate the first and second-
order derivatives of the overlap potential for ellipsoids.

A. Overlap potentials for ellipsoids

Numerical algorithms for calculating the PW overlap po-
tential 
=�2−1 for ellipsoids are presented in the second
part of Ref. �15�. Here we review the essential notation and
give the first and second-order derivatives of the overlap po-
tential, necessary to build the rigidity and stress matrices for
a given packing.

An ellipsoid is a smooth convex body consisting of all
points r that satisfy the quadratic inequality

�r − r0�TX�r − r0� � 1, �23�

where r0 is the position of the center �centroid�, and X is a
characteristic ellipsoid matrix describing the shape and ori-
entation of the ellipsoid

X = QTO−2Q , �24�

where Q is the rotational matrix describing the orientation of
the ellipsoid, and O is a diagonal matrix containing the major
semi-axes of the ellipsoid along the diagonal. Consider two
ellipsoids A and B and denote

Y = �XB
−1 + �1 − ��XA

−1, �25�

where � is defined in Sec. III. The contact point rC of the two
ellipsoids is

rC = rA + �1 − ��XA
−1n = rB − �XB

−1n , �26�

where

n = Y−1rAB �27�

is the un-normalized common normal vector at the point of
contact.

In principle the overlap potential is a function of the nor-
malized quaternions describing the particle orientations, and
derivatives of 
 need to be projected onto the unit quaternion
sphere. This projection can be avoided if we do not do a
traditional Taylor series in the quaternions, namely, an addi-
tive perturbation �q, but rather consider a multiplicative per-
turbation to the quaternions in the form of a small rotation
from the current configuration ��.

1. First-order derivatives

The gradient of the overlap potential, which enters in the
columns of the rigidity matrix, can be shown to be

�B
 = − �A
 = ��rB



��B


� = 2��1 − ��� n

rBC � n
� ,

as we derived in Sec. III A 1 for a general convex particle
shape by using the normalized normal vector n̂=n / �n� �note
that 
=��1−��rAB

T n−1=0�. Additionally, it is useful to know
the derivatives of �,

�rB
� = −

2

f��

ñ ,

where

f�� = 2
rBC

T Y−1rAC

��1 − ��
� 0,

ñ = �nB + �1 − ��nA = �Y−1rAC + �1 − ��Y−1rBC

and

��B
� = −

2

f��

�MBnA − ��rBC � n�� ,

where

MB = �NLXB
−1 + RCB

L .

2. Second-order derivatives

The explicit expressions for the Hessian of the overlap
potential are

�rB

2 
 = 2��1 − ��Y−1 −
4

f��

�ññT� � 0 ,

��BrB

2 
 = 2��1 − ��MBY−1 + 2����B
��ñT�

and finally
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��B

2 
 = − f������B
�����B

��T�

+ 2��1 − ����1

2
�rBCnT + nrBC

T � − �rBC
T n�I�

+ �NLXB
−1NR + MBY−1MB

T� .

The derivatives with respect to the position and orientation
of particle A can be obtained by simply exchanging the roles
of particles A and B, however, there are also mixed deriva-
tives involving motion of both particles

��BrA

2 
 = − ��BrB

2 


��ArB

2 
 = − ��ArA

2 


��B�A

2 
 = − ��B

2 
 + ���BrB

2 
�RAB
R −

1

2
���B


��.

The stress-matrix is built from these blocks as given in Eq.
�20�, where each of the four blocks ���

2 
 �� and � denote
either A or B� involves both translations and rotations,

���
2 
 = � �r�

2 
 ���r�

2 


�r���

2 
 �r�

2 

� .

B. Numerically testing for jamming

The numerical implementation of the algorithm given in
Sec. V C poses several challenges. The most important issue
is that that algorithm was designed for ideal packings, that is,
it was assumed that the true contact network of the packing
is known. Packings produced by the MD algorithm, although
very close to jamming �i.e., very high pressures�, are not
ideal. In particular, it is not trivial to identify which pairs of
particles truly touch at the jamming point. Disordered pack-
ings have a multitude of near contacts that play an important
role in the rigidity of the packing away from the jamming
point �41�, and these near contacts can participate in the
backbone �force-carrying network� even very close to the
jamming point. Additionally, not including a contact in the
contact network can lead to the identification of spurious
unjamming motions, which are actually blocked by the con-
tact that was omitted in error.

For hard spheres, the algorithms can use linear program-
ming to handle the inclusion of false contacts �11�. For ellip-
soids, we look at the smallest eigenvalues of ATA, i.e., the
least-square solution to Af=0. The solution will be positive
if we have identified the true contact network, f�0, but the
inclusion of false contacts will lead to small negative forces
on those false contacts. The problem comes about because
the calculation of the self-stress by just looking at the rigidity
matrix does not take into account the actual proximity to
contact between the particles. One way to identify the true
contact network of the packing is to perform a long molecu-
lar dynamics run at a fixed density at the highest pressure
reached, and record the list of particle neighbors participat-

ing in collisions as well as average the total transfer of col-
lisional momentum between them in order to obtain the
�positive� contact forces �2�.

Once the contact network is identified, we want to look
for null vectors of the rigidity matrix. This can be done using
specialized algorithms that ensure accurate answers �42�,
however, we have found it sufficient in practice to simply
calculate the few smallest eigenvalues of the semi-definite
matrix ATA. We used MATLAB’s sparse linear algebra tools to
perform the eigenvalue calculation �internally MATLAB uses
the ARPACK library, which implements the implicitly re-
started Arnoldi method�. We consistently found that the
smallest eigenvalue is about 3−6 orders of magnitude
smaller than the second-smallest eigenvalue, indicating that
there is a near linear-dependency among the columns of A in
the form of a self-stress. The self-stress, which is simply the
eigenvector corresponding to the near-zero eigenvalue, was
always strictly positive; in our experience, disordered pack-
ings of ellipsoids have a unique strict self-stress f. This
means that there are Nfloppy=Nf +1−M solutions to AT�Q
=0, Nf −M of which are exact, and one which is approximate
�corresponding to the approximate self-stress�. This can be
seen, for example, by calculating the eigenvalues of AAT,
since Nf −M will be zero to numerical precision, one will be
very small, and the remaining ones will be orders of magni-
tude larger.

Verification of second-order jamming. Once a strict self-
stress is known, second-order jamming or flexibility can be
determined by examining the smallest eigenvalue of HV,
which requires finding a basis for the linear space of floppy
modes. However, it is computationally demanding to find a
basis for the null-space of AT due to the large number of
floppy modes, and since sparsity is difficult to incorporate in
nullspace codes. There are algorithms to find sparse basis for
this null-space �42�, however, we have chosen a different
approach.

Namely, we calculate the smallest eigenvalues of

Hk = kAAT − H ,

which as we saw in Sec. VIII B is the Hessian of the poten-
tial energy for a system of deformable ellipsoids where the
stiffness coefficients are all k. For very large k �we use k
=106�, any positive eigenvalue of AAT is strongly amplified
and not affected by H, and therefore only the floppy modes
can lead to small eigenvalues of Hk, depending on how they
are affected by H. We have found that MATLAB’s eigs func-
tion is not able to converge the smallest eigenvalues of Hk
for large stiffnesses k, however, the convergence is quick if
one asks for the eigenvalues closest to zero or even closest to
−1. This typically reveals any negative eigenvalues of Hk
and the corresponding floppy modes.

It is also possible to perform a rigorous numerical test for
positive-definiteness of Hk using properly rounded IEEE ma-
chine arithmetic and MATLAB’s �sparse� Cholesky decompo-
sition of a numerically reconditioned Hk �43�. We have used
the code described in Ref. �43� to show that indeed for our
packings Hk�0 and therefore the packings are second-order
jammed. For spheroids, that is, ellipsoids that have an axes
of symmetry, there will be trivial floppy modes correspond-
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ing to rotations of the particles around their own centroid.
These can be removed most easily by penalizing any com-
ponent of the particle rotations �� that is parallel to the axis
of symmetry. For example, one can add to every diagonal
block of Hk corresponding to the rotation of an ellipsoid with
axes of symmetry u a penalization term of the form kuuT.

We have not performed a detailed investigation of a very
wide range of samples since our goal here was to simply
demonstrate that under appropriate conditions the packings
we generate using the modified Lubachevsky-Stillinger algo-
rithm are indeed jammed, even though they are very hypo-
constrained near the sphere point. In this work we have given
the fundamentals of the mathematics of jamming in these
packings. A deeper understanding of the mechanical and dy-
namical properties of nearly jammed hypoconstrained ellip-
soid packings is a subject for future work.

VII. NEARLY JAMMED PACKINGS

So far we have considered ideal jammed packings, where
particles are exactly in contact. Computer-generated pack-
ings however always have a packing fraction � slightly
lower than the jamming packing fraction �J, and the par-
ticles can rattle �move continuously� to a certain degree if
agitated thermally or by shaking �2�. We can imagine that we
started with the ideal jammed packing and scaled the particle
sizes by a factor �=1−��1, so that the packing fraction is
lowered to �=�J�1−��d. We call � the jamming gap or dis-
tance to jamming.

It can be shown that if � is sufficiently small the rattling
of the particles does not destroy the jamming property, in the
sense that the configuration point Q=QJ+�Q remains
trapped in a small jamming neighborhood or jamming basin
J�Q�RNf around QJ, which can be shown rather generally
using arguments similar to those in Ref. �13� for tensegrities.
In the limit �→0 the set of accessible configurations J�Q
→ �QJ	, and in fact this is the definition of jamming used by
Salsburg and Wood in Ref. �44�. Rewritten to use our termi-
nology, this definition is: “A configuration is stable if for
some range of densities slightly smaller than �J, the configu-
ration states accessible from QJ lie in the neighborhood of
QJ. More formally, if for any small ��0 there exists a �
�0 such that all points Q accessible from QJ satisfy �Q
−QJ��� provided �	�J�1−��d.” We call this the trapping
view of jamming, most natural one when considering the
thermodynamics of nearly jammed hard-particle systems
�45�. Note that the trapping definition of jamming is in fact
equivalent to our kinematic definition of jamming �13�.

To illustrate the influence of the constraint curvature on
jamming, we show in Fig. 6 four different cases with two
constraints in two dimensions. In all cases a self-stress exists
since the normals of the two constraints are both horizontal.
If both constraint surfaces are concave �have negative or out-
ward curvature�, as constraints always are for hard-spheres,
two constraints cannot close a bounded region J�Q around
the jamming point. One needs at least three constraints and
in that case J�Q will be a curved triangle. If however at least
one of the constraints is convex �has positive curvature�, two
constraints can bound a closed jamming basin. Specifically,

if the sum of the radii of curvatures of the two constraints at
the jamming point R1+R2 is positive, there is no unjamming
motion. On the other hand, if it is negative then there is an
unjamming motion in the vertical �floppy� direction. This is
equivalent to looking at the smallest eigenvalue of the stress
matrix in higher dimensions.

The jamming basin J�Q��� for a given jamming gap � is
the local solution to the relaxed impenetrability equations


��Q� 	 − 
� = 1 − � 1

1 − �
�2

.

One way to determine J�Q��� for a wide range of �’s is to
consider the function of the particle displacements

�̃��Q� = �1 + min�
��Q�� − 1, �28�

that is, to calculate by how much the particles need to be
shrunk to make a given particle displacement �Q feasible
�preserving nonoverlapping�. The contours �level-sets� of the

function �̃��Q� denote the boundaries of J�Q���, that is,

J�Q���= ��Q � �̃��Q���	.

A. First-order jammed packings

As a simple but illustrative example, we will consider a
single mobile disk jammed between three other stationary
disks, as shown in Fig. 7, an analog of the ellipse example
from Fig. 5. This packing is first-order jammed, and the fig-

ure also shows a color plot of the function �̃��Q� along with
its contours. It is seen that for small � the jamming basin
J�Q is a closed curved triangle.

These observations are readily generalized to higher di-
mensions. For sufficiently small �, the jamming basin ap-

FIG. 6. �Color online� The feasible region around a jamming
point �black circle� for two curved constraints in two dimensions
�black circles�. The region of the plane forbidden by one of the
constraints is colored red and colored blue for the other constraint.
The region forbidden by both constraints is purple. The distance
from the jamming point to the constraints is approximately � and
chosen small. Four cases are shown, going from left to right. �a�
Both constraints are concave and the region is not bounded. Moving
along the vertical direction unjams the system �this is typical of
hard spheres�. �b� Both constraints are convex and the yellow re-
gion is closed, even though it is very elongated along the vertical
direction �of order ���. This is an example of pre-stress stability
�second-order jamming�. �c� One of the constraints is convex, but
not enough to block the unjamming motion in the vertical direction.
The motion has to curve to avoid the convex constraint, i.e., a
nonzero acceleration is needed to unjam the system �second-order
flexible�. �d� Only one of the constraints is convex, but enough to
close the yellow region �second-order jammed�. If the radii of cur-
vatures R1 and R2 are very close in magnitude, this region can
become a very elongated bananalike shape.
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proaches a convex jamming polytope �a closed polyhedron
in arbitrary dimension� P�Q. For spheres all constraint sur-
faces are concave and therefore P�Q�J�Q �44,46�. The
jamming polytope is determined from the linearized impen-
etrability equations

AT�Q 	 − 
� � − 2� , �29�

and we can see that its volume, which determines the �non-
equilibrium� free-energy, scales as �Nf. This leads to the free-
volume divergence of the pressure in the jamming limit

p =
PV

NkT
�

df

1 − �/�J
, �30�

which has been verified numerically for disordered isocon-
strained hard sphere packings �2�.

B. Second-order jammed packings

The ellipse analog from Fig. 5 has three degrees of free-
dom, two translational and one orientational. If we fix the
orientation of the �mobile� ellipse, that is, we take a planar

cut through �̃��Q�, the situation is identical to that for the
disk example above: For small � the jamming basins J�Q are
closed curved triangles. However, the range of accessible
orientations is rather large, on the order of ��, since even for
a small � the ellipse can rotate significantly. This is a conse-
quence of the rotation of the ellipse being a floppy mode, and
only being blocked by second-order effects as given by the
curvature of the impenetrability constraints. In a certain
sense, the packing is trapped to a greater extent in the sub-
space of configuration space perpendicular to the space of
floppy modes than it is in the space of floppy modes. This is
illustrated in Fig. 8.

C. Pressure scaling for hypostatic jammed ellipsoid packings

The observations in Fig. 8 are readily generalized to
higher dimensions, however, it is no longer easy to determine

the volume of J�Q �and thus the free energy� in the jamming
limit. If we consider the simple two-constraint example in
Fig. 6, we find that the area A of the feasible region scales
as �3/2 instead of �2,

A =
16

3
� R1R2

R1 + R2
�3/2.

An obvious generalization of this result to higher dimensions
can be obtained by assuming that the jamming basin J�Q has
extent �� along all Nfloppy�Nf −M directions corresponding
to floppy modes, where as it has extent � along all other
perpendicular directions. The volume would then scale as

�J�Q� � �M��Nf−M�/2 = �N�df/2+Z̄/4� = �Ndf�1+s�/2,

where we quantify the hypostaticity of the packing by s

= Z̄ /2df. The corresponding scaling of the pressure in the
jamming limit is

p =
PV

NkT
�

df�1 + s�/2
1 − �/�J

.

However, as � becomes very small, the jamming region
becomes so elongated along the space of floppy modes that
the time-scales for rattling along the elongated directions
becomes much larger than the time for rattling in the perpen-
dicular directions. This manifests itself as a remarkably large
and regular oscillation of the “instantaneous” pressure �as
measured over time intervals of tens of collisions per par-
ticle� during molecular-dynamics runs at a fixed �, as illus-
trated in Fig. 9. The oscillations are more dramatic the
smaller � is, and can span six or more orders of magnitudes
of changes in the instantaneous pressure. The period of
oscillation, as measured in numbers of collisions per particle,
is dramatically affected by the moment of inertia of the el-
lipsoids I, most naturally measured in units of mO2, where m
is the particle mass and O is the �say smallest� ellipsoid
semiaxis.

FIG. 7. �Color online� �Top� An example of a mobile disk jammed between three fixed disks. This is analogous to the ellipse packing

shown in Fig. 5. �Bottom� A color plot of the function �̃��Q� for this disk packing along with its contours �level sets�.
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We do not understand the full details of these pressure
oscillations, however, it is clear that dynamics near the jam-
ming point for the hypoconstrained ellipsoid packings is not
ergodic on small time scales. In particular, as a packing is
compressed during the course of the packing algorithm, the
time scale of the compression may be shorter than the time
scale of exploring the full jamming basin. Over shorter time
scales the packing can only explore the directions perpen-
dicular to the floppy modes, and in this case we expect that
the pressure would scale as

p �
dfs

1 − �/�J
.

In Fig. 10 we show C= p�1−� /�J� as a function of the jam-
ming gap for compressions of systems of ellipses of different
aspect ratios close to unity. The compression started with a
dense liquid and the particles were grown slowly at an ex-
pansion rate �=10−5 to a high pressure �jamming� p=109.
The figure shows for each aspect ratio the lower bound CL
=dfs=3s and the upper bound CU=df�1+s� /2=1.5�1+s�,
where s was calculated by counting the almost perfect con-

FIG. 8. �Color online� �Left� A plot of the function �̃��Q� for the packing from Fig. 5. The horizontal axes correspond to the translational
degrees of freedom and the vertical to the rotational degree of freedom �the rotation angle of the major axes�. The �Q=0 cut is also shown
�horizontal colored plane�, to be compared to the right part of Fig. 7. We also show the jamming basin J�Q��=0.0035� �dark blue region�,
illustrating that this region is shaped like a banana, elongated along the direction of the floppy mode. �Right� Several contours �isosurfaces�
of �̃��Q�, bounding the banana-shaped regions J�Q���.
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FIG. 9. �Color online� The “instantaneous” reduced pressure for
a jammed hypoconstrained packing of three-dimensional ellipsoids
with semi-axes ratio 1.025−1: 1: 1.025, at different �estimated� dis-
tances from the jamming point �. Molecular dynamics runs using a
natural moment of inertia of the particles as well as ones using a
much smaller moment of inertia are shown. The pressure oscilla-
tions are sustained for very long periods of time, however, it is not
clear whether they eventually dissipate.
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FIG. 10. �Color online� The pressure scaling coefficient C
= p�1−� /�J� as systems of hard ellipses are compressed from a
dense liquid to the jamming point. The value of C is not constant;
however, it seems to remain between the bounds CL �shown with a
dashed line in the same color as C� and CU �shown with a solid
line�.
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tacts at the highest pressure �2�. As expected from the argu-
ments above, we see that very close to the jamming point
C�CL, however, further away from jamming C�CU. For
packings that are not hypoconstrained CL=CU=df, and for
disks CU=CL=2.

VIII. ENERGY MINIMA IN SYSTEMS OF DEFORMABLE
PARTICLES

In this section we consider the connections between jam-
ming in hard particle packings and stable �local� energy
minima �inherent structures �23�� for systems of deformable
�soft� particles. This has a twofold purpose. Firstly, in physi-
cal systems particles are always deformable, and therefore it
is important to establish that the hard-particle conditions for
jamming we established in Sec. V are relevant to systems of
deformable particles. We expect that if the particles are suf-
ficiently stiff, to be made more quantitative shortly, the be-
havior of the soft-particle system will approach that of the
corresponding hard-particle packing. Secondly, considering
the conditions for the existence of a stable energy minimum
will enable us to derive in a simpler fashion and better un-
derstand the jamming conditions from the previous section.

We consider systems with short-ranged continuous inter-
particle potentials that are a monotonically decreasing func-
tion E of the overlap between particles

Uij = E�
�qi,q j�� . �31�

That is, we assume that the elastic behavior of the particles is
such that the interaction energy only depends on the distance
between the particles as measured by the overlap potential 
.
An example of such an elastic potential is an inverse power
law

E�
� = �1 + 
�−�, �32�

which in the limit �→� approaches a hard-particle interac-
tion

EH�
� = �0 if 
 � 0,

� if 
 � 0.
�

For sufficiently large power exponents � the interaction is
localized around particles in contact and the overall energy

U = �
ij

Uij → max
ij

Uij = �1 + min
ij


ij�−� = �1 + �̃2�−�

is dominated by the most overlapping pair of particles �see

Eq. �28� for the definition of �̃�. Additionally, as � grows the
interparticle potential becomes stiff in the sense that small
changes in the distance between the particles cause large
changes of the interparticle force

f = −
dE

d

	 0

and the stiffness coefficient

k =
d2E

d
2 	 0

becomes very large and positive. This indicates a physical
interpretation of the hard-particle interaction potential: It is
the limit of taking an infinite stiffness coefficient while the
force between particles is kept at some non-negative value,
which can be tuned as desired by infinitesimal changes in the
distance between the particles �but note that the forces in
different contacts are correlated since the motion of particles
affects all of them simultaneously�.

A. Stable energy minima correspond to jammed packings

Assume that we have a packing of hard particles and that
we can find a set of interparticle interaction potentials Uij for
the geometric contacts such that the configuration is a stable
energy minimum. This means that any motion of the par-
ticles leads to increasing the energy U, i.e., to overlap of
some pair of particles. Therefore, the packing of hard par-
ticles is jammed. This gives a simple way to prove that a
given packing is jammed: Find a set of interparticle poten-
tials that makes the configuration a stable energy minimum
�12,13�. We examine the conditions for a stable energy mini-
mum when the interaction potentials are twice differentiable
next.

The converse is also true, in the sense that arbitrarily near
a jammed packing there is an energy minimum for a suffi-
ciently “hard” interaction potential �in some cases the poten-
tial energy U may have to be discontinuous at the origin
�12��. We demonstrate this in the examples from Figs. 7 and
8 for a power-law interaction potential with increasing expo-
nent � in Figs. 11 and 12, respectively. It is clear that in the
limit p→�, the contours of the interaction potential become

those of �̃��Q� and are thus closed near the origin, i.e., the
energy has a minimum. The higher the exponent p is, how-
ever, the more anharmonic the interaction potential becomes
and the contours are no longer ellipsoidal near the energy
minimum.

It should be emphasized that the energy minima in soft-
particle systems have a variable degree of overlap between
neighboring particles and therefore do not correspond to
hard-particle packings. In particular, at large pressures or ap-
plied forces the deformability of the particles becomes im-
portant and the energy minima no longer have the geometric
structure of packings. However, in the limit of no externally
applied forces, i.e., f→0, the only interacting particles are
those that barely overlap, i.e., that are nearly touching.
Therefore energy minima for purely repulsive interaction po-
tentials and a finite cutoff correspond to jammed packings of
hard particles in the limit of zero external pressure �alterna-
tively, one can keep the applied forces constant and make the
grains infinitely stiff �6��. Therefore, the packings of soft
particles studied in Ref. �3� very slightly above the “jamming
threshold” �c are closely related to collectively jammed ideal
packings of spheres of diameter D=� �polydispersity is
trivial to incorporate� �47�.
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B. Hessian eigenvalues and jamming

It is well known that for smooth interactions a given con-
figuration is a stable energy minimum if the gradient of the
energy is zero and the Hessian is positive definite, and the
converse is also true if positive definite is replaced with posi-
tive semidefinite. This has been used as a criterion for jam-
ming in systems of deformable particles �3,47�.

The gradient of U=�ijUij is

�QU = �
ij

dE

d
ij
��Q
ij� = ��Q
���
E� = A��
E� = − Af .

The first-order necessary condition for a stable energy mini-
mum is therefore exactly the force/torque balance condition

Af = 0 and f 	 0,

as we derived using linear programming and duality theory
for hard-particle packings. The Hessian is

�Q
2 U = ��Q��
E��AT + ��Q

2 
���
E�

= �A��

2E��AT + ��QA���
E�

= AKAT − Hf = AKAT − H ,

where K=�

2�=Diag�kij	 is an �M �M� diagonal matrix

with the stiffness coefficients along the diagonal, and H
=�QA=�Q

2 
 is the Hessian of the overlap constraints. Note
that more careful notation with derivatives of vectors and
matrices can be developed and should in principle be em-
ployed in calculations to avoid confusions about the order of
matrix multiplications and transpositions �48�.

The Hessian

HU = �Q
2 U = AKAT − H

consists of two terms, the stiffness matrix HK=AKAT, and
the stress matrix H that we already encountered in the
second-order expansion of the impenetrability constraints.
The importance of not neglecting the stress matrix is also
noted independently in Ref. �20�, where also expressions are
given for this matrix for certain types of contact geometry.

The second-order sufficient condition for a strict energy
minimum is

HU � 0 .

Since K�0, the stiffness matrix HC is positive-semidefinite:
For any vector �Q that is not a floppy mode, �QTHK�Q
�0, while �QTHK�Q=0 if �Q is a floppy mode �i.e.,

FIG. 11. �Color online� The total interaction energy U��Q� for the example in Fig. 7 when the disks are deformable and interact via a
power-law potential. We show U as a color plot with overlaid contours for power exponents �=12,25, and 100 �going from left to right�.
Compare the �=100 case to the contours of �̃��Q� in Fig. 7.

FIG. 12. �Color online� The contours �isosurfaces� of the total interaction energy U��Q� for the example in Fig. 8 when the ellipses are

deformable and interact via a power-law potential. Going from left to right, we show �=12 and 25, as well as the hard ellipsoid �̃��Q�,
corresponding to the limit �→�.
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AT�Q=0�. Therefore, for any direction of particle motion
that is not a floppy mode, one can make the stiffness coeffi-
cients large enough to make �QTHK�Q�0, regardless of
the value of �QTH�Q. Floppy modes, however, correspond
to negative curvature directions of the Hessian HU if they are
positive-curvature directions of the stress matrix,
�QTH�Q�0. Therefore, the energy minimum is strict if
and only if the stress matrix is negative-definite on the space
of floppy modes. This is exactly the same result as the
second-order condition for jamming we derived in Sec. V
using duality theory.

For deformable particles, the stiffness coefficients are fi-
nite. Therefore, for sufficiently large interparticle forces, the
stress matrix may affect the eigenspectrum of the Hessian
HU and therefore the stability of potential energy minima.
For cohesionless �f�0� spheres, as we derived earlier, H
�0 and therefore interparticle forces may only destabilize
packings: This is the well known result that increasing the
interparticle forces leads to buckling modes in sphere pack-
ings �10�. Jamming in systems of soft spheres is therefore
considered in the limit of f→0, i.e., the point when particles
first start interacting �3,41�. For ellipsoids however, the
forces can, and in practice they do, provide stability against
negative or zero-frequency vibrational modes. The magni-
tude of the forces becomes important, and will determine the
shape of the density of states �DOS� spectrum �41� for small
vibrational frequencies. To quote from Ref. �10�, “ The basic
claim … is that one cannot understand the mechanical prop-
erties of amorphous materials if one does not explicitly take
into account the direct effect of stresses.”

The density of states �vibrational modes� in packings of
soft spheres has been the subject of recent interest
�41,49,50�. In particular, a Boson peak of low-frequency
modes has been identified and attributed to the marginal ri-
gidity �isostaticity� of the packings �49�. The effect of pre-
stresses �pressure� on the density of vibrational modes has
also been studied �50�. Such studies should be carried out
also for packings of soft ellipsoids. In this case additional
low-frequency modes will appear due to the floppy modes,
especially at low pressures and for nearly spherical ellip-
soids. These floppy modes will affect the mechanical re-
sponse of the system, and there will be a subtle interplay
between the low-frequency modes due to the marginal rigid-
ity and those that appear because of the floppy modes inher-
ent to hypoconstrained systems.

C. An example of pre-stress stability

Figure 13 shows a very simple example in which pre-
stressing, i.e., pre-existing forces, stabilize a structure. Al-
though the example is not a packing, it illustrates well some
of the essential features. First, the geometry of the system is
degenerate, since the two springs are exactly parallel. This
degeneracy insures that a self-stress exists, since one can
stretch/compress both springs by an identical amount and
still maintain force balance.

Observe that geometrically the change in the position of
the joint �x causes a quadratic change in the length of each
spring �l��x2. To balance an applied force F, the force

inside each spring f needs to be f�x=F. If the system is not
prestressed, then the potential energy is quartic around the
origin, �U= 1

2k�l2� 1
2k�x4, and the applied force causes a

very large deformation of the structure �x= �F /k�1/3. The
structure is stable �i.e., corresponds to a jammed packing�,
however, its response to perturbations is not harmonic. If,
however, there is an initial force f in the springs, then the
potential energy is quadratic around the origin �U� f�l
= f�x2 and the deformation is linear in the applied force
�x=F / f . If f �0, then the system is unstable and will
buckle, and if f �0 the system is stable and its response to
perturbations is harmonic. This is exactly the form of stabil-
ity that hypoconstrained ellipsoid packings have.

It is instructive to compare the simple example in Fig. 13
with the example given in Fig. 5. In the latter there is also a
single floppy mode. Let the small displacement of the central
mobile particle along this floppy mode, due to an applied
torque �, be �q. This involves both a small rotation and a
small displacement of the centroid, and causes a quadratic
change in the contact distances �l��q2. If the packing is
prestressed by a slight compression �or expansion of the cen-
tral ellipse�, so that the contact forces are a positive multiple
of the self-stress, f=�fself, ��0, then the potential energy is
quadratic, �U= fT�l���q2. The deformation needed to re-
sist the applied torque is determined from �= fT�N=��q
�fself

T �qN�, i.e., �q�� /�. Here �qN denotes the sensitivity
of the normal vectors N �represented in a suitable matrix
form� at the points of contact with respect to the position of
the mobile ellipse. The response of the system is therefore
strongly dependent upon the magnitude of the pre-stress �,
just as the response in the example in Fig. 13 is dependent
upon f .

IX. PACKINGS OF NEARLY SPHERICAL ELLIPSOIDS

In this section we will consider nearly spherical ellip-
soids, that is, ellipsoids with aspect ratio � close to unity. In
particular, we try to understand why these packings are hy-
poconstrained and to quantitatively explain the sharp rise in
the density and contact numbers of disordered packings as
asphericity is introduced. We propose that the packings of
nearly spherical ellipsoids should be looked at as continuous
perturbations of jammed disordered sphere packings, and es-
tablish the leading order terms in the expansion around the
sphere point.

A. Rotational and translational degrees
of freedom are not equal

One might at first sight expect a discontinuous change in
the contact number, and therefore the structure, as aspheric-
ity is introduced. After all, the number of degrees of freedom
jumps suddenly from df =d to �for nonspheroids� df =d�d
+1� /2�d. However, such an expectation is not reasonable.
First, the number of degrees of freedom is df =d�d+1� /2
even for spheres, since spheres can rotate too. This rotation
does not affect the non-overlap conditions and therefore is
not coupled to translational degrees of freedom. If the ellip-
soids are nearly spherical, particle rotation is only mildly

UNDERCONSTRAINED JAMMED PACKINGS OF… PHYSICAL REVIEW E 75, 051304 �2007�

051304-25



coupled to particle translations and rotation only affects the
non-overlap conditions very close to the jamming point. This
is seen, for example, through a violation of the equipartition
theorem in nonequilibrium MD simulations of hard ellip-
soids, depending on the moment of inertia of the particles
and the time scale of the system evolution. We therefore
expect that thermodynamically and kinetically, at least at the
level of translations, systems of nearly spherical ellipsoids
will behave identically to systems of spheres until the inter-
particle gaps become comparable to the difference between
the semiaxes. It is therefore not really surprising that the

properties of the jammed packings such as �J or Z̄ change
continuously with �.

What is somewhat surprising, however, is that �J and Z̄
are not differentiable functions of particle shape. In particu-
lar, starting with a unit sphere and changing a given semiaxes
by +��1 increases the density linearly in �, and changing it
by −� also increases the density by the same amount, ��J
����. As we will show through our calculations, this nondif-
ferentiability is a consequence of the breaking of rotational
symmetry at the sphere point. The particle orientations them-
selves are not differentiable functions of particle shape and
change discontinuously as the sphere point is crossed.

Finally, there is little reason to expect packings of nearly
spherical particles to be rotationally jammed. After all,
sphere packings are never rotationally jammed, since the
spheres can rotate in place arbitrarily. Similarly, near the
jamming point, it is expected that particles can rotate signifi-
cantly even though they will be translationally trapped and
rattle inside small cages, until of course the actual jamming
point is reached, at which point rotational jamming will also
come into play. It is therefore not surprising that near the
sphere point, the parameters inside the packing-generation
protocol, such as the moment of inertia of the particles and
the expansion rate of the particles, can significantly affect the
final results. In particular, using fast particle expansion or too
large of a moment of inertia leads to packings that are clearly
not rotationally jammed, since the torques are not balanced,
however, they are translationally jammed and have balanced
centroid forces. We do not have a full understanding of the
dynamics of our packing-generation algorithm, even near the
jamming point.

In this paper we will focus on packings that are also ro-
tationally jammed. In general one may need to distinguish

between translational and rotational jamming. For example,
the ellipsoid packing produced by simply stretching the crys-
tal packing of spheres along a certain axis by a scaling factor
of � is translationally but not rotationally �strictly �11��
jammed. This is because by changing the axis along which
the stretch is performed one gets a whole family of ellipsoid
packings with exactly the same density. Therefore, it is pos-
sible to shear the packing by changing the lattice vectors
used in the periodic boundary conditions, without changing
the density, as illustrated in Fig. 14 in two dimensions.

Isostatic packings are translationally ordered. As we al-
ready demonstrated, in order for a hypoconstrained packing
of ellipsoids to be jammed, the packing geometry must be
degenerate. The existence of a self-stress f requires that the
orientations of particles be chosen so that the torques are
balanced in addition to the forces on the centroids. This leads
to a loss of “randomness” in a certain sense, since the num-
ber of jammed configurations is reduced greatly by the fact
that geometrically “special” �not generic� configurations are
needed to balance the torques.

However, it is also important to point out that disordered
isoconstrained packings of nearly spherical ellipsoids are
hard to construct. In particular, achieving isocounting near
the sphere point requires translational ordering. In two di-
mensions, the average number of contacts per particle

needed is Z̄=6, however, the maximal kissing number near
the sphere point is also Zmax=6. Therefore the only possibil-
ity is that every particle have exactly Z=6 contacts. This
inevitably leads to translational ordering on a triangular lat-
tice. In other words, the only isoconstrained packing of el-
lipses in the limit �→1 is the hard disk triangular crystal.

Similarly, in three dimensions, Z̄=Zmax=12 for nonsphe-
roids, and therefore every particle must have exactly Z=12
neighbors. While it not rigorously known what are the sphere
packings with all particles having twelve neighbors, it is
likely that only stacking variants of the fcc/hcp lattice
achieve that property. For spheroids, the isoconstrained num-

ber of contacts is Z̄=10 and the results in Fig. 1 indicate that
this value is nearly reached for sufficiently large aspect ra-
tios. For nonspheroids, however, we only observe a maxi-
mum of 11.4 contacts per particle, consistent with the fact
that achieving the isoconstrained value requires more trans-
lational ordering.

B. Two near spheres (nearly) touching

In what follows we will need first-order approximations
of the impenetrability constraints between two nearly spheri-
cal ellipsoids. Assume there are two spheres A and B of
radius OA/B touching. Transform the spheres into ellipsoids
with semiaxes OI+�O, and orientation described by the ro-
tation matrix Q, and denote �O=O−1�O. Finally, define the
matrix

T = QT�OQ ,

which in the case of turning a disk into an ellipse with semi-
axes O and O�1−��, i.e., aspect ratio �=1+�, ��1, be-
comes

FIG. 13. �Color online� An example of a pre-stress stable sys-
tem. Two elastic springs of stiffness k and length l are connected via
a joint that can move in the horizontal direction under the influence
of an external force F.
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T = − �� sin2 � − sin � cos �

− sin � cos � cos2 �
� = − �T�,

where � is the angle of orientation of the ellipse. It can be
shown that to first order in � the new distance between the
ellipsoids is

�
 = 2uAB
T SuAB,

where

S =
OA

OA + OB
TA +

OB

OA + OB
TB.

The torque exerted by the contact force f= fn on a given
particle, to first order in asphericity �, comes about because
the normal vector no longer passes through the centroid of
the particle �as it does for spheres�. One can ignore the small
changes in the magnitude of the normal force or the change
in the contact point rC, and only consider the change in the
normal vector

n � Xu � �I − 2T�u = u − 2Tu ,

giving a torque

� = rC � f � 2of�Tu� � u .

C. Maintaining jamming near the sphere point

Assume now that we have a collectively jammed isocon-
strained sphere packing with density �J

S and that we want to
make the disks slightly ellipsoidal by shrinking them along a
given set of axes, while still preserving jamming. Keeping
orientations fixed, one can expand each near sphere by a
scaling factor �� and displace each centroid by �r, so that
all particles that were initially in contact are still in contact.
Note that because the matrix S is proportional to �, so will
�� and �R. In other words, the change in the density will be
linear in asphericity. However, the value of the slope depends
on the choice of orientations of the ellipsoids. Referring back
to Sec. V D 2 we see that to first order in �, �� is

�� =
1

M
fT�
 =

1

M
�
�i,j	

f ijuij
TSijuij =

1

2M
�

i
�

j�N�i�
f ijuij

TTiuij ,

giving a new jamming density

�J/�J
S = �1 + ���d�

k=1

d

�1 + �i
O� � 1 + d�� + eT�O.

Keeping all ellipsoids aligned produces an affine deforma-
tion of the sphere packing that has the same jamming den-
sity, but is not �first-order� jammed. Therefore, the true jam-
ming density must be higher �J	�J

S. This explains why the
jamming density increases with aspect ratio near the sphere
point. The added rotational degrees of freedom allow one to
increase the density beyond that of the aligned �nematic�
packing, which for ellipsoids has exactly the same density as
the sphere point.

Can we find a set of orientations for the ellipsoids so that
the resulting packing is jammed? The first condition for jam-
ming is that there exist a self-stress that balances both forces
and torques on each particle. Just from the force-balance
condition, one can already determine the interparticle forces
f. These will change little as one makes the particles slightly
aspherical, because the normal vectors barely change. There-
fore, the self-stress is already known a priori, without regard
to the choice of particle orientations. The orientations must
be chosen so that the torques are also balanced. As shown
above, to first order in asphericity �, the torque balance con-
dition for particle i is

�
j�N�i�

f ij�Tiuij� � uij = �
j

f ijUijTiuij = 0. �33�

This gives for each particle a set of possible orientations,
given the contact network of the isoconstrained sphere pack-
ing. The torque balance condition �33� is in fact the first-
order optimality condition for maximizing the jamming den-
sity, as expected. It is worth pointing out that for a random
assignment of orientations to ellipses the expected change in
density is identically zero; in order to get an increase in the
density one must use orientations correlated with the trans-
lational degrees of freedom.

Ellipses. In two dimensions, for a particular contact with
u= �cos � , sin �� we have the simple expressions

uT�u = sin2�� − �� ,

u � �T�u� =
1

2
sin�2�� − ��� .

Considering 2� as the variable, one easily finds the solution
to Eq. �33�

2� = arctan�±�
i

f i sin 2�i, ± �
i

f i cos 2�i� . �34�

If we calculate the second derivative for the density increase
we find that

d2

d�2��
i

f i sin2�� − �i�� = ± 1,

and therefore in order to maximize the jamming density we
need to choose the minus signs in Eq. �34�. Once we find the
unique orientation of each ellipse that ensures torque bal-
ance, we can calculate the jamming density

FIG. 14. The triangular packing of ellipses is not rotationally
jammed since one can shear the packing continuously without in-
troducing overlap or changing the density. The figure shows a se-
quence of snapshots as this shearing motion proceeds. The packing
is, however, �strictly �11�� translationally jammed.
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�J/�J
S � 1 + s�� , �35�

where

s� = 2

�
i

�
j�N�i�

f ij�uij
TTi

�uij�

�
i

�
j�N�i�

f ij

− 1.

We have calculated the slope s� for disordered binary disk
packings �with �J

S�0.84� numerically, and find a value s�

�0.454. We compare this theoretical value with numerical
calculations in Fig. 15. The first comparison is directly to the
packing fractions obtained using the Lubachevsky-Stillinger
algorithm, which do not have anything to do with perturbing
a sphere packing. Although the simulation jamming densities
are not linear over a wide range of aspect ratios, near �=1
they are and the slope is close to the theoretically predicted
s�. We also compare to results obtained by perturbing a
jammed disk packing using MD. Specifically, we start with a
jammed disk packing at a relatively high pressure �p
=1000� and assign an orientation according to Eq. �34� to
every disk, and then we start growing the large semiaxes
slowly while performing a form of constant pressure MD.
The density changes automatically to keep the pressure con-
stant, and from the instantaneous density we estimate the
jamming density using Eq. �30�. In Fig. 15 we show how the
�estimated� jamming density changes with aspect ratio. If we
freeze the orientations �i.e., use an infinite moment of iner-
tia�, we obtain results that follow the theoretical slope pre-
diction closely. Very good agreement with the results from
the LS algorithm is obtained over a wide range of � if we
start with the correct orientations and then allow the ellipse
orientations to change dynamically. For comparison, in the
inset we show that the packing density actually decreases if
we use the LS algorithm and freeze orientations at their ini-
tial �random� values, demonstrating that balancing the
torques and �maximally� increasing the density requires a
particular value for the particle orientations.

For ellipses, there are unique orientations that guarantee
the existence of self-stresses near a given isoconstrained
jammed disk packing. Do these orientations actually lead to
jammed packings, that is, are the second-order conditions for
jamming also satisfied? If one starts with a jammed disk
packing and transforms the disks into ellipses of aspect ratio
sufficiently close to unity, the packing will remain transla-
tionally jammed �13�. Subsequent increase in the size of the
particles must eventually lead to a packing of maximal den-
sity. It is not however a priori obvious whether this packing
is rotationally and translationally jammed or has some kind
of peculiar unjamming motions that preserve the density,
such as the ones shown in Fig. 14. For small disk packings,
we have found the perturbed ellipse packings to be second-
order jammed sufficiently close to the sphere point. For
larger systems, even for very small asphericities, it is diffi-
cult numerically to perturb a given disk packing into an el-
lipse packing without leading to new contacts or breaking of
old ones, as discussed shortly. An analytical investigation
may be able to prove that the perturbed packings are actually
second-order jammed, and therefore prove that there exist

�large� jammed ellipse packings with Z̄=4, the absolute
minimum contact number possible for a jammed packing.

Finally, we note that in three dimensions the torque bal-
ance equations �33� involve quaternions and are quartic, and
it does not seem an analytical solution is possible as it is in
two dimensions. We however expect that the calculations
performed here in d=2 can be generalized to higher dimen-
sions as well. One interesting question to answer theoreti-
cally in d=3 is whether the middle axes ��� affects the slope
of the density s� or whether only the ratio of the largest to
the smallest semiaxes ���, matters. In Ref. �4� we proposed
that the rapid increase in packing fraction could be attributed
to the need to increase the contact numbers, since forming
more contacts requires a denser packing of the particles. This
is supported by the observation that the maximal packing
density is achieved for the most aspherical shape ��=1/2�.
However, numerical results very close to the sphere point are
consistent with a slope s� independent of �. The arguments
of this section indicate that the density rise is independent of
the rise of the coordination number, at least near the sphere
point.

D. Contact number near the sphere point

In our perturbation approach to ellipsoid packings near
the sphere point, we assumed that the contact network re-
mains that of the disk packing even as the aspect ratio moves
away from unity. However, as the aspect ratio increases and
the packing structure is perturbed more and more, some new
contacts between nearby particles will inevitably close, and
some of the old contacts may break. In Fig. 16 we show a
system that the linear perturbation prediction produces at �
=1.025. While the original contacts in the jammed disk pack-
ing are maintained relatively well, we see that many new
overlaps form that were not contacts in the disk packing.
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FIG. 15. �Color online� The estimated jamming density near the
disk point for binary packings of hard ellipses, as obtained from the
LS packing algorithm, from perturbing the disk packing using
constant-pressure MD, and from the first-order perturbation theory.
The inset shows some of the data over a larger range of aspect ratio
and also shows the packing densities obtained when the ellipses
have infinite moment of inertia in the LS algorithm.
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This means that the contact number will increase from Z̄
=4 as asphericity is introduced.

These observations suggest a way to calculate the leading

order term of Z̄���−2d: We simply count the overlaps intro-
duced by orienting and displacing the centroids of the ellip-
soids according to the linear perturbation theory. It is well-
known that jammed disordered sphere packings have an
unusual multitude of nearly-touching particles, as manifested
by a power-law divergence in the pair correlation function
near contact of the form g2�r���r−D�−0.4 �once rattlers are
removed� �2�. For binary disks in two dimensions the exact
exponent has not been calculated, but it appears close to a
half �51�. These near contacts will close to form true contacts

and cause the rapid increase in Z̄���, and we expect that the
growth will be of the form

Z̄��� − 2d � Z�
�� − 1. �36�

A more rigorous analysis is difficult since we do not really
have an understanding of the geometry of the near contacts.
We have numerically estimated the coefficient Z� and plotted
the prediction of Eq. �36� in Fig. 2. It is seen that the predic-
tion matches the actual simulation results well sufficiently
close to the sphere point.

X. CONCLUSIONS

In this paper we presented in detail the mathematical
theory of jamming for packings of nonspherical particles and
tried to understand the properties of jammed packings of
nonspherical particles of aspect ratio close to unity, focusing
on hard ellipses and ellipsoids. In this section we summarize
our findings and also point to directions for future investiga-
tion.

Mathematically, understanding jamming in hard-particle
packings is equivalent to understanding the behavior of large
systems of nonlinear inequalities as given by the impenetra-
bility conditions. These inequalities can be written explicitly
by introducing a continuously differentiable overlap potential
whose sign determines whether two particles overlap. In Sec.
III we generalized the overlap potential proposed by Perram
and Wertheim for hard ellipsoids to arbitrary smooth strictly
convex particle shapes and determined its first order deriva-
tives.

In Sec. IV, we discussed the conjecture that large disor-
dered jammed packings of hard particles are isoconstrained,
i.e., that they have an equal number of constraints and de-

grees of freedom, Z̄=2df. It is not possible to make this
conjecture into a theorem since the term “disordered” is
highly nontrivial to define �17�. However, arguments have
been made in the literature in support of isocounting. We
showed that this conjecture can be supported with reasonable
arguments only for spheres, where particle rotations are not

considered. In particular, while it is expected that Z̄�2df for

“random” packings, the converse inequality Z̄	2df only ap-
plies to spheres. Packings of nonspherical particles can be
jammed and have less than 2df contacts per particle, i.e., be
hypoconstrained. A minimally rigid ellipsoid packing, i.e., a

packing that has the minimal number of contacts needed for
jamming, satisfied only the inequality Z̄	2d, since at least
2d contacts per particle are needed to block particle transla-
tions. Particle rotations, however, and combined rotation/
translation motions, can be blocked by the curvature of the
particle surfaces at the point of contact. In essence, if the
radii of curvatures at the point of contact are sufficiently
large, i.e., the particle contact is sufficiently “flat,” rotation of
the particles is blocked. This can be visualized by consider-
ing the limit of infinite radii of curvatures, when have a
contact between two flat surfaces. Such contacts, in a certain
sense, count as several “contact points” and block several
degrees of freedom.

In Sec. V, we generalized the mathematics of first and
second-order rigidity for tensegrity frameworks developed in
Ref. �12� to packings of nonspherical particles. We proved
that in order for a packing to be jammed there must exist a
set of �nonzero� non-negative interparticle forces that are in
equilibrium, i.e., the packing must have a self-stress. Further-
more, we considered second-order terms for hypoconstrained
packings that do have a self-stress but also have floppy
modes, that is, particle motions that preserve interparticle
distances to first order. The second-order analysis showed
that jammed packings of strictly convex particles cannot
have less than 2d contacts per particle. We found that floppy
modes involving particle rotations can be blocked �rigidified�
by the stressmatrix, which includes second-order information
about the particle surfaces at the point of contact. We pro-
posed that this is exactly the type of jamming found in dis-
ordered ellipsoid packings near the sphere point, and in Sec.
VI we presented a numerical algorithm for testing hypocon-
strained ellipsoid packings for jamming and applied it to
some computer-generated samples. We demonstrated that the
packings are indeed jammed even very close to the sphere

FIG. 16. Overlaps introduced at �=1.025 by the naive linear
perturbation theory, which only takes into account the original con-
tact network of the disk packing �black lines�. We see many over-
laps forming between particles that were nearly touching when �
=1.
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point, where they have close to 2d contacts per particle.
In Sec. VII we considered the thermodynamics of pack-

ings that are close to, but not exactly at, the jamming point,
so that particles have some room to rattle �free volume�. We
found that for hypoconstrained packings the jamming basin
J�Q, which is localized around the jamming point in con-
figuration space, is very elongated along the space of floppy
modes. For isostatic or hyperstatic packings, as jammed
sphere packings always are, the jamming basin approaches a
polytope in the jamming limit, whereas for hypoconstrained
packings it approaches a �hyper� banana. The latter leads to
very large oscillations of the instantaneous pressure near the
jamming point and a violation of the asymptotic free-volume
equation of state �pressure scaling�.

Real packings are always made from deformable �albeit
very stiff� particles, i.e., particles that interact via some elas-
tic interaction potential. The analog of a jammed hard-
particle packing for deformable particles are strict energy
minima �inherent structures�, i.e., structures where any mo-
tion of the particles costs energy �quadratic in the displace-
ments�. In Sec. VIII we analyzed the first- and second-order
conditions for a strict energy minimum for twice-
differentiable interaction potentials. We found that the first-
order condition is exactly the requirement for the existence
of a selfstress, and that the second-order condition is exactly
the condition that the stress-matrix blocks the floppy modes.
This deep analogy between jamming in hard-particle pack-
ings and energy minima in soft-particle packings is not un-
expected since a “soft” potential can approximate the singu-
lar hard-particle potential arbitrarily closely. As the potential
becomes stiffer, the energy minimum will become highly
anharmonic and its shape will closely resemble that of the
jamming basin J�Q �even at very small temperatures�.

Finally, in Sec. IX we developed a first-order perturbation
theory for packings of nearly spherical ellipsoids, expanding
around the sphere point. The theory is based on the idea that
packings of ellipsoids with aspect ratio �=1+� near unity
have the same contact network as a nearby isostatic packing
of hard spheres. In order for the ellipsoid packing to also be
jammed, the orientations of the ellipsoids must be chosen so
as to balance the torques on each particle. These orientations
also maximize the jamming density, increasing it beyond that
of the disk packing, and we analytically calculated the linear
slope of the density increase with � for binary ellipse pack-
ings. The calculated coefficient is in good agreement with
numerical results. The perturbation of the sphere packing
also leads to a rapid increase in the average particle coordi-

nation Z̄, which we attributed to the closing of the multitude
of near contacts present in disordered disk packings. The

predicted Z̄��� is also in good agreement with numerical
observations.

The observed peculiar behavior of packings of nonspheri-
cal particles near the sphere point is a consequence of the
breaking of rotational symmetry. Near the sphere point the
coupling between particle positions and orientations is weak
and translations dominate the behavior of the system. In this
sense sphere packings are a good model system, and particle
shapes close to spherical can be treated as a continuous per-
turbation of sphere packings. However, even for aspect ratios

relatively close to unity, the perturbation changes the prop-
erties of the system such as density and contact number in a
sharp fashion, making sphere packings a quantitatively unre-
liable reference point for packings of more realistic particle
shapes. Furthermore, even qualitative understanding of jam-
ming and mechanical rigidity for packings of nonspherical
particles requires consideration of phenomena that simply do
not have a sphere equivalent.

Future work should consider the mathematics of jamming
for packings of hard particles that are convex, but not nec-
essarily smooth or strictly convex. In particular, particles
with sharp corners and/or flat edges are of interest, such as,
for example, tetrahedra �52�, cylinders and cubes. We also
believe that understanding jamming in frictional hard-
particle packings, even for the case of spheres, requires a
more thorough mathematical foundation. It is also important
to consider packings of soft ellipsoids and in particular de-
velop algorithms to generate them computationally and to
study their mechanical properties and vibrational spectra. In-
vestigations of the thermodynamics of very dense ellipsoid
systems also demand further attention.
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APPENDIX: THE RECTANGULAR LATTICE
OF ELLIPSES

In this appendix we consider a simple example of a

jammed hypoconstrained packing of ellipses having Z̄=4,
the minimum necessary for jamming even for disks. Namely,
the rectangular lattice of ellipses, i.e., the stretched version of
the square lattice of disks, is collectively jammed, and in
particular, it is second-order jammed. More specifically,
freezing all but a finite subset of the particles, the remaining
packing is second-order jammed. An illustration is provided
in Fig. 17. At first glance, it appears that one can rotate any
of the ellipses arbitrarily without introducing overlap. How-
ever, this is only true up to first order, and at the second-
order level the “flat” contacts between the ellipses, that is,
the contacts whose normals are along the small ellipse semi-
axes, block this rotation through the curvature of the par-
ticles at the point of contact.

The set of first-order flexes, i.e., particle motions which
preserve contact distances to first order, can easily be con-
structed in this example due to the simple geometry. Namely,
a basis vector for this set is a single ellipse rotating around
its centroid, giving the total number of first-order flexes Nf
=N �25�. The basis formed by these first-order flexes is not
orthogonal. However, its advantage is that it is easier to cal-
culate the stress matrix, or more specifically, the matrix HV;
we only need to consider ellipsoid rotations without consid-
ering translations. The same observation applies whenever
one takes a jammed sphere packing and makes the particles
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nonspherical but does not change the normal vectors at the
point of contact. This can be done, for example, by simply
taking a jammed sphere packing and swelling the particles to
be nonspherical, without changing the geometry or connec-
tivity of the contact network. If the particles swell enough to
make all of the contacts sufficiently flat, the new packing
will be jammed, since all of the first-order flexes consist of
particle rotations only and are blocked by the flat curvature
of the contacts.

The fact that “flat” �the contacts among vertical neighbors
in Fig. 17� contacts block rotations can easily be seen ana-
lytically by considering the case of one ellipse jammed
among four fixed ellipses �two horizontally, two vertically�.
Specifically, any self-stress for which the contact force in the
“flat” contacts is larger than the force in the “curved” con-
tacts, f flat� fcurv, makes the mobile ellipse jammed, more
specifically, prestress rigid �25�. The same result can be
shown to apply to the square lattice of ellipses for an arbi-
trary number of ellipses. If the ellipses are not hard but rather
deformable, the packing would not support a compression
along the curved contacts, but it would along the flat con-
tacts. This is a very intuitive result: If one takes a smooth
ellipsoid and presses it against a table with its most curved
tip, it will buckle and the only stable configuration is one
where the flat tip presses against the table. Note, however,

that the hard-ellipse equivalent is jammed and can resist any
finite external forces, including a compression along the
curved contacts. The anharmonicity of the hard-sphere po-
tential becomes essential in this example, since the packing
can choose the correct internal �self-� stresses �forces�
needed to provide mechanical rigidity. In �realistic� systems
of deformable particles, the internal stresses are fixed and
determined by the state of compression.
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