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In this paper we consider the stabilization of nonfundamental unstable stationary solutions of the cubic
nonlinear Schrödinger equation. Specifically, we study the stabilization of radially symmetric solutions with
nodes and asymmetric complex stationary solutions. For the first ones, we find partial stabilization similar to
that recently found for vortex solutions while for the later ones stabilization does not seem possible.
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I. INTRODUCTION

Nonlinear Schrödinger equations �NLS� are one of the
most important models of mathematical physics arising in a
great array of contexts �1,2� as for example in semiconductor
electronics �3�, optics in nonlinear media �4�, photonics �5�,
plasmas �6�, fundamentation of quantum mechanics �7�, dy-
namics of accelerators �8�, mean-field theory of Bose-
Einstein condensates �9� or in biomolecule dynamics �10�, to
cite a few examples.

It is well known that in multidimensional scenarios there
may appear concentration phenomena and collapse depend-
ing on the initial configuration �1�. Let us write the model
equation in the form

iuz = −
1

2
�u + g�z��u�2u , �1�

on R2 with �=�2 /�x2+�2 /�y2 and initial data u0�x ,y�. It is
well known that, when g�z�=g0�0, the solutions of Eq. �1�
with L2�R2� norm

N�u� � �u�2
2 = �

R2
�u�2, �2�

such that g0�u�2 is larger than a critical value N0 may un-
dergo collapse �i.e., catastrophic formation of very sharp gra-
dients and concentration phenomena for u�. However, when
g0�u�2�N0, there cannot be collapse �1�.

In the context of the analysis of the propagation of Kerr
beams in layered optical media it was first explored the pos-
sibility that making the nonlinear coefficient g�z� to oscillate
with the independent variable between values corresponding
to the collapsing and expansion regimes could lead to col-
lapse suppression �11�.

This idea was later explored �12� in the same context and
exported to the field of Bose-Einstein condensation �13–15�.
The stabilized structure was identified as a pulsating Townes
soliton after some rearrangement of initial data �15,16� that
is able to propagate without essential distortions for very

large distances. Some rigorous results concerning early time
collapse �i.e., the situation in which collapse cannot be
avoided� where found in �17�.

It has been only recently that the theoretical concept of
stabilized solitons has been demonstrated in the laboratory in
optical experiments �18,19�.

Stabilized solitons have also been studied in three-
dimensional scenarios �15,20,21�. Also, they have been con-
sidered in vector media leading to the so-called stabilized
vector solitons �22,23�. Finally, the possibility of existence of
stabilized solitons with different nonlinearities and dimen-
sionalities has been studied in Ref. �24�.

The idea of stabilized solitons and nonlinearity manage-
ment has also inspired some related mathematical research,
with a focus on the averaged and collapse-preventing prop-
erties �25–27�. However, a rigorous theoretical mathematical
description of the stabilization process is still missing �28�.

The reviews �29,30� offer a panoramic vision of the field
of stabilized solitons.

Beside the fundamental and vortex-type nonlinear struc-
tures, in the past ten years several theoretical proposals and
experiments have addressed the issue of compound solitons
in Kerr media, e.g., soliton clusters �31� or necklace-ring
solitons �32,33�. The compount solitons are built from single
hump structures which experience mutual coherent and/or
incoherent interaction. It was found that necklace ring vector
solitons are stationary solution of the vector NLS �33�. How-
ever, all compound solitons were found to be unstable, and
until now no stabilizing mechanism has been proposed.

In this paper we want to complement the present knowl-
edge on stabilized solitons with a numerical study of the
stabilization of more complex stationary solutions of the
nonlinear Schrödinger equation. Although the Townes soli-
ton can be stabilized, vortices have been found more difficult
to stabilize �34� since the periodic modulation of the nonlin-
ear coefficient alone is not enough to achieve stabilization.

The aim of this work is to investigate the possibility of
stabilizing different types of stationary solutions of the NLS
equation. Specifically, we will study the stabilization of
higher order radially symmetric solutions in scalar and vec-
tor media to check if the simpler structure of these solutions
with respect to vortices allows them to be stabilized. We will
also study the stabilization of more complex asymmetric so-
lutions of the NLSE described in Ref. �35�.

The paper is organized as follows. In Sec. II we study the
stabilization of higher-order radially symmetric solutions in
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scalar layered media and find that it is not possible to achieve
stabilization of these structures in this simple way. In Sec. III
we show the stabilization of these structures by the addition
of a second stabilizing component, i.e., in the vector case. In
Sec. IV we consider the possibility of stabilizing higher order
asymmetric solutions. Finally, in Sec. V we summarize our
conclusions.

II. STABILIZATION OF HIGHER-ORDER RADIALLY
SYMMETRIC SOLUTIONS IN SCALAR LAYERED MEDIA

First we start by analyzing the simple case of scalar fields
whose propagation is governed by the NLS equation �1�,
with g�z�=g0 const. In this case, the equation for stationary
solutions u�z ,x ,y�=��x ,y�ei�z, is

− �� = −
1

2
�� + g0���2� . �3�

It is well known �1� that Eq. �3� has an infinite number of
solutions with radial symmetry each having a finite number
of nodes. We will denote these solutions by R0 ,R1 ,R2 , . . ..
labeling them by their number of nodes. Their norms satisfy
N0�N1�N2. . ... R0 is the ground state, also called the
Townes soliton, which plays an important role in the theory
since N0 sets a critical value for the norm below which col-
lapse cannot exist. Due to the scaling symmetry of the non-
linear Schrödinger equation, these solutions exist for any
value of �.

The first two higher order stationary solutions with radial
symmetry, i.e., R1 and R2, calculated by using a standard
shooting method, are depicted in Fig. 1. All of our radially
symmetric solutions to be presented in this paper have been
computed by this method and then interpolated onto a two-
dimensional rectangular grid. After this injection, we have
used a Newton relaxation method in order to increase the
accuracy of the computed stationary solutions.

We have checked the “stationarity� of our numerically
found solutions by propagating them through an homoge-
neous nonlinear medium subject to the perturbation coming
from the numerical errors �both on the initial data and due to
the roundoff error during the evolution�. All our numerical
simulations to be presented in this paper have been done

using a second order in time and spectral in space split-step
Fourier algorithm with absorbing boundary conditions to get
rid of the outgoing radiation. In Fig. 2 we present the propa-
gation of the norm and amplitude taking u�x ,y ,0�=R1�r�. As
the stationary solutions of Eq. �3� are all unstable in the
context of Eq. �1�, one expects that sooner or later the insta-
bility will set in. In the case of the Townes and vortex soli-
tons the instability sets in by z	15 and z	3, respectively
�34�. From the propagation of the norm and amplitude shown
in Fig. 2, we can guess that, in our case, a collapse destroy-
ing the structure of this stationary state occurs near z	11.

We have tried to apply the stabilization technique based
on the modulation of the nonlinear coefficient to the first
radially excited solution by setting g�z�=g0+g1 cos��z�,
with g0=−0.5, g1=−1.5 and �=100 �the parameters were set
according to criteria established in Refs. �15,16�� and taking
u�x ,y ,0�=R1�r�. This mechanism allows a stable propaga-
tion of the Townes soliton over long distances of more than
400 units in adimensional units �15�, but the same mecha-
nism enhances only slightly the stability of singly-charged
vortex solitons �34�. In principle, our stationary solution has
a simpler structure than the vortex and one could expect
better results, but we will see that this is not true.

Our results are shown in Fig. 3. We can see how the
inclusion of this periodic modulation leads to a shorter stable
propagation distance of the structure and that collapse occurs
by z	6.5.

We have tried to stabilize this configuration by choosing
different parameters for the modulation with similar results.
We think that the reduction of the lifetime of the unstable
stationary structure can be understood by considering the
exchange of energy, i.e., energy flow, between the substruc-
tures of the first excited radially symmetric stationary solu-
tion: The central peak and its surrounding ring. During the
defocusing �g�z��0� stages, both substructures spread and
overlap in the region where the field was zero previously.
Then, in the focusing �g�z��0� stage the energy from the
overlapping region flows mainly to the central peak. There-
fore, with each focusing step the central peak is supplied
with more and more energy, and this process leads finally to
appearance of collapse �see the sharp amplitude peaks for z
	7 in Fig. 3�.
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FIG. 1. Plot of R1 �solid line� and R2 �dashed line�, normalized
to unity, for g0=−0.5, �=0.5. For these solutions N1	77.17 and
N2	195.84, respectively.
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FIG. 2. Propagation of the norm given by Eq. �2� and maximum
amplitude A�z�=max�x,y��u�x ,y ,z�� for the solution of Eq. �1� with
initial data u�x ,y ,0�=R1�r� through an homogeneous nonlinear me-
dia, i.e., g�z�=−0.5.
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III. STABILIZATION OF HIGHER-ORDER RADIALLY
SYMMETRIC SOLUTIONS IN VECTOR LAYERED

MEDIA

A. Motivation and model

Our next idea is to try to stabilize the excited radially
symmetric stationary solutions by using a stabilized Townes
soliton as a guide in which the higher order solution could be
stabilized as it was done in Ref. �34� for vortices. Hence, we
shift our attention to vector systems described by the follow-
ing set of coupled NLS equations:

i
�u1

�z
= −

1

2
�u1 + g�z��a11�u1�2 + a12�u2�2�u1, �4a�

i
�u2

�z
= −

1

2
�u2 + g�z��a21�u1�2 + a22�u2�2�u2. �4b�

Defining �=N�u2� /N�u1� and ũi=ui /Ni, i=1,2 Eqs. �4a� and
�4b� become

i
�ũ1

�z
= −

1

2
�ũ1 + g�z�N1�a11�ũ1�2 + �a12�ũ2�2�ũ1, �5a�

i
�ũ2

�z
= −

1

2
�ũ2 + g�z�N1�a21�ũ1�2 + �a22�ũ2�2�ũ2. �5b�

For simplicity, we will discard the tilde in what follows and
take both components to be normalized.

The parameter � is a measure of the strength of the inter-
action between both components, which could be accom-
plished experimentally by launching beams of different
energies.

B. Case �=0

In the limit �→0, corresponding to the case when the
norm of one of the components is much smaller than the
other, Eqs. �5a� and �5b� become

i
�u1

�z
= −

1

2
�u1 + g�z�N1a11�u1�2u1, �6a�

i
�u2

�z
= 
−

1

2
�u2 + g�z�N1a21�u1�2�u2. �6b�

Equation �6a� is a scalar NLS equation with a modulated
nonlinear coefficient and thus admits solutions in the form of
stabilized Townes solitons. Equation �6b� is a linear
Schrödinger equation for u2 in a trapping potential generated
by u1. First we look for stationary solutions of Eqs. �6a� and
�6b� when g�z�=g0 of the form

u1�r,z� = ���r�exp�− i�z� , �7�

u2�r,z� = �	�r�exp�− i	z� , �8�

i.e., solutions of the nonlinear eigenvalue problem

�� = −
1

2
�� + g0N1a11���2� , �9a�

	� = 
−
1

2
�� + g0N1a21���2�� . �9b�

Obviously, Eq. �6a� is equivalent to Eq. �3� and thus we
get all of its stationary solutions, for instance, the Townes
soliton. We will look for stationary solutions �36� of Eq. �9b�
with radial symmetry beyond the nodeless one �0. This im-
plies that the effective potential

V�r� = a21g0N1����2, �10�

must support at least two bound states. The number of radi-
ally symmetric bound states supported by a two-dimensional
potential is bounded by the inequality �37�:

N2D,l=0 � 1 +
1

2

�
R2

dr dr�rr�V�r�V�r���ln
 r

r�
��

� dr rV�r�
. �11�

This inequality sets a necessary condition to have the re-
quired bound state �i.e., that with one node� for fixed
g0=−2
 by fixing a lower bound for the value of a21 re-
quired to obtain N2D,l=0�2. In Table I we show the lower
bounds and the numerical results for the number of bound
states obtained for several values of the coefficient a21. We
can see that for a12=4 we can have two modes in the effec-
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FIG. 3. Propagation of the norm given by Eq. �2� and maximum
amplitude A�z�=max�x,y��u�x ,y ,z�� for the solution of Eq. �1� with
initial data u�x ,y ,0�=R1�r� under the effect of a periodic modula-
tion of the nonlinear coefficient g�z�=g0+g1 cos��z�, where
g0=−0.5, g1=−1.5, and �=100.

TABLE I. Upper bound set by Eq. �11� on the number of bound
states in two dimensions with radial symmetry and without angular
momentum of the potential V�r�=a21g0N1�R0�2. �0 and �1 are the
approximate eigenvalues of the ground and first excited states of
V�r�, respectively, found numerically.

a21 N2D,l=0 Bound states eigenvalues

1 �1.39 �0	0.575

2 �1.79 �0	1.925

3 �2.19 �0	3.558

4 �2.58 �0	5.335, �1	0.195
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tive potential generated by R0, the second one being a radi-
ally symmetric function with one node.

We have computed the profile of the radially symmetric
solution of Eq. �6b� with one node in �1 which exists for
a21=4 by using a standard shooting method, which is shown
in Fig. 4.

We have propagated numerically the initial data u2=�1
according to Eq. �6b� alone but now with a periodically vary-
ing nonlinear coefficient. During the propagation, the poten-
tial a21g�z��R0�2 oscillates with frequency � due to the peri-
odic modulation of coefficient g�z�, hence, the potential will
change its behavior periodically from attractive to repulsive.
In general, for the linear situation described by Eq. �6b�, one
may achieve a nondispersive propagation for small oscilla-
tions of g�z�, i.e., without being necessary to change its sign.
However, as we are interested to extend these results to the

full nonlinear equations, we must construct g�z� with an al-
ternating sign because analytical results �15,17� and com-
puter simulations �15� have revealed that this is a require-
ment to get stabilized solitons.

Using results from the quantum mechanical theory of fast
perturbations �38� we have chosen a set of parameters,
g0=−2
, g1=8
, and �=100, for which the oscillating be-
havior of g�z� should maintain the profile of the excited so-
lution in u2. Moreover, this set of parameters leads to an
stabilized Townes soliton in component u1 �16�. In Fig. 5 we
can see that although the maximum value of the amplitude
exhibits oscillations related to the periodic modulation of
g�z�, the norm remains constant which indicates that no ra-
diation is emitted while the potential a21g�z��u1�2 is switched
from attractive to repulsive.

Next we take u1=R0, u2=U1 as initial data for Eqs. �6a�
and �6b�. This situation is described by the case of �	0,
which means that the energy injected into the medium by the
second component u2 is much smaller in comparison with
that of the first component u1 �34�. The dynamics of the most
important parameters of the system is plotted in Fig. 6.

We want to remark that the time evolution of �u1�2 exhibits
high and low frequency oscillations corresponding to the pe-
riodic modulation of g�z� and to the internal dynamics of Eq.
�6a�, respectively �15�. Therefore, the potential experienced
by u2 includes this oscillation pattern. As the low frequency
oscillations do not fulfill the requirements �34� derived from
the theory of fast perturbations, they lead to energy emission

FIG. 5. �Color online� Evolution of the �a� norm N�z� and �b�
maximum value of the amplitude A�z� described by the Eq. �6b� for
parameter values g0=2
, g1=8
, and �=100. �c� Detailed view of
the amplitude oscillations in the propagation range z� �73,75�.
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FIG. 6. Propagation of initial data of the form u1=R0, u2=U1

under Eqs. �6a� and �6b� with �=0, g0=−2
, g1=8
, and �=100.
Shown are �a� the norm N�z� of u1 �solid line� and of u2 �dashed
line�, and �b�, �c� the maximum amplitude A1,2�z� of u1 and u2,
respectively.

FIG. 7. �Color online� Pseudocolor plot of the amplitude
�u2�x ,y ,z�� for the same simulation as in Fig. 6 on the spatial region
�−10,10�� �−10,10� for �a� z=0 and �b� z=400.

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

r

u1

u2

FIG. 4. Spatial radial profile �normalized to one and for �=0.5�
of the stationary solution of Eqs. �9a� and �9b� of the form �=R0

�solid line� and the first excited state with radial symmetry �=�1

�dashed line�.
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from the second component u2. The radiation emission is
linked to the decreasing value of the u2 norm: As the outgo-
ing radiation hits the boundary of the computational domain
it is removed by an absorbing potential. Nevertheless, the
first component evolves unperturbed as a stabilized Townes
soliton �15�.

The spatial intensity profile of the propagating beam u2,
see Fig. 7, has similar shape to the initial one �see Fig. 1�.
However, the maximum of the intensity distribution in Fig.
6�b� is about three times smaller than the corresponding
value of the initial one due to the energy loss during the
propagation.

C. Weak nonlinear coupling

Finally, we turn on the nonlinear coupling in system �5�
by setting �=0.1. The dynamics of the system parameters is
presented in Fig. 8 and 9.

One can see that the propagation of the excited state is
drastically changed in comparison with the previous ana-
lyzed cases. Under the effect of the nonlinear coupling, both
components u1 and u2 reshape their transverse spatial profile
by emitting energy. After a short propagation distance, z
=25, the excited solution losses its spatial shape, acquiring a
profile which resembles to the Townes soliton and which will
be propagate along with the Townes soliton. We may say that
both initial profiles decay or readjust �with energy loss� their

shape, eventually leading to the formation of nodeless stabi-
lized vector solitons �22�. Nevertheless, for smaller values of
�, e.g., �=0.05, we recover the behavior described in the
previous subsection, with shape preservation accompanied
by energy emission.

We think that the mechanism described at the end of Sec.
II is responsible for the decay of component u2 when the
nonlinear coupling is large enough. The changes taking place
in the component u2 are then coupled back to component u1,
which leads to energy emission, as seen by the decreasing
norm of u1 in Fig. 8.

IV. SOLUTIONS WITHOUT RADIAL SYMMETRY

Equation �3� has more solutions beyond those having ra-
dial symmetry. For instance, Alfimov and co-workers �35�,
using branching-off techniques from the theory of dynamical
systems constructed solutions having nontrivial discrete ro-
tational symmetries. Two examples of those solutions are
shown in Fig. 10. In all of them we observe that a large
central peak is surrounded by smaller ones having the pre-
scribed discrete symmetry plus an outer ring.

Since these solutions are also unstable, their free propa-
gation leads to collapse as shown in Figs. 11 and 12. Since
their norms are much above the critical one both solutions
suffer a fast instability to collapse, the constant behavior of
the norm indicating the fact that outgoing radiation waves
have no time to escape from this system before the instability

FIG. 9. �Color online� Pseudocolor plot of the amplitude
�u2�x ,y ,z�� for the same simulation as in Fig. 8 on the spatial region
for �a� z=0 on the spatial region �−4,4�� �−4,4� and �b� z=400 on
the spatial region �−2,2�� �−2,2�.

FIG. 10. �Color online� Pseudocolor plots of asymmetric solu-
tions of Eq. �3�. �a� C3 invariant solution with norm N3	627.68
and �b� C4 invariant solution with norm N4	723.91. The spatial
region shown is �x ,y�� �−10,10�� �−10,10�.
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FIG. 8. Propagation of initial data of the form u1=R0, u2=U1

under Eqs. �6a� and �6b� with �=0.1, g0=−2
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, and �
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FIG. 11. Propagation through an homogeneous nonlinear me-
dium of the norm N�z� and maximum amplitude A�z� for the sta-
tionary solution depicted in Fig. 10�a�.
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develops. The sensitivity of those configurations to collapse
manifests itself in the fact that the instability distances are
two orders of magnitude smaller than those of simpler solu-
tions such as the Townes, vortex or first radially excited soli-
tons.

We have tried to use the modulation of the nonlinear co-
efficient to stabilize the stationary solutions presented in Fig.
10. However, the time evolution of the beam parameters does
not change appreciably and in particular, the emergence of
collapse cannot be delayed. We have tried unsuccessfully
different sets of parameters to achieve stabilization. Intu-
itively, it seems difficult to be able to stabilize those compli-
cated structures because of the coexistence of different types
of substructures �peaks, rings, etc.� and the fact that their
norm are many times the critical one �see the caption of Fig.
10�.

V. CONCLUSIONS

In this paper we have complemented previous knowledge
on stabilized solitons of the nonlinear Schrödinger equation

by studying numerically the possibility of stabilizing excited
stationary solutions with radial symmetry in both �i� scalar
and �ii� vectorial layered media. The scalar system is unable
to stabilize radially excited states due to the internal dynam-
ics, i.e., energy flow, of this state which leads to shorter
stable propagation distances of the beam and collapse when
compared with the propagation of the same beam through
homogeneous media. In the case of vector layered media, we
have shown how weakly coupled beams when one of the
components is chosen to be the Townes soliton and the other
an unstable radially excited solution can be stabilized. In this
situation it is found that the radially excited state radiates
continuously energy while preserving an intensity shape
similar to the initial profile.

In both scalar and vectorial layered media, the stabiliza-
tion of solutions bearing nontrivial structure is difficult to
achieve. This fact is due to the irreversibility of the internal
energy flows between the wave substructures, e.g., rings,
peaks, during propagation. Additional stabilizing mecha-
nisms, like spatially inhomogeneous nonlinearities depend-
ing on the transverse variables, might help in stabilizing
states with nontrivial structures as it happens in the case of
non-oscillating structures �39–41�.

Finally, we have tried unsuccessfully to stabilize complex
asymmetric solutions of Eq. �1�. The complex structure of
these solutions and the fact that their power is many times
the critical power makes stabilization probably impossible.
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