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Two universal reconstruction methods for photoacoustic (also called optoacoustic or thermoacoustic) com-
puted tomography are derived, applicable to an arbitrarily shaped detection surface. In photoacoustic tomog-
raphy acoustic pressure waves are induced by illuminating a semitransparent sample with pulsed electromag-
netic radiation and are measured on a detection surface outside the sample. The imaging problem consists in
reconstructing the initial pressure sources from those measurements. The first solution to this problem is based
on the time reversal of the acoustic pressure field with a second order embedded boundary method. The
pressure on the arbitrarily shaped detection surface is set to coincide with the measured data in reversed
temporal order. In the second approach the reconstruction problem is solved by calculating the far-field
approximation, a concept well known in physics, where the generated acoustic wave is approximated by an
outgoing spherical wave with the reconstruction point as center. Numerical simulations are used to compare the
proposed universal reconstruction methods with existing algorithms.
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I. INTRODUCTION

Photoacoustic computed tomography, also known as op-
toacoustic or thermoacoustic tomography, is based on the
generation of sound in a semitransparent medium by absorp-
tion of a pulsed electromagnetic wave. It is an imaging
method for visualization of light-absorbing structures buried
in turbid media with applications mainly in the diagnostics of
biological tissue [1-3]. When a semitransparent sample is
illuminated by a short pulse of electromagnetic radiation,
such as light or radio waves, a spatial distribution of acoustic
pressure inside the sample is generated by thermoelastic ex-
pansion, which induces the emission of acoustic waves. The
generated initial pressure distribution is proportional to the
volumetric density of the locally absorbed electromagnetic
energy. In photoacoustic imaging the goal is to recover this
absorption density inside the sample as a function of space
from acoustic pressure signals measured outside the illumi-
nated sample (photoacoustic inverse problem). The resulting
imaging contrast is optical, whereas the imaging technique is
mainly acoustic, thus combining the advantages of two im-
portant noninvasive imaging technologies: diffuse optical
and ultrasonic imaging.

The purpose of the present study was to derive and com-
pare two algorithms for the inverse photoacoustic problem in
the case of an arbitrary detection surface. This is the surface
over which the detectors receiving the acoustic signals are
distributed or scanned during image acquisition. For spheri-
cal, cylindrical, and planar arrangements of detectors exact
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inversion formulas have been reported, either in the fre-
quency domain [4-7] or in the time domain [8—11]. In prac-
tical applications the detection surface may differ from those
simple geometrical shapes. For instance, it may be advanta-
geous that the detector surface follows as close as possible
the shape of the imaged object in order to keep the propaga-
tion length of acoustic waves as small as possible, thereby
minimizing the acoustic attenuation. In particular, the prefer-
ential attenuation of high frequencies limits the achievable
spatial resolution. Xu and Wang have applied the time rever-
sal method [12] for an arbitrary closed detection surface.
They presented a formal back-projection solution with the
Green’s function subject to the homogeneous Dirichlet
boundary condition on the detection surface. For an arbitrary
surface no analytic expression for this Green’s function ex-
ists. Therefore, they approximated it by the Green’s function
in free space resulting in their universal back-projection for-
mula, which is exact for a spherical or cylindrical detection
surface [11]. In this article we propose a numerical method to
calculate directly the time reversed field by retransmitting
the measured pressure on the detection surface in reversed
temporal order. This results in a universal and exact image
reconstruction method for an arbitrary closed detection sur-
face. This method is compared to a universal far-field ap-
proximation that turns out to be identical to a modified back-
projection formula derived by Xu and Wang [8,9] for
spherical, cylindrical, and planar detection surfaces from
Fourier-domain reconstruction formulas. The derivation of
the far-field approximation presented here does not depend
on the actual shape of the detection surface, proving that the
algorithm is suitable for an arbitrary arrangement of detec-
tors as well.
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Among the challenges a practically useful reconstruction
algorithm has to deal with is the actual physical characteris-
tics of the detector. Both the detector bandwidth and size
have an influence on the imaging resolution. Applying a re-
construction method that assumes point receivers to signals
measured with a detector with finite size leads to blurring of
the image. Only in the case of a planar detection surface this
blurring can be reduced by use of a deconvolution procedure
[6]. Recently it has been shown that also with large-aperture
detectors which in at least one dimension exceed the size of
the imaged object high-resolution imaging is possible by ap-
plying special reconstruction algorithms [13,14]. If the
acoustic pressure outside the illuminated sample is measured
with such a large-aperture detector, called the “integrating
detector,” the signal at a certain time is given by an integral
of the generated acoustic pressure distribution where the in-
tegration area is determined by the shape of the detector. For
example, a planar detector measures the projections of the
initial pressure distribution over planes parallel to the detec-
tor plane, which is the Radon transform of the initial pressure
distribution [15]. Stable and exact three-dimensional imaging
with a planar integrating detector requires measurements in
all directions of space and so the receiver plane has to be
rotated to cover the entire detection surface. We have re-
cently presented a simpler setup for exact imaging that re-
quires only a single rotation axis and uses the fragmentation
of the area detector into an array of line detectors perpen-
dicular to this rotation axis [13,16,17]. Integration of the
acoustic waves along the linear detector leads to a two-
dimensional problem, where the detection surface is reduced
to a curve. From data taken at a certain orientation of the
linear detector a linear projection of the initial pressure dis-
tribution can be reconstructed. Multiple projections in differ-
ent directions are used to reconstruct the original source via
the inverse Radon transform. Only for an infinitely long
straight detection line [13,18] and a circle [14,19,20] exact
reconstruction algorithms for the two-dimensional problem
are available. The time reversal method presented in this
study, since it is based on the finite difference solution of the
wave equation, can easily be adapted to the two-dimensional
problem.

Two main problems encountered in an in vivo application
of photoacoustic imaging, such as breast tomography are
limited view data acquisition (i.e., the detection surface is
not closed) [21] and the acoustic heterogeneity of the imaged
object [22]. It turns out that the far field reconstruction is
better suited for limited view data, whereas the time reversal
method can take into account the effect of locally varying
sound velocity and the effect of frequency dependent acous-
tic attenuation by changing the sign of the loss term (first or
third order in time) in the wave equation. Using the far-field
approximation to calculate the missing data from limited
view data and then the time reversal method for reconstruc-
tion combines the advantages of both methods.

This article is organized as follows. In Sec. II photoacous-
tic tomography is briefly reviewed and the time reversal
method is derived. The universal far-field inversion is de-
scribed in Sec. III, followed by numerical simulations to
compare and combine it with the time reversal method and
also with reconstruction methods reported by Kruger et al.
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FIG. 1. Ilustration of photoacoustic tomography. A pointlike
detector at position rg scans across a closed surface S enclosing the
object in the volume V. In the exact solution [as shown in Eq. (8)]
the initial pressure distribution is integrated over spherical shells. In
the far-field approximation the initial pressure distribution is inte-
grated over planes shown as a dotted line. dQ),(rg) is the solid angle
for a detector surface element dS at rg with normal vector n(rg)
pointing outside the surface.

[23], Finch et al. [10], and Xu and Wang [11]. Finally, in
Sec. V some conclusions and an outlook on future work are
given.

II. PHOTOACOUSTIC TOMOGRAPHY BY TIME
REVERSAL

Short laser pulses absorbed in a semitransparent object
generate an initial pressure distribution p,(r)=1I"W(r) propor-
tional to the volumetric density W(r) of the locally absorbed
electromagnetic energy and the Griineisen-parameter I". The
induced pressure field at position r and time ¢ is denoted by
p(r,1) and solves the inhomogeneous wave equation with a
temporal Dirac delta function as source term [24]

s J
(@ - czA)ﬁ(r,t) == Po0) &), (1)
where A is the Laplacian with respect to the spatial variable
r and c is the sound velocity. The inverse photoacoustic
problem is to reconstruct the initial pressure distribution py
from a set of data measured with detectors on a surface §
outside the object (see Fig. 1).

Time reversal is based on the invariance of the wave
equation under the transform r— —¢. This property is used in
many practical applications, such as undersea communica-
tions, hydrodynamics, material analysis, and medicine [25].
Xu and Wang used time reversal to derive a universal back-
projection formula [12], which is exact for a spherical and a
cylindrical detection surface [11]. In this section we present a
theoretically exact model-based time reversal algorithm to
solve the photoacoustic imaging problem for an arbitrary
closed detection surface.

A. Model based time reversal

Assume that p is a solution of Eq. (1) and let T,>0 be
large enough such that p(r,T;)=0 inside the whole volume V
enclosed by the surface S, see Fig. 1. T, can be chosen, e.g.,
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as the maximal diameter of V divided by c. At time T, we
start to rewind the time evolution and obtain the desired
initial pressure distribution p, at time 27,

More precisely, the time reversal of p is defined as

ptr(r’t) = p(r’zTO - t)’ T() Sts 2'T() (2)

According to the principle of Duhamel ([26], p. 81) the in-
homogeneous wave Eq. (1) is equivalent to the homogeneous
wave equation, together with the initial conditions p(r,0)
=po(r) and (dp/dr)(r,0)=0. As the homogeneous wave
equation is invariant under the transform t— —t, p(r,?) is a
solution of the homogeneous wave equation with the initial
conditions

ptr(r’ TO) = p(l‘, TO) s

3)
(Ipyl 91)(x, To) = = (3plan)(x, T).

According to Eq. (2), the time reversal develops into the
initial pressure distribution p(r) at time =2T,.

The homogeneous wave equation with the initial condi-
tions Eq. (3) cannot be solved directly because the initial
values p(r,T,) and (dp,/dr)(r,T,) are only known inside of
V, where both functions are zero. However as a substitute for
the missing values p.(r,Ty) and (dp,/dr)(r,T,) outside V,
the measurements provide boundary values p,(rg,?)
=p(rg,2Ty—1) on the surface S. Consequently, the time re-
versal inside V satisfies the following initial boundary value
problem (IBVP):

(% - c2A>pU(r,z) =0, (r,r) e VX[T2T,] (4a)

with the initial values
Pulr,To) = (dp/dt)(r,Ty) =0,

and the boundary values
Pulrs.1) = p(rs, 2T — 1),

The IBVP (4a)—(4c) is uniquely solvable, see, for example,
Ref. [26], p. 83 ff. This is crucial since it guarantees that the
time reversal p,. can be found as the unique solution of Eqs.
(4a)—(4c). Moreover, it implies that the knowledge of the
evolved pressure outside of the closed detection surface is
not necessary to determine the pressure inside of S, and the
solution at the time r=2T7), gives an exact reconstruction of
po- This also holds in a discrete setting, as presented in the
next subsection. Note that a similar IBVP using the
n-dimensional velocity potential has been proposed by Finch
et al. [10] (therorem 5).

For an arbitrary detection surface, no analytic solution of
Egs. (4a)—(4c) is known. The Kirchhoff-Helmholtz integral
gives an explicit formula, but only if additionally to Eq. (4¢)
the normal derivative of p,(r,7) on S is given, see Appendix
A. However, fast and stable numerical algorithms for solving
Egs. (4a)—(4c) based on finite difference approximations
[27,28], spectral [29], or boundary integral methods [30] are
well investigated. In the next subsection we propose an em-
bedded boundary algorithm, where the pressure on S is
forced to coincide with the measured pressure in reversed

reV (4b)

(rg,1) € S X [Ty,2T,]. (4c)
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FIG. 2. (Color online) The region V is embedded into a cubic
computational domain D, which is discretized by grid points with a
step size of As. The interior points (squares) have all nearest neigh-
bors inside V and the boundary points (circles) have at least one
neighbor outside V.

temporal order. This implicitly takes the normal derivative of
Pu(r, 1) into account and results in a universal and theoreti-
cally exact image reconstruction method for an arbitrary
closed detection surface.

The main drawback of model based time reversal is that it
applies only to surfaces enclosing the object to be imaged.
Open surfaces, such as a hemisphere, are not included in our
method. However, an approximate time reversal algorithm is
obtained by setting the pressure on the inaccessible part of
the boundary to zero or by using the far-field approximation
[see Eq. (12) of the following section] to calculate this
pressure.

B. Embedded boundary algorithm

In the following we described how to solve Egs. (4a)—(4c)
numerically. We assume that discrete measurement data
taken at Ny different locations r¢ with m e{0,... ,Ng} are
available. As shown in Fig. 2, the volume V is embedded in
a cuboidal domain D (the reason why the algorithm is called
embedded boundary algorithm). For the sake of clarity of
presentation we assume that D=[-a,a]’ is a cube, where 2a
is its side length.

The cubic domain D is discretized as Cartesian grid with
grid points

r":=—a(l,1,1) + As(n,ny,n3), (5)

where n=(n,,n,,n3) €{0, ... ,N}> are the spatial indices and
As=(2a)/N is the spatial step size. Solving Egs. (4a)—(4c)
numerically consists in calculating an approximation

ke, ....N} (6)

P = po(r™, Ty + kA1),

to the true solution, evaluated at all grid points r" € V and
time instances T+ kAr. Here and in the sequel Az denotes the
time step size. Our proposal, a hybrid embedded boundary
method, based on finite difference approximation and nearest
neighborhood interpolation, is outlined in the following.

In the first step all grid points in V are classified as interior
points and boundary points: An interior point is a grid point
r" in V such that all of its nearest neighbors are in V, whereas
a boundary point is defined as a grid point r™ in V that has at
least one nearest neighbor outside V, see Fig. 2. For a bound-
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detectors

FIG. 3. The pressure at the boundary points is calculated by
nearest neighborhood interpolation.

ary point r", p™* is defined by nearest neighborhood interpo-
lation using the given pressure on the boundary only. That is,
we define

pFi= p(r§™, Ty + kAr), (7a)
where rf"" is the detector point with minimal distance to the
boundary point r”, see Fig. 3.

Next it is described how to calculate p™* for an interior
point. This is done by approximating the temporal and spatial
derivatives in Eq. (4a) with second order finite differences
[27], leading to

1
E[ptr(r",t + A1) = 2p(x™, 1) + p(r", 1 = Ar) ]

6¢?
= E[ﬁtr(rn,t) _ptr(r’t)]'

Here p(r",t) is the mean value of p over the 6 nearest neigh-
bors of r". Based on this approximation, we define p™*+!
recursively as

Ar?
pn,k+1 = 2pn,k _pn,k—l + 6c2§(ﬁn,k _pn,k)’ (7b)

where p™*=1/ 6Enrp“'*k is the mean value of over all nearest
neighbors of n. The initial conditions (4b) are incorporated
by setting

p0=p"l=0. (7c)

The finite difference scheme (7a)—(7c) is the discrete analog
of Egs. (4a)—(4c). As in the continuous formulation, the dis-
crete initial values and the boundary values allow for calcu-
lating p™F at all grid points r™ inside the surface without
knowledge of the pressure on grid points outside the surface.
The time discretization has to be chosen to satisfy the
Courant-Friedrich-Lewy (CFL) condition Ar<Ax/+3c [28].
Since the definition of the boundary points is independent of
the spatial density of detection, the algorithm does not break
down when decreasing the number of detector points. How-
ever, to keep the discretization error in Eq. (7a) small, the
spatial density of detection is chosen to be higher than the
density of the grid points r".

In the following we estimate the numerical effort of the
embedded boundary algorithm. We choose Az~ Ax, such that
N,=0(N). Moreover, we assume that
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V={r e R:®(r) > 0}

is defined by some real valued function ®. If, e.g., ®(r)
=R’>-|r|?, then V is a ball of radius R. Consequently, the
classification into boundary and interior points can be done
by calculating ®(r") for all (N+1)? grid points, showing that
O(N?) operations are required to classify all grid points.
Moreover, the nearest neighborhood interpolation (7a) re-
quires O(N?) operations. The most time consuming part is to
solve the wave equation backwards, where we have to evalu-
ate (7b) for N, time steps. For fixed k € {0, ... ,N,— 1}, O(N?)
operations are needed to calculate Eq. (7b). Therefore, per-
forming the complete time reversal algorithm requires O(N*)
operations.

Its remarkable, that the frequently used filtered back-
projection, or delay and sum, algorithms require O(N°) op-
erations (see Ref. [31] and compare also with Sec. IIT) which
is one order higher than time reversal with finite differences.
Therefore, the embedded boundary method is a considerable
fast alternative, even if exact back-projection formulas are
known for special detection surfaces.

III. UNIVERSAL FAR-FIELD INVERSION

The forward problem, the calculation of the pressure tran-
sients at rg e S (location of the detector, see Fig. 1) from the
initial pressure distribution, can be solved using the Green’s
function in free space [32], leading to the Poisson integral

1 9 r
plrg)=—— f 2olm)_
dqre ot Irg—r|=ct |I'S - l'|
1 d j
-2 po(r)dﬂ> . 8)
4 ¢9t< [rg—r|=ct

The first integral in Eq. (8) is a surface integral over a sphere
with radius ct and center rg. It can be transformed into an
integral over the solid angle d(), where dQ)=dS/(ct)?* is the
solid angle element with respect to rg. Taking the Fourier
transform in time ¢ and denoting k=w/c we get for the de-
tected pressure at position rg in the frequency-domain

eik|rs—r|

ik
P(rS$ (1)) == f PO(r) dr’ (9)
4are J g3 rs—1|

with P(rg,w):=["_p(rg,t)edt and
=1/Q2m) [ P(rg,0)e  “do.

p(rs,1)

A. Far-field approximation

If the detection radius rg:=|rg| is much larger than the
wavelengths of the photoacoustic waves that are useful for
imaging (size of imaged structures), we can apply the far-
field approximation krg> 1, a well known concept in acous-
tics [33]. In the particular far-field approximation (Fraun-
hofer approximation) |rg—r| in Eq. (9) is approximated by
r¢—r(rg/rg) in the exponent and by rg in the denominator.
Consequently,
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—r-tg)

ik ik(rg
P(rgw)=-—1 por)————dr
4are J 3 rg

ik eikrs

== f pO(r)e_ikr-f‘Sdr’
dae rg Jy3

where we set Fgi=rg/rg. Defining k:=kfg and py(k)
:= [papo(r)e~®"dr, it follows that
lk ezkrs

P(rSaw) =- c 4

Po(k) (10)

In this approximation the pressure wave is described as an
outgoing spherical wave with amplitude py(k) and Eq. (10)
directly relates the one dimensional (temporal) Fourier trans-
form of the measuring data p(rg,7) with the spatial Fourier
transform of the initial pressure p in direction Fg:=rg/rg.

In the following we transform Eq. (10) into the time do-
main. We shall make use of the Fourier-slice theorem [31]
for the classical Radon transform, which states that the one-
dimensional Fourier transform evaluated at k of the projec-
tion orthogonal to g is equal to the three-dimensional Fou-
rier transform (of the same function) evaluated at k5. Taking
this into account and applying the inverse one-dimensional
Fourier transform to Eq. (10), yields

—g(fqre—c
p— %g s Ts—

1 Po(r)
=i m( f crereer TS — —as(r )) (11)

Here g(tg,rg—ct), the integral of p, over the plane with nor-
mal vector tg and distance rg—ct from the origin, is the clas-
sical three-dimensional Radon transform of p, [31]. It is
worthwhile to compare the far-field approximation in the
time-domain with the exact solution: In Eq. (8) the initial
pressure is integrated over spherical shells, whereas in Eq.
(11) it is integrated over a planar surface, as indicated by the
dotted line in Fig. 1.

Using Eq. (11) and the symmetry properties of the Radon
transform, it follows that

p(rS’t) =

+7r_
p(r_,ns—@p(rs,—’s s —r), (12)
I C

where r_ is a point on the detection surface opposite to rg.
Therefore, in the far-field approximation, the pressure field
on one side of the detection surface is proportional to the
time reversed field on the opposite side. This will be used in
the next subsection to obtain an inversion formula if the
object is not fully enclosed by the detection surface (limited
angle).

B. Far-field inversion

Xu and Wang [8,9] derived approximate reconstruction
formulas, separately for spherical, cylindrical, and planar de-
tection surfaces, by using series expansions adapted to these
surfaces. In this subsection we show that the far-field ap-
proximation (10) allows us to extend their so-called “modi-
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fied back-projection formula” to arbitrary closed detection
surfaces, in a uniform treatment. Moreover, we show that the
formula also holds in a limited data situation, where the de-
tection surface covers only a 27 solid angle.

Based on Eq. (10) and, for the moment, assuming a closed
surface S, the photoacoustic inverse problem can be solved
as follows: First, calculate the temporal Fourier transform
P(rg,w) of the measured data p(rg,r) for all detector posi-
tions rg. Second, solve Eq. (10) for py(k) and finally apply
the inverse Fourier transform to reconstruct pg(r). This
lengthy but straightforward calculation can be performed di-
rectly in the time domain. Taking into account the inversion
Formula po=(1/872)[g"(fs,r rs)d(fs) for the classical
Radon transform ([31], p. 20), Eq. (11) implies

1 f ap(rS’ t)
— | g ——

dQg(tg). (13
2mc ) o olFg).  (13)

ct=r¢-r-¥g

po(r) = -

Here dQ(ts):=n(rg) #5dS/r3 is the solid angle of the sur-
face area element dS seen from the origin and n(rg) denotes
the normal vector at rg pointing outside the surface S, see
Fig. 1.

It can be shown that Eq. (13) is exact for any rotationally
symmetric initial pressure distribution with the origin O as
rotation center. Therefore, the far-field approximation is still
a good approximation if a small object is placed near the
origin O. As we have no restrictions about the shape of the
detection surface, any reconstruction point r inside V can be
taken as origin of new shifted coordinates. Equation (13) for
the new origin at r, leads to

1 ap(rg,t)
po(r) =~ _f rs—r| = dQ,(rs)
2mc N at ct=|rg-r|
1 op(rq,t
- J ; Plrsd) dQ,(r). (14)
2 N ot ct=[rg-r]

Here dQ),(rg) denotes the solid angle element corresponding
to a detector surface element dS when viewed from r, which

can be represented analytically as ™ r‘Z[n(rS)‘:s_:‘]

=i r‘z[n(rs) e ] Equation (14) generalizes the approxima-
tion derived by Xu er al. [8,9] for spherical, cylindrical, and
planar geometry. For a spherical detection surface a similar
far-field approximation was derived by Kruger er al. [23]
using dS/ r§ instead of d(},.

In real life measurements, due to practical constraints, the
detection surface may not enclose the sample. For example,
it is only possible to use a half-spherical measurement sur-
face to image a human breast. However, in this case, the
solid angle of the hemisphere with respect to any location
inside the breast is always larger than 2. It is theoretically
known [34], that any singularity of p, inside this volume,
such as a jump of p, along a surface, is visible in such data.
Therefore, any detection surface which covers a solid angle
larger than 27 is sufficient for stable image reconstruction.
This means it is possible, at least, in principle, to reconstruct
Ppo Without blurring and undesirable amplification of noise.
And in fact, using Eq. (11) and the symmetry properties of
the classical Radon transform, it follows that
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1 ap(rSat)
r)=-— 2
Po(r) Wfs: o

where S} is a subset of S such that {rg—r:rge S;} covers a
21 solid angle.

dQy(rg),  (15)

ct=|rg—r|

C. Numerical implementation

The inverse far-field approximation (14) is implemented
using a discrete filtered back-projection algorithm with linear
interpolation. We assume that the surface S is parameterized
as rg=rg(u,v). In this case, Eq. (14) can be written as

1 ap(rs’t)
= — t ——
po(r) 27Tf fu’v o

G(u,v)dudv[ rg—r ]
|1'5—1'|2 lrs—r| |’

dQ(u,v),
ct=[rg—r|

(16)
dQ(u,v) =

where G(u,v) is the Jacobian determinant

ars|? orsors | |
du dv
G(u,v)= det 2 s
orsdrs | s
du v Jdv

which can be calculated straight forward for any surface. If,
for example, S is a sphere of radius R, then u=6 and v=¢ are
spherical coordinates and G=sin 6.

Assuming that r§'=rg(u™,v™), Eq. (16) is discretized as
follows: first, tdp/dt(ry,1) is approximated with second or-
der finite differences (filtering step) and extended to a con-
tinuous function ¢(rg, -) using linear interpolation. Second,
the surface integral in Eq. (16) is evaluated with the trapezoi-
dal rule, leading to

1
por) =-— 2 q(rg,

r-r’)AQ™(r),

27Tm=0
(17)
G(u",v"™)Aulv rg—r
AQ™(r) = GW".v")Auky — ) > n(u’",v"’)—j1 .
rg — x| rg —r|
Here r=r"1"2") with n,,n,,n;e{0,...,N} are the recon-

struction points on a uniform lattice including V and Au, Av
are the discretization in u, v, respectively. The numerical
effort of the filtered back-projection algorithm is O(NNy),
since for all (N+1)® reconstruction points we have to sum
over all transducer locations. Under the reasonable assump-
tion Ng~ N2, this is equal to O(N°).

IV. SIMULATION RESULTS AND DISCUSSION

In this section numerical studies of an irregular detection
surface that has the shape of a three-dimensional star, the
shape of a head phantom (MRI data from MATLAB), as well
as for a cubic and a spherical detection surface are presented.
The cubic detection surface is also an example of an irregular

PHYSICAL REVIEW E 75, 046706 (2007)

detection surface with edges and corners but is numerically
simple to handle.

For the spherical detection surface exact analytical recon-
struction formulas are reported: the universal back-projection
formula from Xu and Wang [11,12], as well as the inversion
formulas given by Finch et al. [10], which we combined to
an exact and compact spherical inversion formula (see Ap-
pendix B)

1 op(rq,t
po(r) =- DUD| g
27rr)C ot
0 Irgl=rg ct=|rg—r|
op(re,t
S f s o, (18)
27rc _ at
Irsl=rg cr=[rg-r]

where the solid angle element dQ=dS/(ry)* corresponds to a
detection surface element dS viewed from the center of the
detection sphere with radius rg. It simply states that the ini-
tial pressure p, can be reconstructed as the integral of the
time derivative of the time retarded pressure over the spheri-
cal detection surface S enclosing the object. Moreover, the
first photoacoustic inversion formula in 1995 by Kruger et
al. [23] (see Sec. III B) was derived for a spherical detection
surface.

In our numerical studies shown in Figs. 4—6 these meth-
ods are compared with the far-field approximation and the
time reversal method for an irregular detection surface (star),
a cubic, and a spherical detection surface, respectively. As
initial pressure distribution we choose the Defrise phantom
Po- It consists of five thin ellipsoids rotated around the hori-
zontal axis e;:=(1,0,0), see the dashed line in Fig. 4(a) and
therefore contains high and low spatialfrequency compo-
nents and is well suited to test tomographic image recon-
struction algorithms. For more details on the Defrise phan-
tom consult [35]. The generated waves were simulated via a
decomposition of p(x,7) into plane waves (Fourier method)
according to Egs. (3) and (4) in Kostli et al. [24]. In order to
preclude possible inverse crime, the spatial discretization
numbers for data simulation and image reconstruction are
chosen to be relatively prime.

As it can be seen in Figs. 4(b) and 5(b) the far-field ap-
proximation has small deviations from the initial Defrise
profile. Only near the detection surface, where the initial
pressure is zero, additional features with small amplitude
arise. A similar result gives the universal back-projection for-
mula [11] in Figs. 4(c) and 5(c) for the star surface and the
cubic detection surface, respectively. The time reversal
method, as presented in Sec. III, is theoretically exact for
arbitrary geometry and its implementation with the embed-
ded boundary method gives very accurate reconstruction also
near the detection surface [see Figs. 4(d) and 5(d)].

The far-field approximation in Fig. 6(a) used by Kruger et
al. [23], is accurate near the center of the spherical detection
surface but overestimates the initial pressure distribution
close to the surface S (see also Ref. [35], Sec. 3.4). If the
reconstructed structures are small compared to the radius of
the detection surface, the far-field approximation described
in Sec. [3] gives good results in the whole region enclosed
by the detection surface. For the Defrise phantom consisting
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FIG. 4. Reconstruction profiles of the Defrise phantom. (a)
Cross section of the Defrise phantom which consists of five thin
ellipsoids rotated on the horizontal axis (dashed line) and an irregu-
lar detection surface (three-dimensional star); the pressure units are
arbitrary and the diameter of the detection surface is approximately
130 voxels. Reconstruction profiles for (b) far-field approximation,
(c) universal back-projection, and (d) time reversal method along
the horizontal line of the Defrise phantom.

of the five ellipsoids altogether this assumption is not valid.
This results in the underestimated and even negative pressure
values near the detection surface as shown in Fig. 6(b). The
universal back-projection formula and the spherical inver-
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FIG. 5. Reconstruction profiles of the Defrise phantom. (a)
Cross section of the Defrise phantom which consists of five thin
ellipsoids rotated on the horizontal axis (dashed line) and a cubic
detection surface (square); the pressure units are arbitrary. Recon-
struction profiles for (b) far-field approximation, (c) universal back-
projection, and (d) time reversal method along the horizontal line of
the Defrise phantom.

sion formula of Eq. (18) are exact for a spherical detection
surface and give excellent results [see Figs. 6(c) and 6(d),
respectively]. The time reversal method is not included in
Fig. 6 since it gives the same accurate result as in the case of
the cubic surface presented in Fig. 5(d).
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FIG. 6. Reconstruction profiles of the Defrise phantom in a
spherical arrangement of pointlike detectors; pressure units are ar-
bitrary; diameter of detection surface: 130 voxels. Reconstruction
profiles for (a) Kruger approximation, (b) far-field approximation,
(c) universal back-projection, and (d) spherical inversion formula
(18), along the horizontal line of the Defrise phantom.

To demonstrate how the time reversal method can be ap-
plied also to open detection surfaces the pressure on the in-
accessible part of the detection surface is set to zero [see Fig.
7(c)] or calculated by the far-field approximation Eq. (12)
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FIG. 7. Time reversal reconstruction of a phantom consisting of
a superposition of spheres enclosed by an arrangement of pointlike
detectors on the surface of a head phantom. (a) Horizontal cross-
sectional view through initial data in head phantom. The white
dashed line indicates where in (e) the reconstruction profile is
shown. (b) Reconstructed cross-sectional view. (¢) Reconstructed
cross-section for limited view data. “Measurement data” on the
back of the head is set to zero. (d) Reconstructed cross-section for
limited view data. Missing data is calculated by Eq. (12) (far-field
approximation). (e) Reconstruction profiles for the reconstruction
images shown in (b) solid line, (c) dash dotted line, and (d) dashed
line. The reconstruction profile for the enclosing head detection
surface overlaps with initial data (solid line). (f) Cross-sectional
view if 20% noise are added to the pressure on the detection surface
before running the reconstruction.

[see Fig. 7(d)]. The reconstructed cross-sectional view for
the whole head phantom as detection surface enclosing the
initial pressure distribution is shown in Fig. 7(b). The initial
pressure distribution is a superposition of spheres with a
“Gaussian surface” to avoid discontinuities in pressure data
[cross-sectional view in Fig. 7(a)]. For this initial pressure
the pressure on the detection surface as a function of time
can be calculated analytically (more details in Ref. [17]). For
a quantitative comparison the reconstruction profiles along
the white dashed line are shown in Fig. 7(e). To indicate the
low noise sensitivity of the time reversal method 20% noise
has been added to the analytically calculated pressure on the
detection surface before running the reconstruction. The
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cross-sectional view in Fig. 7(f) shows that even the two
smaller spheres can be recognized clearly at that noise level.

V. CONCLUSIONS AND OUTLOOK

An inversion algorithm based on a far-field approximation
and an exact algorithm using principles of time reversal have
been derived for a photoacoustic tomography setup where
the object is surrounded by an arbitrarily shaped detection
surface that is formed by point receivers. Compared to exist-
ing reconstruction algorithms that are based on filtered back-
projection the time reversal method implemented with a fi-
nite difference approach shows superior imaging accuracy.
Moreover, it has been shown to be a considerable fast alter-
native to back-projection formulas. Even for an open detec-
tion surface, where the arrangement of receivers is arbitrarily
shaped but does not fully enclose the object, the time rever-
sal algorithm shows very accurate results by using the far-
field approximation to calculate the pressure on a surface
closing that detection surface.

Since time reversal actually inverses the acoustic wave
propagation, it should allow for a compensation of the acous-
tic attenuation, thereby improving the imaging resolution
that is limited by the frequency-dependent damping. To pre-
vent high-frequency noise from growing exponentially, Fou-
rier spectral methods [29] can be used. They utilize the Fou-
rier transform to calculate the Laplacian and therefore allow
for incorporating a cutoff frequency when calculating the
time reversal. Another extension of the time reversal algo-
rithm is the possibility of taking acoustic inhomogeneities
into account, by replacing the sound velocity ¢ in Eq. (7b)
with a spatially varying coefficient ¢". As mentioned in the
Introduction, future work will also be done using the time
reversal method in two dimensions to reconstruct three-
dimensional images with integrating line detectors.
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APPENDIX A: KIRCHHOFF-HELMHOLTZ INTEGRAL

Transforming the homogeneous wave equation into the
frequency domain delivers the homogeneous Helmholtz
equation (k’>+A)P(r,w)=0, where P(r,w) is the Fourier
transform of p(r,7) in the variable ¢ and k=w/c. The outgo-
ing (or diverging) Green’s function Gj(r|ry)=exp(-ik|r
—rg|)/(47|r—ry|) is the fundamental solution of the inhomo-

geneous Helmholtz equation
— (¥ + A) G (rfro) = &(r —ry); (A1)

where 6 denotes the three dimensional Dirac delta function
and r( is some source point in V. Let n denote the outward
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normal to S, P a solution of the homogeneous Helmholtz
equation and G:=Gj(r|r), then from the second Green’s
formula one gets

f(—PVG+GVP)-ndS=f (= PAG + GAP)dr,
N \4

=P(r,w). (A2)

The surface integral on the left-hand side of Eq. (A2) is
called the Kirchhoff-Helmholtz integral and shows, that any
solution of the homogeneous Helmholtz equation (and hence
any solution of the homogeneous wave) in V can be evalu-
ated by integrating monopole—and dipole sources—
respectively, GV P and PV G from Eq. (A2)—over the sur-
face S.

If G]((V)(r|rs) denotes the diverging Green’s function in V
subject to homogeneous Dirichlet boundary conditions [that
is G,((V) satisfies Eq. (A1) in V and vanishes on S] then Eq.
(A2) holds also true with G:G]((V) [32]. In this case the
monopole term in the Kirchhoff-Helmbholtz integral will not
contribute because G,((V) is zero on S. By using the Fourier
convolution theorem the resulting equation is transformed
back into the time domain, leading to [Ref. [12], Eq. (13)]

2T,
po(r) =— f ( f pu(rs,t)Vgiv)(rs,tr,ZTo)dt)-ndS,
S

Ty
(A3)

where giv) is the diverging Green’s function in time domain

of the wave equation subject to homogeneous Dirichlet
boundary conditions on S.

Equation (A3) has a very important implication. The ini-
tial pressure can be obtained by retransmitting the measured
pressure into a reflective cavity (formed by S), rather than
retransmitting in free space itself. An insightful interpretation
can be found in Ref. [12] [text following Eq. (13)].

APPENDIX B: COMPACT EXACT SPHERICAL
INVERSION FORMULA

In three space dimensions, the first two n-dimensional in-
version formulas given by Finch et al. [10] in theorem 3 read
as follows:

1 PF(rei=|rg—r|)) ds
prnsl [ RET a5
27170 ) e gier, f [rg—r
© 1 f Aip(rs,1)] ds
Polr)=-— - _ I
27Tr0 rgl=rg Jat elrg-rl/c |rs - I'|
(B2)

where F(rg,7) ==7f€p(r5,t')dt’. Subtracting these two formu-
las and taking into account the definition of F, gives Eq.
(18).
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