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A lattice Boltzmann method for double-diffusive natural convection is presented. The model combines a
multicomponent lattice Boltzmann scheme with a finite-difference solution of the energy equation to simulate
natural convection caused by gradients in temperature and concentration. The model is validated both in two
and three dimensions, and the agreement with literature data is satisfactory. A case study of thermosolutal
convection of air in a cubical enclosure with horizontal thermal and solutal gradients is presented, exhibiting a
rich variety of flow structures.
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I. INTRODUCTION

Double-diffusive or thermosolutal natural convection is
usually defined as the flow behavior of a fluid subject to
gradients of two or more scalar quantities with different dif-
fusivities, causing fluid flow through buoyancy forces �1�. A
wide variety of flow structures can be observed, depending
on the orientation of the different gradients with respect to
each other and with respect to gravity �2�.

These phenomena are readily encountered in numerous
areas, ranging from oceanography and geology over astro-
physics to metallurgy. One important example is the solidi-
fication of a binary alloy, where the solute rejection gives
rise to density differences in the liquid melt, which together
with the temperature gradients in the system can give rise to
double-diffusive convection phenomena.

Since the pioneering work by Turner �1,3,4�, there has
been a growing interest in this phenomenon, due to its im-
portance in science and technology. Sezai and Mohamad �5�
divide the studies on this topic broadly into two types. In the
first type the concentration gradient is applied vertically,
whereas the temperature gradient is applied horizontally,
leading to a stably stratified flow. The second type of studies,
which is of interest to the present study, applies both gradi-
ents in the horizontal direction. This problem has been stud-
ied from an experimental �6–10� and from an analytical or
numerical �5,11–23� point of view.

From the nondimensionalization of the conservation equa-
tions of mass, momentum, energy, and concentration for a
binary mixture of components A and B, five dimensionless
numbers arise, namely the thermal Rayleigh number RaT
= ��g��T�TL3� /��, the solutal Rayleigh number RaS

= ��g��S
A�xAL3� /��, the ratio of buoyancy forces N

=�S�xA /�T�T, the Prandtl number Pr=� /�, and the Lewis
number Le=� /D. Some authors prefer to work with the ther-
mal and solutal Grashof number, defined as GrT=RaT /Pr and
GrS=RaS /Sc, with Sc=� /D the Schmidt number. �T and
�xA are typical temperature and concentration differences in
the system, �T and �S

A=−�S
B are the thermal and solutal ex-

pansion coefficients, L is a characteristic length, �g� is the
magnitude of the gravitational acceleration, and �, �, and D

are the viscosity, thermal diffusivity and diffusion coeffi-
cient. If the enclosure is not square or cubic, the aspect ratio
Az, and Ay in three dimensions, may play a role. Since only
two components are present in the current work, all variables
above can be defined for component A, with equivalent for-
mulations in terms of B. The sign of N indicates whether the
buoyancy forces due to temperature and concentration are
cooperating �N�0� or opposing each other �N�0�.

One of the first experimental studies on double-diffusive
convection in enclosures has been presented by Kamotani et
al. �6�. In this work flow structures in shallow enclosures are
investigated in an electrochemical system containing a
copper-sulfate acid solution, imposing fixed temperatures
with heat exchangers and fixed concentrations at electrode
surfaces through anodic and cathodic reactions. The authors
started from steady state thermal convection flow fields, and
found similar flow structures for augmenting and opposing
buoyancy forces. For smaller buoyancy ratios, typically
smaller than 6 �augmenting� or 10 �opposing�, the flow is
unicellular with secondary cells, whereas when the buoyancy
ratio is larger, a three-layered flow structure emerges. It
should however be noted that these experiments did not
reach steady state, thereby limiting the applicability of the
conclusions. Similar experiments have been performed by
Jiang et al. �9� and Han and Kuehn �10�. Jiang et al. �9�
studied the unsteady behavior at large Rayleigh numbers,
observing three flow regimes, namely a multilayer flow re-
gime, a secondary flow regime, and a mixed flow regime, the
unsteady behavior being triggered by unsteady solutal
boundary layers. Han and Kuehn �10� extended the param-
eter window and studied the development of double diffusive
flow starting from the steady state pure thermal situation, for
different aspect ratios of the enclosure. Lee et al. �7� used a
water-salt system with vertical walls made of membranes in
contact with supply reservoirs imposing constant tempera-
ture and concentrations, to study steady state flow structures.
They found unicellular flow fields for high and low buoy-
ancy ratios, and multilayer flow structures for intermediate
values. Weaver and Viskanta �8� presented one of the few
studies on thermosolutal convection in gases. Making use of
condensation and evaporation to impose gas concentrations,
the authors obtain flow structures for both augmenting and
opposing buoyancy forces, and observe unsteady behavior
under certain conditions. A summary of the dimensionless*Electronic address: frederik.verhaeghe@mtm.kuleuven.be
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quantities of these experimental studies can be found in
Table I.

Several authors �16,19,20� performed a linear stability
analysis of the purely diffusive solution, i.e., linear tempera-
ture and concentration gradients, in the case with equal and
opposing buoyancy forces, i.e., N=−1, with Lewis numbers
different from 1. Gobin and Bennacer �16� derived a linear
stability criterium for the case of an infinite vertical fluid
layer and find that the critical Rayleigh number solely de-
pends on the Lewis number. Ghorayeb and Mojtabi �19� and
Xin and co-workers �20� extended the analysis to confined
rectangular cavities, investigating the influence of the aspect
ratio of the cavity.

Numerical studies of thermosolutal convection are mainly
two dimensional �2D�. The dimensionless quantities of a
number of studies can be found in Table I. Beyond the purely
diffusive solution, most authors find at steady state either a
unicellular structure, a unicellular structure with secondary
cells in the corners, or a multilayered structure, depending on
the parameters. Ghorayeb et al. �22� performed simulations
beyond the steady state regime, showing oscillatory flow that
can be either centro-symmetric or asymmetric single fre-
quency flow.

Sezai and Mohamad �5� and Bergeon and Knobloch �23�
show that in a substantial part of the cases, double-diffusive

natural convection in enclosures is truly three dimensional
�3D�. Sezai and Mohamad �5� studied the effect of the ther-
mal Rayleigh number, the Lewis number and the buoyancy
ratio on the thermosolutal natural convection in a cubical
enclosure subject to horizontal and opposing thermal and
solutal gradients. Bergeon and Knobloch �23� undertook a
linear and nonlinear study of double-diffusive flows with
equal and opposing temperature and concentration gradients,
studying the stability loss of the diffusive solution, the dy-
namical behavior close to this bifurcation point, and the ef-
fect of the aspect ratios.

In this paper we tackle the problem of double-diffusive
natural convection with the lattice Boltzmann method
�LBM�. Over the last two decades, this mesoscopic modeling
technique, with a sound basis in kinetic theory �26–29�, has
been successfully applied to problems such as flow in porous
media �30–32�, multicomponent �33–36�, and multiphase
�37–39� flows and particulate suspensions �40,41�.

Various authors have also suggested models for thermal
flows. Lallemand and Luo �42� classify these models into
three categories, namely the passive scalar approach, in
which the flow field and the temperature field are solved by
two distinct sets of populations, with coupling from the flow
field to the temperature field, methods including various
shock capturing schemes to treat the fully compressible Eu-

TABLE I. Overview of the dimensionless parameters in previous experimental and numerical studies of double-diffusive natural con-
vection �after �19��.

Authors

Experimental work

Az Pr Le GrT N

Kamotani et al. �6� 0.13–0.55 7 300 0–1.9	106 �±�4–40

Jiang et al. �9� 0.13–0.5 7 400–425 5.7	103–3.3	106 −102 to −2.8

Lee et al. �7� 0.2 and 2.0 4.0–7.9 60–197 �±�2.43	105–7.12	107 �±�2.7–72.3

Han and Kuehn �10� 1 and 4 7.8–8.8 261–333 �±�1.4	105–1.1	106 −24–13

Numerical work in 2D

Authors Az Pr Le GrT N

Han and Kuehn �13� 4 8 250 −4	105–3	105 −50–550

Béghein et al. �14� 1 0.71 0.5–5 1.41	107 −0.02 to −10

Hyun and Lee �24� 2 7 100 1.97	103–3.94	107 0.5–10000

Lee and Hyun �11� 2 7 100 0.28	106–1.97	107 −0.5 to −30

Bennacer and Gobin �17� 1 7 −1000 103–106 0.1–100

Gobin and Bennacer �18� 1–8 7 −1000 103–106 0.1–100

Bergman and Hyun �25� 1 0.02 7500 5	103 −0.1–10

Ghorayeb and Mojtabi �19� 1, 2, 4, and 7 1 2–151 0�GrT�Le−1��3	104 −1

Xin et al. �20� 1–4 1 1.2 104–105 −1

Ghorayeb et al. �22� 1 1 2–45 4.75	104–1.2	105 −1

Numerical work in 3D

Authors Az; Ay Pr Le GrT N

Sezai and Mohamad �5� 1 10 0.1–150 104–2	104 −2–0

Bergeon and Knobloch �23� 1–6 1 11 0–4000 −1
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ler or Navier-Stokes equations, and models extending ather-
mal schemes with an energy conservation constraint. We re-
fer to �42� for an in-depth discussion and references.
Unfortunately the majority of the schemes suffer from nu-
merical instability. The authors of �43� suggest a different
approach, which is adopted in this work, namely to solve the
temperature equation by a finite difference scheme, and to
eliminate defects and numerical instability of previous
schemes by adequate coupling between the lattice Boltzmann
scheme for the flow field, and the finite difference scheme
for the energy equation. A similar approach has been pre-
sented in �44�. We combine this approach with a lattice Bolt-
zmann model for multicomponent liquids as presented by
�35� with appropriate boundary conditions presented in �45�.

The remainder of this paper is organized as follows. In
Sec. II double-diffusive natural convection and the setup of
the simulations is briefly introduced. Section III contains the
description of the presented lattice Boltzmann model to de-
scribe this type of flow. The model is validated in Sec. IV. In
Sec. V a numerical study of double-diffusive natural convec-
tion in a cubical enclosure is presented. Conclusions are for-
mulated in Sec. VI.

II. PROBLEM STATEMENT

Double-diffusive phenomena arise because inhomogene-
ity of temperature and concentration give rise to density dif-
ferences within the fluid. If these fluctuations can be as-
sumed to be small, their effect can be modeled solely by a
source term in the momentum conservation equation, a
method known as the Boussinesq approximation �46�. In a
binary fluid of components A and B, the density is described
by a linear function of the temperature and the concentration
xA with respect to a reference density 
0 at a reference tem-
perature T0 and concentration xA

0 ,


 = 
0�1 − �T�T − T0� − �S
A�xA − xA

0�� . �1�

Expression �1� is used in the body force,

F = g�
 − 
0� �2�

in which g is the gravitational acceleration.
The geometries used in this work are a square �2D� and

cubical �3D� enclosure �see Fig. 1�. At the walls, the macro-
scopic velocity of the binary mixture vanishes, i.e., u=0 at
the walls. The gravity vector points in the negative z direc-

tion. Constant but different temperatures, T1 and T2, and con-
centrations, xA,1 and xA,2 are imposed at the faces x=0 and
x=1, whereas the other walls are assumed to be adiabatic,
i.e., �nT=0, and impermeable, i.e., �nxA=0.

It should be noted that the Boussinesq approximation lin-
earizes the dependence of the density on the temperature and
concentration, and the results can therefore only be expected
to be valid for moderate temperature and concentration varia-
tions �47�.

III. LATTICE BOLTZMANN MODEL FOR DOUBLE-
DIFFUSIVE NATURAL CONVECTION

A. Multicomponent lattice Boltzmann model

Several models have been suggested to describe the mul-
ticomponent mixtures within the lattice Boltzmann frame-
work, based on pseudopotential interactions �33,37�, on heu-
ristic free energies �38� or directly derived from kinetic
theory models �35,36�. It should be noted that also the earlier
models, although originally derived in an ad hoc fashion, can
be connected to kinetic theory. In this work we adopt a
model by Luo and Girimaji �48�, derived from the continu-
ous kinetic theory model of Sirovich �49�. In this model a
binary mixture is described by a set of evolution equations
for the species density distribution functions fq

A and fq
B,

fq
A�r + cq,t + 1� = fq

A�r,t� + Jq
AA + Jq

AB + Fq
A, �3�

fq
B�r + cq,t + 1� = fq

B�r,t� + Jq
BB + Jq

BA + Fq
B, �4�

in which the index q runs over all velocity vectors cq of the
chosen set. In two dimensions we adopt the D2Q9 set, in
three dimensions the D3Q19 set. The terms Jq

AA and Jq
BB are

the collision operators accounting for collisions between like
particles, and Jq

AB and Jq
BA the collision operators describing

cross collisions between unlike particles. The former type of
collision operator is approximated with a single-relaxation
time or Bhatnager-Gross-Krook �BGK� model, while the
cross collisions are incorporated through a force-coupling
approach. We refer to �35� for details.

The terms Fq
A and Fq

B are the forcing terms to incorporate
the buoyancy effects. Since a separate evolution equation is
solved for every species, the forcing term in Eq. �2� must be
imposed for every species individually, ensuring that the to-
tal force equals the one given in Eq. �2�. This is accom-
plished by the following set:

FA = g�
A − 
A
0� , �5�

FB = g�
B − 
B
0� , �6�

in which the species density is also assumed to be a linear
function of temperature and concentration,


A = 
A
0��T

A�T − T0� + �S
A�xA − xA

0�� , �7�


B = 
B
0��T

B�T − T0� + �S
B�xB − xB

0�� . �8�

In this work we choose �T
A=�T

B=�T. The implementation of
these terms will be discussed in Sec. III C.

x

z

g

x

z y

g

FIG. 1. Geometries used in the simulations. Left-hand side, 2D
square, fixed temperature and concentration imposed on the left-
hand and right-hand walls. Right-hand side, 3D cube, fixed tem-
perature and concentration imposed on the grey faces. In both cases
the gravity vector g points in the negative z direction.
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The macroscopic conserved species quantities are calcu-
lated as the velocity moments of the distribution functions,


k = �
q

fq
k , �9�


kuk = �
q

fq
kcq, �10�

and the mixture quantities are obtained from the species
quantities as follows:


 = �
k


k, �11�


u = �
k


kuk. �12�

By means of the Chapman-Enskog analysis it can be shown
�35� that this model leads to the Navier-Stokes equations for
the mixture velocity, and the classical diffusion-advection
equations for the mass concentration, in which the transport
coefficients can be related to the relaxation rates used in the
collision operators.

B. Finite-difference energy equation

Following the approach suggested in �42�, we solve the
energy equation,

�tT + u · �T = ��T �13�

with a finite difference scheme,

T�r,t + 1� = T�r,t� − u · �*T + ��*T . �14�

The time integration is performed with a forward Euler
scheme. The principles to derive the spatial finite difference
stencils for hybrid thermal lattice Boltzmann models can be
found in �42�. For the D2Q9 model, the following polynomi-
als,

�0 = 1 �15�

�1 = x, �2 = y , �16�

�3 = �x2 − y2�, �4 = xy, �5 = �x2 + y2� , �17�

�6 = x�x2 − y2�, �7 = y�x2 − y2� , �18�

�8 = �x2 − y2�2, �19�

are used to expand the function T�x ,y� in two-dimensional
space,

T�x,y� = �
q

aq�q�x,y� . �20�

For a point in the bulk, the coefficients ai are determined by
imposing

T�xi,yi� = �
q

aq�q�xi,yi� . �21�

with �xi ,yi�= �0,0�, �±1,0�, �0, ±1�, and �±1, ±1�. The de-
rivatives of T�x ,y� are obtained by taking the derivatives of
Eq. �20�.

For the D3Q19 model, a similar approach is followed
using

�0 = 1,

�1 = x, �2 = y, �3 = z ,

�4 = x2 + y2 + z2, �5 = �x2 + y2 + z2� ,
�22�

�6 = x�x2 + y2 + z2�, �7 = y�x2 + y2 + z2� ,

�8 = z�x2 + y2 + z2� ,

�9 = 3x2 − y2 − z2, �10 = y2 − z2,

�11 = xy, �12 = yz, �13 = xz ,

�14 = �x2 + y2 + z2��3x2 − y2 − z2� ,

�15 = �x2 + y2 + z2��y2 − z2� ,

�16 = x�y2 − z2�, �17 = y�z2 − x2� ,

�18 = z�x2 − y2� ,

and the collocations points are �xi ,yi ,zi�= �0,0 ,0�, �±1,0 ,0�,
�0, ±1,0�, �0,0 , ±1�, �±1, ±1,0�, �±1,0 , ±1�, and
�0, ±1, ±1�.

C. Implementation of force term

In the past, quite some discussion and confusion has
arisen concerning the correct implementation of forcing
terms in lattice Boltzmann simulations. Our simulations have
shown that the approach presented in �50� leads to a correct
agreement between LBM simulations and validation results.
To satisfy the mass conservation equation up to second order
in the Chapman-Enskog analysis, it is preferable to perform
the forcing in two steps, adding one half of the forcing be-
fore the collision step, and the other half after, and to use the
momentum with one half of the forcing added before colli-
sion as the measured field for output. This method can be
summarized with the following scheme �adapted for BGK
from �42��:

Step 1. Advection of fq
k.

Step 2. Addition of first half of the forcing term.
Step 3. collision of fq

k.
Step 4. Addition of second half of the forcing term.
The forcing is added in both steps through the classical

formula:
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fq�
k = fq

k + 3wqcq
Fk

2
�23�

with k=A or B and wq the weight factor associated with
velocity cq, f� and f the populations after and before the
addition of the forcing, and Fk is the forcing term as defined
in Eq. �6�.

D. Boundary conditions

In the validation cases presented below, various boundary
conditions need to be imposed, both for the lattice Boltz-
mann part and for the finite-difference temperature calcula-
tion.

The boundary conditions for the lattice Boltzmann model
impose conditions on the flow field and the concentration
field. To impose a fixed concentration and a zero mixture
velocity at the wall, the following conditions can be used
�45�:

f q̄
A�x,t + 1� = 2x̄A� f̃ q

A�x,t� + f̃ q
B�x,t�� − f̃ q

A�x,t� , �24�

f q̄
B�x,t + 1� = 2x̄B� f̃ q

A�x,t� + f̃ q
B�x,t�� − f̃ q

B�x,t� , �25�

in which f̃ q
c are populations after collision, and f q̄

A popula-
tions after streaming, with cq̄=−cq, and x̄A and x̄B=1− x̄A are
the imposed concentrations.

A second set of boundary conditions is a no-flux condition
for the concentration and zero mixture velocity at the wall,
which is accomplished by the typical bounce-back boundary
conditions for every species,

f q̄
A�x,t + 1� = f̃ q

A�x,t� , �26�

f q̄
B�x,t + 1� = f̃ q

B�x,t� . �27�

Since the lattice Boltzmann model is used to simulate the
fluid flow and the mass transfer, and the boundary conditions
given above locate the boundary half a lattice spacing out-
side the calculation domain, the stencil for the temperature
calculation of boundary points is no longer symmetrical. The
collocation conditions of the missing nodes are replaced by
the boundary conditions. Figure 2 explains this principle for
a node in the two-dimensional case next to a corner. The
circles with full line indicate fluid nodes, the circles in
dashed line are missing neighbors. These are replaced by
fictitious nodes on the boundary, where the boundary condi-
tion needs to be satisfied. Taking the example of an imposed
temperature TE on the right wall, and an adiabatic top wall,
the following condition is imposed on the empty squares:

T�x�,y�� = TE �28�

while on the full squares, a zero gradient is imposed:

�zT�x�,y�� = 0. �29�

For nodes on the intersection of two boundaries, a choice
must be made. Numerical tests show that the result does not
depend on this choice. The details of the different types of

boundary stencils used can be found in Appendix A for the
2D case and Appendix B for the 3D case.

IV. VALIDATION

A. Case 1: Davis [51]

In his landmark paper, Davis �51� presented benchmark
results for natural convection in a square cavity with differ-
entially heated vertical side walls using a finite-difference
code. Through mesh refinement and extrapolation accurate
solutions are obtained for Rayleigh numbers from 103 to 106.
To test our code, we performed simulations with the same
Rayleigh numbers, both for pure thermally driven convection
and for pure solutal natural convection.

Simulations are performed for RaT or RaS equal to 103,
104, 105, and 106, on a 2002 grid for the first three Rayleigh
numbers, and a 4002 grid for the highest. If RaT is nonzero,
RaS is zero and vice versa. The quantities calculated for com-
parison are presented in Table II. The local Nusselt number
in the horizontal direction is calculated from

Nuloc�x,z� = u�x,z�T�x,z� − �xT�x,z� . �30�

For the calculation Nuloc in the bulk, a second order central
difference approximation is used, whereas for boundary
points, a first order one-sided finite difference approximation
is used. For the calculation of the location of maxima and
minima, the interpolation procedure from the initial work of
Davis �51� is not used. Instead, the coordinate of the grid
point where the maximum or minimum occurs is given.

In Table III the results obtained with the lattice Boltzmann
model, both for pure thermal and pure solutal natural con-
vection, are compared with the benchmark results of Davis
�51�. The agreement is very good for all simulated Rayleigh
numbers.

B. Case 2: Béghein et al. [14]

Béghein et al. �14� simulated double-diffusive natural
convection in a square cavity.

Data is given for a fluid with Le=1 for pure thermal con-
vection with RaT=2	104, and for thermosolutal convection

FIG. 2. Corner node at the intersection of two boundaries. Fluid
nodes are indicated with full-line circles, missing nodes with
dashed-line circles. Five neighboring nodes are not part of the com-
putational domain. For the derivation of the stencil of the corner
node, these are replaced by fictitious nodes on the boundary, indi-
cated by the squares, where the boundary conditions are imposed.
For nodes at the intersection of two boundaries, indicated here with
a half-filled square, a choice must be made.
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with RaT=104 and RaS=104, yielding the same result as for
the pure thermal case, since thermal and solutal buoyancy
augment each other. This data is compared with simulations
using the present model on a 1002 grid, for pure thermal
convection �RaT=2	104, thermal LBM �TLBM��, pure so-
lutal convection �RaS=2	104, multicomponent LBM
�MCLBM�� and thermosolutal convection �RaT=104 and
RaS=104, thermal multicomponent LBM �TMCLBM��, of
which the results are shown, respectively, in Figs. 3–5. The

agreement is good in all three cases.
The authors also studied the effect of the buoyancy ratio

N for opposing flows with Le=1. For a fixed thermal Ray-
leigh number RaT=107, the solutal Rayleigh number RaS is
varied from 105 to 5	107, or equivalently, the buoyancy
ratio N is varied from −0.01 to −5. Table IV shows the com-
parison of the results in Ref. �14� with the results obtained by
the present method. The agreement is very good over the
complete range of simulated buoyancy ratios.

C. Case 3: Fusegi et al. [52]

Fusegi and co-workers �52� performed simulations of
three-dimensional thermally driven natural convection in a
cubical enclosure. The working fluid is air, fixing Pr=0.71.
The Rayleigh numbers range from RaT=103 to 106. The main
purpose of the study by Fusegi et al. was to show the three-
dimensional character of natural convection, in contrary to

TABLE II. Quantities used for comparison of the simulated re-
sults with the benchmark results of Davis �51�.

umax Maximum horizontal velocity on the vertical
midplane of the cavity

zu Location of the maximum horizontal velocity on
the vertical midplane

vmax Maximum vertical velocity on the horizontal
midplane of the cavity

xv Location of the maximum vertical velocity on the
horizontal midplane

Nu¯ Average Nusselt number throughout the cavity

Nu1/2 Average Nusselt number on the vertical midplane
of the cavity

Nu0 Average Nusselt number on the vertical boundary
of the cavity at x=0

Numax Maximum value of the local Nusselt number on
the boundary at x=0

zmax Location of maximum value of the local Nusselt
number on the boundary at x=0

Numin Minimum value of the local Nusselt number on
the boundary at x=0

zmin Location of minimum value of the local Nusselt
number on the boundary at x=0

TABLE III. Simulated results, both pure thermal �TLBM� and pure solutal �MCLBM�, compared with the benchmark values of Davis
�51�, for RaT, respectively, RaS values of 103, 104, 105, and 106.

Ra

103 104 105 106

Davis �51� TLBM MCLBM Davis �51� TLBM MCLBM Davis �51� TLBM MCLBM Davis �51� TLBM MCLBM

umax 3.649 3.649 3.649 16.178 16.180 16.181 34.73 34.70 34.72 64.63 64.65 64.77

zu 0.813 0.813 0.813 0.823 0.823 0.823 0.855 0.853 0.853 0.850 0.853 0.858

wmax 3.697 3.697 3.697 19.617 19.621 19.622 68.59 68.53 68.57 219.36 219.14 219.73

xw 0.178 0.178 0.178 0.119 0.118 0.118 0.066 0.068 0.068 0.0379 0.0375 0.0375

Nu¯ 1.118 1.118 1.118 2.243 2.244 2.244 4.519 4.516 4.517 8.800 8.774 8.782

Nu1/2 1.118 1.118 1.118 2.243 2.244 2.244 4.519 4.514 4.515 8.799 8.768 8.886

Nu0 1.117 1.118 1.118 2.238 2.244 2.244 4.509 4.520 4.521 8.817 8.809 8.816

Numax 1.505 1.506 1.506 3.528 3.530 3.531 7.717 7.713 7.713 17.925 17.440 17.447

zmax 0.092 0.088 0.088 0.143 0.143 0.143 0.081 0.083 0.083 0.0378 0.0375 0.0375

Numin 0.692 0.691 0.691 0.586 0.585 0.585 0.729 0.730 0.730 0.989 0.992 0.992

zmin 1 1 1 1 1 1 1 1 1 1 1 1

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

z / L

N
u

lo
c

Béghein et al.
TLBM

FIG. 3. Comparison of TLBM results with data from �14�.
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the usual two-dimensional assumption. We use their results
as a benchmark for the model in this paper. We perform
simulations of thermally driven convection with RaT=103,
104, 105, and 106 with RaS=0, and of concentration-driven
convection RaS=103, 104, 105, and 106 with RaT=0. Table V
shows the comparison of the LBM results with the results of
Fusegi et al. for the mean Nusselt number at the isothermal
walls.

The agreement is good, especially considering that in the
case of the LBM simulations a uniform grid of 1003 nodes is
used, while Fusegi et al. �52� use a nonuniform grid to re-
solve the boundary layers. The use of nonuniform grids in
LBM simulations is a logical extension of the current work
and can be done similarly as in the work by Peng et al. �53�.

V. RESULTS

In this section the results are presented of a numerical
study which can be viewed as complementary to the one of
Sezai and Mohamad �5�. The simulations in that article are
for water based solutions �Pr=10�, whereas in this work we
focus on air �Pr=0.71� and investigate the role of the buoy-
ancy ratio through a number of numerical experiments. We
choose RaT=105 and Le=5 and study the flow structures for
opposing driving forces with four buoyancy ratios, namely
N=−0.2, N=−0.5, N=−0.75, and N=−2. For every case, the
flow field, isotemperature and isoconcentration contours are
presented in three planes, the mid-XZ plane, the XY plane at
z=0.9, close to the top of the cavity, and the mid-YZ plane.
The simulations are performed on a 1003 grid.

For the lowest buoyancy ratio, i.e., N=−0.2, the results
are shown in Fig. 6. The flow is mainly two dimensional: the

isocontours of temperature and concentration in the XY and
YZ planes are more or less parallel to the Y axis. The
counter-clockwise flow field in the central XZ plane indicates
that at this modest buoyancy ratio, the flow is mainly ther-
mally driven. As can be expected for a Lewis number greater
than 1, the solutal boundary layer is thinner than the thermal
one, which can be clearly seen in the XZ plane. The center of
the cavity is relatively homogeneous at a concentration of
xA=0.5.

The small three-dimensional effects which are already
visible in the case of N=−0.2 are more pronounced at N=
−0.5 in Fig. 7. The streamlines in the XY plane diverge to-
wards the corners, and the four vortices appearing in the YZ
plane are actually spiral structures. The distortion of the iso-
contours, especially of the concentration, indicate three-
dimensional flow. At a buoyancy ratio of N=−0.75, closer to
the case of equal but opposing forces, the three dimension-
ality is clear, and we find eight vortices in the YZ plane,
clearly shown in Fig. 8. Now also the temperature contours
become clearly distorted and the temperature field in the
middle of the cavity becomes more homogeneous. In com-
parison to the results of Sezai and Mohamad, the three-
dimensional character of the flow emerges only at values of
N closer to unity, probably due to the lower Lewis number in
the present simulations.

When the buoyancy ratio is increased to N=−2, a three-
layered structure emerges, as can be seen in Fig. 9. Next to
the thermally driven and hence counter-clockwise flowing
central vortex, two solutally driven, clockwise rotating vor-
tices emerge in the solutal boundary layer. The temperature
and concentration contours tend to be more parallel to the Y

TABLE IV. Comparison of the lattice Boltzmann �LBM� results with the results of Beghein et al. �BG� for the average Sherwood number
along a vertical axis for opposing flows with Le=1, Pr=0.71, and RaT=107. N is varied from −0.01 to −5.

RaS 105 106 2	106 5	106 8	106 9	106 1.5	107 5	107

N −0.01 −0.1 −0.2 −0.5 −0.8 −0.9 −1.5 −5

ShBG −16.4 −16.0 −15.5 −13.6 −10.6 −8.8 −13.6 −23.7

ShLBM −16.4 −16.0 −15.5 −13.6 −10.6 −8.8 −13.7 −23.7
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FIG. 4. Comparison of MCLBM results with data from �14�.
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FIG. 5. Comparison of TMCLBM results with data from
�14�.
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axis, indicating a two-dimensional flow, yet four vortices
persist in the YZ plane.

VI. CONCLUSIONS

In this paper we have presented a lattice Boltzmann
method to study double-diffusive natural convection phe-
nomena caused by temperature and concentration gradients
in a multicomponent fluid in two and three dimensions. The
model is validated against results obtained via other methods
and the agreement is good in all cases, although it is also
clear that further work can be done by extending the present

method to nonuniform grids, to efficiently capture the bound-
ary layers. The potentiality of the presented model is illus-
trated with a case study of the flow structure of thermosolutal
convection of a binary gas in a cubical enclosure.
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TABLE V. Comparison of the average Nusselt or Sherwood number at the isothermal or isosolutal walls for the pure thermal LBM and
the pure multicomponent model with the results of Fusegi et al. �52�.

Ra

103 104 105 106

Fusegi �52� TLBM MCLBM Fusegi �52� TLBM MCLBM Fusegi �52� TLBM MCLBM Fusegi �52� TLBM MCLBM

Numean 1.085 1.071 1.071 2.100 2.054 2.053 4.361 4.326 4.327 8.770 8.551 8.574

FIG. 6. Resulting fields for N=−0.2. Left-hand side, projected flow fields; center, isotemperature contours; right-hand side, isoconcen-
tration contours. Top, plane y=0.5; middle, plane z=0.9; bottom, x=0.5.
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APPENDIX A: FINITE DIFFERENCE STENCILS FOR
TWO-DIMENSIONAL ENERGY EQUATION

In the two-dimensional simulations, the domain is dis-
cretized with nx nodes in the x-direction, and nz nodes in the
z direction, so the domain consists of nodes �i , j� with i
=1, . . . ,nx and j=1, . . . ,nz. As was discussed supra, the num-
ber of fluid neighbors and the boundary conditions determine
the stencil to be used for the temperature calculation. In what
follows, the stencils are given explicitly for all possible cell
types. The temperature imposed at x=0 is TW, the one im-
posed at x=1 is TE. The temperatures of neighboring cells
are numbered in the same way as the velocity vectors, which
is shown in Fig. 10. In this section and the next, the super-
script of the operator has been dropped since it is clear that
the operators given here are finite-difference operators.

1. Bulk cell

We have

�xT = T1 − T3 −
1

4
�T5 − T6 + T8 − T7� , �A1�

�yT = T2 − T4 −
1

4
�T5 − T8 + T6 − T7� , �A2�

�T = 2�T1 + T2 + T3 + T4� −
1

2
�T5 + T6 + T7 + T8� − 6T0.

�A3�

2. Faces

a. i=nx

We have

�xT =
4

3
TE −

5

4
T0 −

7

12
T3 +

1

8
�T2 + T4 + T6 + T7� ,

�yT =
3

2
�T2 − T4� −

1

3
�T6 − T7� ,

�T =
8

3
TE −

17

2
T0 +

9

4
�T2 + T4� +

17

6
T3 −

3

4
�T6 + T7� .

FIG. 7. Resulting fields for N=−0.5. Left-hand side, projected flow fields; center, isotemperature contours; right-hand side, isoconcen-
tration contours. Top, plane y=0.5; middle, plane z=0.9; bottom, x=0.5.
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b. i=1

We have

�xT = −
4

3
TW +

5

4
T0 +

7

12
T1 −

1

8
�T1 + T4 + T5 + T8� ,

�yT =
3

2
�T2 − T4� −

1

3
�T5 − T8� .

�T = −
8

3
TW −

17

2
T0 +

9

4
�T2 + T4� +

17

6
T1 −

3

4
�T5 + T8� .

c. j=nz

We have

�xT =
3

4
�T1 − T3� −

1

4
�T8 − T7� ,

�yT = T0 − T4 −
1

4
�T1 + T3� +

1

4
�T7 + T8� ,

�T = − 4T0 +
3

2
�T1 + T3� + 2T4 −

1

2
�T7 + T8� .

d. j=1

We have

�xT =
3

4
�T1 − T3� −

1

4
�T5 − T6� ,

�yT = − T0 + T2 +
1

4
�T1 + T3� −

1

4
�T5 + T6� ,

�T = − 4T0 +
3

2
�T1 + T3� + 2T2 −

1

2
�T5 + T6� .

3. Corners

a. i=nx, j=nz

We have

�xT =
4

3
TE −

3

4
T0 −

7

12
T3 −

1

4
T4 +

1

4
T7,

FIG. 8. Resulting fields for N=−0.75. Left-hand side, projected flow fields; center, isotemperature contours; right-hand side, isoconcen-
tration contours. Top, plane y=0.5; middle, plane z=0.9; bottom, x=0.5.
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�yT =
9

4
�T0 − T4� −

7

12
�T3 − T7� ,

�T =
8

3
TE − 6T0 + 2�T3 + T4� −

2

3
T7.

b. i=1, j=nz

We have

�xT = −
4

3
TW +

3

4
T0 +

7

12
T1 +

1

4
T4 −

1

4
T8,

�yT =
9

4
�T0 − T4� −

7

12
�T1 − T8� ,

�T =
8

3
TW − 6T0 + 2�T1 + T4� −

2

3
T8.

c. i=nx, j=1

We have

�xT =
4

3
TE −

3

4
T0 −

7

12
T3 −

1

4
T2 +

1

4
T6,

�yT =
9

4
�T2 − T0� −

7

12
�T3 − T6� ,

�T =
8

3
TE − 6T0 + 2�T2 + T3� −

2

3
T6.

FIG. 9. Resulting fields for N=−2. Left-hand side, projected flow fields; center, isotemperature contours; right-hand side, isoconcentra-
tion contours. Top, plane y=0.5; middle, plane z=0.9; bottom, x=0.5.
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FIG. 10. Labeling of velocities and temperatures of neighbors
for D2Q9 model.
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d. i=1, j=1

We have

�xT = −
4

3
TW +

3

4
T0 +

7

12
T1 +

1

4
T2 −

1

4
T5,

�yT =
9

4
�T2 − T0� −

7

12
�T5 − T1� ,

�T =
8

3
TW − 6T0 + 2�T1 + T2� −

2

3
T5.

APPENDIX B: FINITE DIFFERENCE STENCILS FOR
THREE-DIMENSIONAL ENERGY EQUATION

In the three-dimensional simulations, the domain is dis-
cretized with nx nodes in the x direction, ny nodes in the y
direction, and nz nodes in the z direction, so the domain
consists of nodes �i , j ,k� with i=1, . . . ,nx, j=1, . . . ,ny, and
k=1, . . . ,nz. As was discussed supra, the number of fluid
neighbors and the boundary conditions determine the stencil
to be used for the temperature calculation. In what follows,
the stencils are given explicitly for all possible cell types.
The temperature imposed at x=0 is TW, the one imposed at
x=1 is TE. The temperatures of neighboring cells are num-
bered in the same way as the velocity vectors, which is
shown in Fig. 11.

1. Bulk cell

We have

�xT = T1 − T2 −
1

8
�T7 − T8 + T9 − T10 + T11 − T12 + T13 − T14� ,

�yT = T3 − T4 −
1

8
�T7 + T8 − T9 − T10 + T15 − T16 + T17 − T18� ,

�zT = T5 − T6 −
1

8
�T11 + T12 − T13 − T14 + T15 + T16 − T17

− T18� ,

�T = − 9T0 + 2�T1 + T2 + T3 + T4 + T5 + T6� −
1

4
�T7 + T8 + T9

+ T10 + T11 + T12 + T13 + T14 + T15 + T16 + T17 + T18� .

2. Faces

a. i=nx

We have

�xT =
4

3
TN −

9

8
T0 −

2

3
T2 +

1

16
�T3 + T4 + T5 + T6� +

1

12
�T8

+ T10 + T12 + T14� −
1

32
�T15 + T16 + T17 + T18� ,

�yT =
5

4
�T3 − T4� −

1

6
�T8 − T10� −

1

8
�T15 − T16 + T17 − T18� ,

�zT =
5

4
�T5 − T6� −

1

6
�T12 − T14� −

1

8
�T15 + T16 − T17 − T18� ,

�T =
8

3
TN −

45

4
T0 +

8

3
T2 +

17

8
�T3 + T4 + T5 + T6� −

1

3
�T8

+ T10 + T12 + T14� −
5

16
�T15 + T16 + T17 + T18� .

b. i=1

We have

�xT = −
4

3
TS +

9

8
T0 +

2

3
T1 −

1

16
�T3 + T4 + T5 + T6� −

1

12
�T7

+ T9 + T11 + T13� +
1

32
�T15 + T16 + T17 + T18� ,

�yT =
5

4
�T3 − T4� −

1

6
�T7 − T9� −

1

8
�T15 − T16 + T17 − T18� ,

�zT =
5

4
�T5 − T6� −

1

6
�T11 − T13� −

1

8
�T15 + T16 − T17 − T18� ,

�T =
8

3
TS −

45

4
T0 +

8

3
T1 +

17

8
�T3 + T4 + T5 + T6� −

1

3
�T7 + T9

+ T11 + T13� −
5

16
�T15 + T16 + T17 + T18� .

c. j=ny

We have

�xT =
7

8
�T1 − T2� −

1

8
�T9 − T10 + T11 − T12 + T13 − T14� ,

�yT =
15

16
T0 −

5

64
�T1 + T2 + T5 + T6� −

17

16
T4 +

9

64
�T9 + T10

+ T16 + T18� −
1

32
�T11 + T12 + T13 + T14� ,

1

3

4

78

9

2

10

1

5

6

1112

13

2

14

3

5

6

1516

17

4

18

x

y

x

z

y

z

FIG. 11. Labeling of velocities and temperatures of neighbors
for D3Q19 model.
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�zT =
7

8
�T5 − T6� −

1

8
�T11 + T12 − T13 − T14 + T16 − T18� ,

�T = −
57

8
T0 +

59

32
�T1 + T2 + T5 + T6� +

15

8
T4 −

7

32
�T9 + T10

+ T16 + T18� −
5

16
�T11 + T12 + T13 + T14� .

d. i=1

We have

�xT =
7

8
�T1 − T2� −

1

8
�T7 − T8 + T11 − T12 + T13 − T14� ,

�yT = −
15

16
T0 +

5

64
�T1 + T2 + T5 + T6� +

17

16
T3 −

9

64
�T7 + T8

+ T15 + T17� +
1

32
�T11 + T12 + T13 + T14� ,

�zT =
7

8
�T5 − T6� −

1

8
�T11 + T12 − T13 − T14 + T15 − T17� ,

�T = −
57

8
T0 +

59

32
�T1 + T2 + T5 + T6� +

15

8
T3 −

7

32
�T7 + T8

+ T15 + T17� −
5

16
�T11 + T12 + T13 + T14� .

e. k=nz

We have

�xT =
7

8
�T1 − T2� −

1

8
�T7 − T8 + T9 − T10 + T13 − T14� ,

�yT =
7

8
�T3 − T4� −

1

8
�T7 + T8 − T9 − T10 + T17 − T18� ,

�zT =
15

16
T0 −

5

64
�T1 + T2 + T3 + T4� −

17

16
T6 +

9

64
�T13 + T14

+ T17 + T18� −
1

32
�T7 + T8 + T9 + T10� ,

�T = −
57

8
T0 +

59

32
�T1 + T2 + T3 + T4� +

15

8
T6 −

7

32
�T13 + T14

+ T17 + T18� −
5

16
�T7 + T8 + T9 + T10� .

f. k=1

We have

�xT =
7

8
�T1 − T2� −

1

8
�T7 − T8 + T9 − T10 + T11 − T12� ,

�yT =
7

8
�T3 − T4� −

1

8
�T7 + T8 − T9 − T10 + T15 − T16� ,

�zT = −
15

16
T0 +

5

64
�T1 + T2 + T3 + T4� +

17

16
T5 −

9

64
�T11 + T12

+ T15 + T16� +
1

32
�T7 + T8 + T9 + T10� ,

�T = −
57

8
T0 +

59

32
�T1 + T2 + T3 + T4� +

15

8
T5 −

7

32
�T11 + T12

+ T15 + T16� −
5

16
�T7 + T8 + T9 + T10� .

3. Ribs

a. i=nx, j=ny

We have

�xT =
4

3
TN − T0 −

43

72
T2 +

1

48
�T5 + T6� +

7

72
T10 +

1

12
�T12

+ T14� −
1

48
�T16 + T18� ,

�yT =
5

4
T0 −

5

36
T2 −

3

2
T4 −

1

24
�T5 + T6 + T12 + T14� +

2

9
T10

+
1

6
�T16 + T18� ,

�zT =
9

8
�T5 − T6� −

1

6
�T12 − T14� −

1

8
�T16 − T18� ,

�T =
8

3
TN −

19

2
T0 +

89

36
T2 + 2T4 +

49

24
�T5 + T6� −

11

36
T10

−
5

12
�T12 + T14� −

7

24
�T16 + T18� .

b. i=nx, j=1

We have

�xT =
4

3
TN − T0 −

43

72
T2 +

1

48
�T5 + T6� +

7

72
T8 +

1

12
�T12 + T14�

−
1

48
�T15 + T17� ,

�yT = −
5

4
T0 +

5

36
T2 +

3

2
T3 +

1

24
�T5 + T6 + T12 + T14� −

2

9
T8

−
1

6
�T15 + T17� ,

�zT =
9

8
�T5 − T6� −

1

6
�T12 − T14� −

1

8
�T15 − T17� ,
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�T =
8

3
TN −

19

2
T0 +

89

36
T2 + 2T3 +

49

24
�T5 + T6� −

11

36
T8

−
5

12
�T12 + T14� −

7

24
�T15 + T17� .

c. i=nx, k=nz

We have

�xT =
4

3
TN − T0 −

43

72
T2 +

1

48
�T3 + T4� +

7

72
T14 +

1

12
�T8 + T10�

−
1

48
�T17 + T18� ,

�yT =
9

8
�T3 − T4� −

1

6
�T8 − T10� −

1

8
�T17 − T18� ,

�zT =
5

4
T0 −

5

36
T2 −

3

2
T6 −

1

24
�T3 + T4 + T8 + T10� +

2

9
T14

+
1

6
�T17 + T18� ,

�T =
8

3
TN −

19

2
T0 +

89

36
T2 + 2T6 +

49

24
�T3 + T4� −

11

36
T14

−
5

12
�T8 + T10� −

7

24
�T17 + T18� .

d. i=nx, k=1

We have

�xT =
4

3
TN − T0 −

43

72
T2 +

1

48
�T3 + T4� +

7

72
T12 +

1

12
�T8 + T10�

−
1

48
�T15 + T16� ,

�yT =
9

8
�T3 − T4� −

1

6
�T8 − T10� −

1

8
�T15 − T16� ,

�zT = −
5

4
T0 +

5

36
T2 +

3

2
T5 +

1

24
�T3 + T4 + T8 + T10� −

2

9
T12

−
1

6
�T15 + T16� ,

�T =
8

3
TN −

19

2
T0 +

89

36
T2 + 2T5 +

49

24
�T3 + T4� −

11

36
T12

−
5

12
�T8 + T10� −

7

24
�T15 + T16� .

e. i=1, j=ny

We have

�xT = −
4

3
TS + T0 +

43

72
T1 −

1

48
�T5 + T6� −

7

72
T9 −

1

12
�T11

+ T13� +
1

48
�T16 + T18� ,

�yT =
5

4
T0 −

5

36
T1 −

3

2
T4 −

1

24
�T5 + T6 + T11 + T13� +

2

9
T9

+
1

6
�T16 + T18� ,

�zT =
9

8
�T5 − T6� −

1

6
�T11 − T13� −

1

8
�T16 − T18� ,

�T =
8

3
TS −

19

2
T0 +

89

36
T1 + 2T4 +

49

24
�T5 + T6� −

11

36
T9

−
5

12
�T11 + T13� −

7

24
�T16 + T18� .

f. i=1, j=1

We have

�xT = −
4

3
TS + T0 +

43

72
T1 −

1

48
�T5 + T6� −

7

72
T7 −

1

12
�T11

+ T13� +
1

48
�T15 + T17� ,

�yT = −
5

4
T0 +

5

36
T1 +

3

2
T3 +

1

24
�T5 + T6 + T11 + T13� −

2

9
T7

−
1

6
�T15 + T17� ,

�zT =
9

8
�T5 − T6� −

1

6
�T11 − T13� −

1

8
�T15 − T17� ,

�T =
8

3
TS −

19

2
T0 +

89

36
T1 + 2T3 +

49

24
�T5 + T6� −

11

36
T7

−
5

12
�T11 + T13� −

7

24
�T15 + T17� .

g. i=1, k=nz

We have

�xT = −
4

3
TS + T0 +

43

72
T1 −

1

48
�T3 + T4� −

7

72
T13 −

1

12
�T7

+ T9� +
1

48
�T17 + T18� ,

�yT =
9

8
�T3 − T4� −

1

6
�T7 − T9� −

1

8
�T17 − T18� ,
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�zT =
5

4
T0 −

5

36
T1 −

3

2
T6 −

1

24
�T3 + T4 + T7 + T9� +

2

9
T13

+
1

6
�T17 + T18� ,

�T =
8

3
TS −

19

2
T0 +

89

36
T1 + 2T6 +

49

24
�T3 + T4� −

11

36
T13

−
5

12
�T7 + T9� −

7

24
�T17 + T18� .

h. i=1, k=1

We have

�xT = −
4

3
TS + T0 +

43

72
T1 −

1

48
�T3 + T4� −

7

72
T11 −

1

12
�T7

+ T9� +
1

48
�T15 + T16� ,

�yT =
9

8
�T3 − T4� −

1

6
�T7 − T9� −

1

8
�T15 − T16� ,

�zT = −
5

4
T0 +

5

36
T1 +

3

2
T5 +

1

24
�T3 + T4 + T7 + T9� −

2

9
T11

−
1

6
�T15 + T16� ,

�T =
8

3
TS −

19

2
T0 +

89

36
T1 + 2T5 +

49

24
�T3 + T4� −

11

36
T11

−
5

12
�T7 + T9� −

7

24
�T15 + T16� .

i. j=ny, k=nz

We have

�xT =
3

4
�T1 − T2� −

1

8
�T9 − T10 + T13 − T14� ,

�yT =
55

64
T0 −

7

64
�T1 + T2� −

59

64
T4 −

5

64
T6 +

9

64
�T9 + T10

+ T18� −
1

32
�T13 + T14� ,

�zT =
55

64
T0 −

7

64
�T1 + T2� −

5

64
T4 −

59

64
T6 +

9

64
�T13 + T14

+ T18� −
1

32
�T9 + T10� ,

�T = −
85

16
T0 +

25

16
�T1 + T2� +

7

4
�T4 + T6� −

9

32
�T9 + T10 + T13

+ T14� −
3

16
�T18� .

j. j=ny, k=1

We have

�xT =
3

4
�T1 − T2� −

1

8
�T9 − T10 + T11 − T12� ,

�yT =
55

64
T0 −

7

64
�T1 + T2� −

59

64
T4 −

5

64
T5 +

9

64
�T9 + T10

+ T16� −
1

32
�T11 + T12� ,

�zT = −
55

64
T0 +

7

64
�T1 + T2� +

5

64
T4 +

59

64
T5 −

9

64
�T11 + T12

+ T16� +
1

32
�T9 + T10� ,

�T = −
85

16
T0 +

25

16
�T1 + T2� +

7

4
�T4 + T5� −

9

32
�T9 + T10 + T11

+ T12� −
3

16
�T16� .

k. j=1, k=nz

We have

�xT =
3

4
�T1 − T2� −

1

8
�T7 − T8 + T13 − T14� ,

�yT = −
55

64
T0 +

7

64
�T1 + T2� +

59

64
T3 +

5

64
T6 −

9

64
�T7 + T8

+ T17� +
1

32
�T13 + T14� ,

�zT =
55

64
T0 −

7

64
�T1 + T2� −

5

64
T3 −

59

64
T6 +

9

64
�T13 + T14

+ T17� −
1

32
�T7 + T8� ,

�T = −
85

16
T0 +

25

16
�T1 + T2� +

7

4
�T2 + T6� −

9

32
�T7 + T8 + T13

+ T14� −
3

16
�T17� .
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l. j=1, k=1

We have

�xT =
3

4
�T1 − T2� −

1

8
�T7 − T8 + T11 − T12� ,

�yT = −
55

64
T0 +

7

64
�T1 + T2� +

59

64
T3 +

5

64
T5 −

9

64
�T7 + T8

+ T15� −
1

32
�T11 + T12� ,

�zT = −
55

64
T0 +

7

64
�T1 + T2� +

5

64
T3 +

59

64
T5 −

9

64
�T11 + T12

+ T15� +
1

32
�T7 + T8� ,

�T = −
85

16
T0 +

25

16
�T1 + T2� +

7

4
�T3 + T5� −

9

32
�T9 + T10 + T11

+ T12� −
3

16
�T15� .

4. Corners

a. i=nx, j=ny, k=nz

We have

�xT =
4

3
TN −

89

96
T0 −

19

36
T2 −

1

32
�T4 + T6� +

7

72
�T10 + T14�

−
1

96
T18,

�yT =
121

96
T0 −

7

36
T2 −

43

32
T4 −

3

32
T6 +

2

9
T10 −

1

36
T14 +

17

96
T18,

�zT =
121

96
T0 −

7

36
T2 −

3

32
T4 −

43

32
T6 −

1

36
T10 +

2

9
T14 +

17

96
T18,

�T =
8

3
TN −

355

48
T0 +

37

18
T2 +

29

16
�T4 + T6� −

13

36
�T10 + T14�

−
11

48
T18.

b. i=nx, j=ny, k=1

We have

�xT =
4

3
TN −

89

96
T0 −

19

36
T2 −

1

32
�T4 + T5� +

7

72
�T10 + T12�

−
1

96
T16,

�yT =
121

96
T0 −

7

36
T2 −

43

32
T4 −

3

32
T5 +

2

9
T10 −

1

36
T12 +

17

96
T16,

�zT = −
121

96
T0 +

7

36
T2 +

3

32
T4 +

43

32
T5 +

1

36
T10 −

2

9
T12

−
17

96
T16,

�T =
8

3
TN −

355

48
T0 +

37

18
T2 +

29

16
�T4 + T5� −

13

36
�T10 + T12�

−
11

48
T16.

c. i=nx, j=1,k=nz

We have

�xT =
4

3
TN −

89

96
T0 −

19

36
T2 −

1

32
�T3 + T6� +

7

72
�T8 + T14�

−
1

96
T17,

�yT = −
121

96
T0 +

7

36
T2 +

43

32
T3 +

3

32
T6 −

2

9
T8 +

1

36
T14

−
17

96
T17,

�zT =
121

96
T0 −

7

36
T2 −

3

32
T3 −

43

32
T6 −

1

36
T8 +

2

9
T14 +

17

96
T17,

�T =
8

3
TN −

355

48
T0 +

37

18
T2 +

29

16
�T3 + T6� −

13

36
�T8 + T14�

−
11

48
T17.

d. i=nx, j=1, k=1

We have

�xT =
4

3
TN −

89

96
T0 −

19

36
T2 −

1

32
�T3 + T5� +

7

72
�T8 + T12�

−
1

96
T15,

�yT = −
121

96
T0 +

7

36
T2 +

43

32
T3 +

3

32
T5 −

2

9
T8 +

1

36
T12

−
17

96
T15,

�zT = −
121

96
T0 +

7

36
T2 +

3

32
T3 +

43

32
T5 +

1

36
T8 −

2

9
T12

−
17

96
T15,
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�T =
8

3
TN −

355

48
T0 +

37

18
T2 +

29

16
�T3 + T5� −

13

36
�T8 + T12�

−
11

48
T15.

e. i=1, j=ny, k=nz

We have

�xT = −
4

3
TS +

89

96
T0 +

19

36
T1 +

1

32
�T4 + T6� −

7

72
�T9 + T13�

+
1

96
T18,

�yT =
121

96
T0 −

7

36
T1 −

43

32
T4 −

3

32
T6 +

2

9
T9 −

1

36
T13 +

17

96
T18,

�zT =
121

96
T0 −

7

36
T1 −

3

32
T4 −

43

32
T6 −

1

36
T9 +

2

9
T13 +

17

96
T18,

�T =
8

3
TS −

355

48
T0 +

37

18
T1 +

29

16
�T4 + T6� −

13

36
�T9 + T13�

−
11

48
T18.

f. i=1, j=ny, k=1

We have

�xT = −
4

3
TS +

89

96
T0 +

19

36
T1 −

1

32
�T4 + T5� −

7

72
�T9 + T11�

+
1

96
T16,

�yT =
121

96
T0 −

7

36
T1 −

43

32
T4 −

3

32
T5 +

2

9
T9 −

1

36
T11 +

17

96
T16,

�zT = −
121

96
T0 +

7

36
T1 +

3

32
T4 +

43

32
T5 +

1

36
T9 −

2

9
T11

−
17

96
T16,

�T =
8

3
TN −

355

48
T0 +

37

18
T1 +

29

16
�T4 + T5� −

13

36
�T9 + T11�

−
11

48
T16.

g. i=1, j=1, k=nz

We have

�xT = −
4

3
TS +

89

96
T0 +

19

36
T1 +

1

32
�T3 + T6� −

7

72
�T7 + T13�

+
1

96
T17,

�yT = −
121

96
T0 +

7

36
T1 +

43

32
T3 +

3

32
T6 −

2

9
T7 +

1

36
T13

−
17

96
T17,

�zT =
121

96
T0 −

7

36
T1 −

3

32
T3 −

43

32
T6 −

1

36
T7 +

2

9
T13 +

17

96
T17,

�T =
8

3
TN −

355

48
T0 +

37

18
T1 +

29

16
�T3 + T6� −

13

36
�T7 + T13�

−
11

48
T17.

h. i=1, j=1, k=1

We have

�xT = −
4

3
TS +

89

96
T0 +

19

36
T1 +

1

32
�T3 + T5� −

7

72
�T7 + T11�

+
1

96
T15,

�yT = −
121

96
T0 +

7

36
T1 +

43

32
T3 +

3

32
T5 −

2

9
T7 +

1

36
T11

−
17

96
T15,

�zT = −
121

96
T0 +

7

36
T1 +

3

32
T3 +

43

32
T5 +

1

36
T7 −

2

9
T11

−
17

96
T15,

�T =
8

3
TN −

355

48
T0 +

37

18
T1 +

29

16
�T3 + T5� −

13

36
�T7 + T11�

−
11

48
T15.
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