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We present a method to calculate Lyapunov exponents of rigid diatomic molecules in three dimensions
�12N-dimensional phase space�. The spectra of Lyapunov exponents are obtained for 32 rigid diatomic mol-
ecules interacting through the Weeks-Chandler-Anderson potential for various bond length and densities, and
compared with those of Shin et al. �Phys. Rev. E 64, 041106 �2001��. Our algorithm is easy to implement and
total CPU time is relatively inexpensive.
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I. INTRODUCTION

One of the ways to quantify the dynamical instability of a
many-body system is to examine its Lyapunov exponents.
Lyapunov exponents are a measure of the average rate at
which nearby trajectories converge or diverge in the phase
space �1–3�. A positive Lyapunov exponent indicates a diver-
gence between nearby trajectories, i.e., a high sensitivity to
initial conditions. There are various methods to compute
Lyapunov exponents in the literature �4–8�.

In this paper we propose a method to calculate Lyapunov
exponents of the rigid diatomic molecules in three dimen-
sions, which does not require periodic rescaling of the bond
length. Rigid diatomic molecules are often described by hard
dumbbells and there have been several works on the
Lyapunov instability for the diatomic molecular models
�9–15�.

Our method is based on the algorithms proposed by Ome-
lyan et al. �16�. They proposed the optimized Verlet-like al-
gorithms which are derived on the basis of an extended de-
composition scheme at the presence of a free parameter and
which are more efficient than the original Verlet versions that
corresponds to a particular case when the introduced param-
eter is equal to zero.

In the present paper, we extend Omelyan’s algorithms to
the calculation of Lyapunov exponents, and show that our
algorithm works efficiently. We compare present results with
those in Ref. �14�, which uses two coordinates representa-
tions to avoid the singularity occurring in the equations of
motion by combining with the adaptive Runge-Kutta-
Fehlberg method of order four.

II. EQUATIONS OF MOTION

The position and the orientation of the diatomic molecule
are specified by a vector to the center of mass, q� , and a unit
vector which points along the molecular axis. We denote this

unit vector by S� . Then, the equations of motion are �17�

q�̇ =
p�

M
,

p�̇ = −
�V

�q�
,

S�̇ =
1

I
L� � S� = �� � S� ,

L�̇ = − S� �
�V

�S�
, �1�

where p� represents the momentum, M is the total mass of the

molecule, I is the moment of inertia, and L� is the angular
momentum. As in the Verlet algorithm, we split the Hamil-
tonian for rigid diatomic molecular motion into kinetic and

potential parts: H=T+V, where T= 1
2M p� · p� + 1

2IL
� ·L� and V

=V�q� ,S��. The Weeks-Chandler-Anderson �WCA� potential
with a cutoff length rc=21/6 is used as the intermolecular
potential function. It should be noted that the previous work
on the system composed of hard dumbells �11� employs a
more complicated algorithm because of the discontinuity im-
posed on the interaction potential. In the present work, all the
numerical results are based on the simulations performed on
the system composed of 32 diatomic molecules.

The exact solutions with initial condition x�0

= �q�0 , p�0 ,S�0 ,L�0� are given as follows:
�1� Motion induced by V,

expV�t�x�0 = �q�0,p�0 − t� �V

�q�
�

x�0

,S�0,L�0 − tS�0 � � �V

�S�
�

x�0

� .

�2�

�2� Motion induced by T,

expT�t�x�0 = �q�0 +
t

M
p�0,p�0,S�� ,L�0� , �3�

where we use the algorithm in Ref. �18� to update S� ,

S�� =
�S�0 + ��� � S�0��t +

�t2

2
��� ��� · S�0� −

1

2
��� · �� �S�0	�

�1 + ���t/2�2�
.

�4�

One of the great advantages of this algorithm is that we do
not need to adjust the bond length during the simulations.
This is also true in Ref. �14�, where the bond length is natu-
rally fixed without using any additional constraint. However,
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the equations of motion in our model are much simpler than
those used in Ref. �14�, and they are easy to implement.

A split Hamiltonian scheme for the integration, thus, is
given as

�q� i+1,p� i+1,S� i+1,L� i+1� = expV� 1
2�t�expT��t�expV� 1

2�t�
� �q� i,p� i,S� i,L� i� . �5�

In the actual simulations, however, we use the optimized
Verlet-like algorithms proposed recently by Omelyan et al.
�16� to get the Lyapunov exponents. In their paper it is
shown that the optimized position-Verlet-like �OPV� algo-
rithm is a little more efficient than the optimized velocity-
Verlet-like �OVV� algorithm. Thus, we use the OPV algo-
rithm in this paper. The algorithm reads

v� I = v��t� +
1

m
f�„r��t�…��t ,

r�I = r��t� + v� I�t/2,

v� II = v� I�t� +
1

m
f�„�r�I��1 − 2��…�t ,

r��t + �t� = r�I�t� + v� II�t/2,

v��t + �t� = v� II +
1

m
f�„r��t + �t�…��t , �6�

where the parameter �
0.193 183 327 503 783 6 and r�I, r�II,
v� I, and v� II denote the center of positions and their velocities
of a diatomic molecule. Similarly, we have the propagation

of the unit vector S� and angular momentum L� from time t to
t+�t. A time step �t=0.0005 is used in our simulations.

III. LYAPUNOV EXPONENTS

The initial configuration of the molecules and the simula-
tion method in Ref. �14� are used in our simulations. The
velocities are repeatedly scaled to adjust the required tem-
perature from sufficiently high temperature. Once the re-
quired temperature is obtained, the system is equilibrated for
500 time units �106 iterations�, and data is collected for 500
time units �106 iterations� to evaluate the Lyapunov expo-
nents. Below all quantities are given in reduced units.

In order to get the exponents we use the classical method
of Benettin et al. �19� refined by Hoover and Posch �20–23�
that requires continuous orthonormalization. The correspond-
ing equations for the variation are given as follows:

�q�̇ =
�p�

M
,

�p�̇ = − �
�V

�q�
,

�S�̇ =
1

I
��L� � S�� = ���� � S�� ,

�L�̇ = − ��S� �
�V

�S�
� . �7�

It should be noted that we consider only the first order,

O��t�, for updating �S� . In our model we have
12N-dimensional phase space. In order to compare our re-
sults with those from 10N-dimensional phase space in Ref.
�14�, we subtract the additional two degrees of freedom in
each diatomic molecule. We have two constraints in equa-
tions of motion,

S� · �S� = 0, �8�

S� · �L� + �S� · L� = 0. �9�

These equations are obtained from two conditions: S� ·S� =1

�normalization� and S� ·L� =0 �orthogonality�. In order to fulfill

two constraints �S� and �L� are replaced with

�S� � �S� − �S� · �S��S� , �10�

�L� � �L� − �S� · �L� + �S� · L� �S� , �11�

respectively. Then, 12N-dimensional phase space can be re-
duced to the 10N-dimensional one.

We find the characteristic features of the spectra of the
Lyapunov exponents in our model are the same as those in
Ref. �14�. In Fig. 1 we compare the positive branch of expo-
nents from our calculation with that from Ref. �14� at T
=1.0, D=0.3, B=1.0, where T is temperature, D is the den-
sity, and B is the bond length, respectively. �l is the discrete
spectrum of the Lyapunov exponents, and index l represents
1,…, 160, i.e., one-half of the total number of all phase space
variables.

Table I shows the largest Lyapunov exponents �1, the
smallest positive Lyapunov exponent �156, and four vanish-
ing exponents ��157, �158, �159, and �160� for various bond
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FIG. 1. Comparison of the Lyapunov exponents at T=1.0, D
=0.3, B=1.0.
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length B at a fixed number density D=0.3, and D=0.5, re-
spectively. Temperature is set to T=1.0 for both cases. The
same trend for the largest Lyapunov exponent �1 was already
shown in Ref. �14�.

On the other hand, the dynamics of the tangent vectors in
the subspace are slightly different. We calculate the mean-
squared value of the projection of tangent vectors �l onto TX
subspace which is defined as usual,

���X,l
2 
 = �P�X��� l · P�X��� l
 . �12�

Figure 2 shows the projection at T=1.0, D=0.3, B=1.0,

where Q denotes x, y, and z components. In our model ���X,l
2 


for S� and L� phase space and their tangent space �S� and �L�

are not symmetric with respect to the center. A similar asym-
metric behavior was also found in Ref. �24�. However, we find the Hamiltonian nature of the system, i.e., an increase of

instability accumulated in one subspace is always accompa-
nied with a decrease of instability in its conjugate subspace.
In Fig. 2 we also show SQ+LQ, which is symmetric with
respect to the center, for comparison.

It is interesting to note that the overall patterns are sym-
metric if temperature is low or the bond length is small. In
Fig. 3 we show the projection at T=1.0, B=0.2, and at T
=0.1, B=1.0, respectively. The density is set to D=0.3 for
both cases. It is not clear to us why the projection depends on
temperature or the bond length, and symmetry becomes bro-
ken as temperature or the bond length is increasing. We

speculate that this might come from a relation between S� and

L� . Note that the correct conjugate momentum for rotation is
�17�

�� = IS�̇ = L� � S� , �13�

not simply L� . More detailed analyses will be needed regard-
ing the asymmetric behavior. It can be shown that the overall
patterns are always symmetric if our coordinate system is

TABLE I. The largest Lyapunov exponent �1 and the smallest
positive Lyapunov exponent �156, and four vanishing exponents
��157, �158, �159, and �160� for various bond length B at a fixed
number density D=0.3 �upper� and D=0.5 �lower�.

B 0.2 0.4 0.6 0.8 1.0

�1 4.320 4.574 4.791 4.989 5.179

�156 0.104 0.170 0.274 0.272 0.229

�157 0.025 0.046 0.041 0.034 0.030

�158 0.018 0.014 0.014 0.017 0.013

�159 0.010 0.008 0.012 0.012 0.011

�160 0.012 0.009 0.009 0.011 0.007

�1 6.158 6.526 6.557 6.327 5.746

�156 0.108 0.113 0.052 0.052 0.032

�157 0.068 0.056 0.028 0.015 0.013

�158 0.020 0.013 0.015 0.014 0.011

�159 0.014 0.011 0.010 0.011 0.012

�160 0.010 0.009 0.007 0.010 0.003
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FIG. 2. Mean-squared values of the projection at T=1.0, D
=0.3, B=1.0.
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FIG. 3. Same as in Fig. 2, but at T=1.0, D=0.3, B=0.2 �top�,
and at T=0.1, D=0.3, B=1.0 �bottom�.
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transformed to that of Ref. �14�, i.e., �q� , p� ,	 ,
 , p	 , p
� �see
Fig. 4�. Clearly, this shows that our coordinate system is
consistent with that of Ref. �14�.

In Table II we show comparison of total CPU time for our
simulations and the simulations of Shin et al. on the
Lyapunov exponents. Our code is relatively inexpensive, al-
though we need to implement two constraints in Eq. �8� and
Eq. �9�. In Ref. �14� the coordinate transformation is needed
to avoid singularity occurring in the equations of motion, and

a sophisticated integrator is used because the coordinate
transformation cannot be applied to the calculation of the
Lyapunov exponents. These might consume a relatively large
CPU time during the simulations.

In summary, we propose an approach to calculate the
Lyapunov exponents of the rigid diatomic molecules in three
dimensions, which does not need a rescaling of the bond
length, and it is computationally relatively inexpensive.
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FIG. 4. Same as in Fig. 2, after transforming the coordinate
system.
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