
Interactions of renormalized waves in thermalized Fermi-Pasta-Ulam chains

Boris Gershgorin,1 Yuri V. Lvov,1 and David Cai2
1Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
2Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA

�Received 25 January 2007; published 10 April 2007�

The dispersive interacting waves in Fermi-Pasta-Ulam �FPU� chains of particles in thermal equilibrium are
studied from both statistical and wave resonance perspectives. It is shown that, even in a strongly nonlinear
regime, the chain in thermal equilibrium can be effectively described by a system of weakly interacting
renormalized nonlinear waves that possess �i� the Rayleigh-Jeans distribution and �ii� zero correlations between
waves, just as noninteracting free waves would. This renormalization is achieved through a set of canonical
transformations. The renormalized linear dispersion of these renormalized waves is obtained and shown to be
in excellent agreement with numerical experiments. Moreover, a dynamical interpretation of the renormaliza-
tion of the dispersion relation is provided via a self-consistency, mean-field argument. It turns out that this
renormalization arises mainly from the trivial resonant wave interactions, i.e., interactions with no momentum
exchange. Furthermore, using a multiple time-scale, statistical averaging method, we show that the interactions
of near-resonant waves give rise to the broadening of the resonance peaks in the frequency spectrum of
renormalized modes. The theoretical prediction for the resonance width for the thermalized �-FPU chain is
found to be in very good agreement with its numerically measured value.
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I. INTRODUCTION

The study of discrete one-dimensional chains of particles
with the nearest-neighbor interactions provides insight to the
dynamics of various physical and biological systems, such as
crystals, wave systems, and biopolymers �1–3�. In the ther-
mal equilibrium state, such nonlinear chains can be described
by the canonical Gibbs measure �4� with the Hamiltonian

H = �
j

pj
2

2
+

�qj − qj+1�2

2
+ V�qj − qj+1� , �1�

where pj and qj are the momentum and the displacement
from the equilibrium position of the jth particle, respectively,
V�qj −qj+1� is the anharmonic part of the potential, and the
mass of each particle and the linear spring constant are
scaled to unity. In this paper, we only consider the potentials
of the restoring type, i.e., the potentials for which the Gibbs
measure exists. In order to study interactions of waves in
such systems, one usually introduces the canonical complex
normal variables ak via

ak =
Pk − i�kQk

�2�k

, �2�

where Pk and Qk are the Fourier transforms of pj and qj,
respectively, and �k=2 sin��k /N� is the linear dispersion re-
lation of the waves represented by ak. In terms of the ak, the
Hamiltonian �1� becomes

H = � �k�ak�2 + V�a� , �3�

where V�a� is the combination of various products of ak and
ak

* corresponding to various wave-wave interactions. If the
potential in Eq. �1� is harmonic, i.e., V�0, then ak corre-
spond to ideal, free waves, which have no energy exchanges
among different k modes. In thermal equilibrium, the Boltz-
mann distribution exp�−�−1��k �ak�2� with temperature �,

gives rise to the following properties of free waves:

	ak
*al
 = nk�l

k, �4�

	akal
 = 0, �5�

for any k and l, where nk�	�ak�2
=� /�k is the power spec-
trum. If the anharmonic part of the potential is sufficiently
weak, then corresponding waves ak remain almost free, and
Eqs. �4� and �5� would be approximately satisfied in the
weakly nonlinear regime. However, when the nonlinearity
becomes stronger, waves ak become strongly correlated, and,
in general, the correlations between waves �Eq. �5�� no
longer vanish. In particular, 	akaN−k
�0, as will be shown
below. Naturally, the question arises: can the strongly non-
linear system in thermal equilibrium still be viewed as a
system of almost free waves in some statistical sense? In this
paper, we address this question with an affirmative answer: it
turns out that the system �1� can be described by a complete
set of renormalized canonical variables ãk, which still pos-
sess the wave properties given by Eqs. �4� and �5� with a
renormalized linear dispersion. The waves that correspond to
these new variables ãk will be referred to as renormalized
waves. Since these renormalized waves possess the equilib-
rium Rayleigh-Jeans distribution �5� and vanishing correla-
tions between waves, they resemble free, noninteracting
waves, and can be viewed as statistical normal modes. Fur-
thermore, it will be demonstrated that the renormalized linear
dispersion for these renormalized waves has the form �̃k
=��k��k, where ��k� is the linear frequency renormalization
factor, and is independent of k as a consequence of the Gibbs
measure.

In our method, the construction of the renormalized vari-
ables ãk does not depend on a particular form or strength of
the anharmonic potential, as long as it is of the restoring type
with only the nearest-neighbor interactions, as in Eq. �1�.
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Therefore our approach is nonperturbative and can
be applied to a large class of systems with strong non-
linearity. However, in this paper, we will focus on the
�-Fermi-Pasta-Upam �FPU� chain to illustrate the theoretical
framework of the renormalized waves. We will verify that
ãk’s effectively constitute normal modes for the �-FPU chain
in thermal equilibrium by showing that �i� the theoretically
obtained renormalized linear dispersion relationship is in ex-
cellent agreement with its dynamical manifestation in our
numerical simulation, and �ii� the equilibrium distribution of
ãk is still a Rayleigh-Jeans distribution and ãk’s are uncorre-
lated. Note that similar expressions for the renormalization
factor � have been previously discussed in the framework of
an approximate virial theorem �6� or effective long wave
dynamics via the Zwanzig-Mori projection �7�. However, in
our theory, the exact formula for the renormalization factor is
derived from a precise mathematical construction of statisti-
cal normal modes, and is valid for all wave modes k—no
longer restricted to long waves.

Next, we address how renormalization arises from the dy-
namical wave interaction in the �-FPU chain. We will show
that the �-FPU chain can be effectively described as a four-
wave interacting Hamiltonian system of the renormalized
resonant waves ãk. We will study the resonance structure of
the �-FPU chain and find that most of the exact resonant
interactions are trivial, i.e., the interactions with no momen-
tum exchange among different wave modes. In what follows,
the renormalization of the linear dispersion will be explained
as a collective effect of these trivial resonant interactions of
the renormalized waves ãk. We will use a self-consistency
argument to find an approximation �sc of the renormalization
factor �. As will be seen below, the self-consistency argu-
ment essentially is of a mean-field type, i.e., the renormal-
ization arises from the scattering of a wave by a mean back-
ground of waves in thermal equilibrium via trivial resonant
interactions. We note that our self-consistency, mean-field
argument is not limited to the weak nonlinearity. Very good
agreement of the renormalization factor � and its dynamical
approximation �sc—for weakly as well as strongly nonlinear
waves—confirms that the renormalization is, indeed, a direct
consequence of the trivial resonances.

We will further study the properties of these renormalized
waves by investigating how long these waves are coherent,
i.e., what their frequency widths are. Therefore we consider
near-resonant interactions of the renormalized waves ãk, i.e.,
interactions that occur in the vicinity of the resonance mani-
fold, since most of the exact resonant interactions are trivial,
i.e., with no momentum exchanges, and they cannot effec-
tively redistribute energy among the wave modes.

We will demonstrate that near-resonant interactions of the
renormalized waves ãk provide a mechanism for effective
energy exchanges among different wave modes. Taking into
account the near-resonant interactions, we will study analyti-
cally the frequency peak broadening of the renormalized
waves ãk by employing a multiple time-scale, statistical av-
eraging method. Here, we will arrive at a theoretical predic-
tion of the spatiotemporal spectrum �âk����2, where âk��� is
the Fourier transform of the normal variable ãk�t�, and � is
the frequency. The predicted width of frequency peaks is
found to be in good agreement with its numerically measured
values.

In addition, for a finite �-FPU chain, we will mention the
consequence, to the correlation times of waves, of the mo-
mentum exchanges that cross over the first Brillouin zone.
This process is known as the umklapp scattering in the set-
ting of phonon scattering �8�. Note that, in the previous stud-
ies �9� of the FPU chain from the wave turbulence point of
view, the effects arising from the finite nature of the chain
were not taken into account, i.e., only the limiting case of
N→	, where N is the system size, was considered.

The paper is organized as follows. In Sec. II, we discuss a
chain of particles with the nearest-neighbor nonlinear inter-
actions. We demonstrate how to describe a strongly nonlinear
system as a system of waves that resemble free waves in
terms of the power spectrum and vanishing correlations be-
tween waves. We show how to construct the corresponding
renormalized variables with the renormalized linear disper-
sion. In Sec. III, we rewrite the �-FPU chain as an interact-
ing four-wave Hamiltonian system. We study the dynamics
of the chain numerically and find excellent agreement be-
tween the renormalized dispersion, obtained analytically and
numerically. In Sec. IV, we describe the resonance manifold
analytically and illustrate its controlling role in long-time
averaged dynamics using numerical simulation. In Sec. V,
we derive an approximation for the renormalization factor
for the linear dispersion using a self-consistency condition.
In Sec. VI, we study the broadening effect of frequency
peaks and predict analytically the form of the spatiotemporal
spectrum for the �-FPU chain. We provide the comparison of
our prediction with the numerical experiment. We present the
conclusions in Sec. VII.

II. RENORMALIZED WAVES

Consider a chain of particles coupled via nonlinear
springs. Suppose the total number of particles is N and the
momentum and displacement from the equilibrium position
of the jth particle are pj and qj, respectively. If only the
nearest-neighbor interactions are present, then the chain can
be described by the Hamiltonian

H = H2 + V , �6�

where the quadratic part of the Hamiltonian takes the form

H2 =
1

2�
j=1

N

pj
2 + �qj − qj+1�2, �7�

and the anharmonic potential V is the function of the relative
displacement qj −qj+1. Here periodic boundary conditions
qN+1�q1 and pN+1� p1 are imposed. Since the total momen-
tum of the system is conserved, it can be set to zero.

In order to study the distribution of energy among the
wave modes, we transform the Hamiltonian to the Fourier
variables Qk, Pk via
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Qk =
1

�N
�
j=0

N−1

qje
2�ikj/N,

Pk =
1

�N
�
j=0

N−1

pje
2�ikj/N.

�8�

This transformation is canonical �10,11� and the Hamiltonian
�6� becomes

H =
1

2 �
k=1

N−1

�Pk�2 + �k
2�Qk�2 + V�Q� , �9�

where �k=2 sin��k /N� is the linear dispersion relation. Note
that, throughout the paper, for the simplicity of notation, we
denote the periodic wave number space by the set of integers
in the range �0,N−1�, i.e., we drop the conventional factor,
2� /N. The zeroth mode vanishes due to the fact that the total
momentum is zero.

If the system �9� is in thermal equilibrium, then the ca-
nonical Gibbs measure, with the corresponding partition
function

Z = �
−	

	

e−H�p,q�/�dpdq , �10�

with the temperature �, can be used to describe the statistical
behavior of the system. We consider the systems with the
anharmonic potential of the restoring type, i.e., the potential
for which the integral in Eq. �10� converges. It can be easily
shown that for system �9� the average kinetic energy Kk of
each mode is independent of the wave number

	Kk
 = 	Kl
 , �11�

where k and l are wave numbers, Kk��Pk�2 /2, and 	¯
 de-
notes averaging over the Gibbs measure. Similarly, the aver-
age quadratic potential Uk of each mode is independent of
the wave number

	Uk
 = 	Ul
 , �12�

where Uk��k
2 �Qk�2 /2.

If the nonlinear interactions are weak, then it is conve-
nient to further transform the Hamiltonian �9� to the complex
normal variables defined by Eq. �2�. This transformation is
canonical, i.e., the dynamical equation of motion becomes

iȧk =
�H

�ak
* . �13�

In terms of these normal variables, the Hamiltonian �9� takes
the form �3�. For the system of noninteracting waves, i.e.,
H=�k=1

N−1�k �ak�2, we obtain a standard virial theorem in the
form

	Kk
�V=0 = 	Uk
�V=0. �14�

As a consequence of this virial theorem, we have the prop-
erties of free waves, which were already mentioned above
�Eqs. �4� and �5��, i.e.,

	ak
*al
 =

1

2�k
�	�Pk�2
 + �k

2	�Qk�2
��l
k =

�

�k
�l

k, �15�

	akal
 =
1

2�k
�	�Pk�2
 − �k

2	�Qk�2
��N
k+l = 0, �16�

for all wave numbers k and l. Note that Eq. �15� gives the
classical Rayleigh-Jeans distribution for the power spectrum
of free waves �5�

nk =
�

�k
. �17�

However, if the nonlinearity is present, the waves ak and aN−k
become correlated, i.e.,

	akaN−k
 =
1

2�k
�	�Pk�2
 − �k

2	�Qk�2
� � 0, �18�

since the property �14� is no longer valid.
As we mentioned before, a complete set of new renormal-

ized variables ãk can be constructed, so that the strongly
nonlinear system can be viewed as a system of “free” waves
in the sense of vanishing correlations and the power spec-
trum, i.e., the new variables ãk satisfy the properties of free
waves given in Eqs. �15� and �16�. Next, we show how to
construct these renormalized variables ãk.

Consider the generalization of the transformation �2�,
namely, the transformation from the Fourier variables Qk and
Pk to the renormalized variables ãk by

ãk =
Pk − i�̃kQk

�2�̃k

, �19�

where �̃k is an arbitrary function with the only restrictions

�̃k 
 0, �̃k = �̃N−k. �20�

One can show that these restrictions �20� provide a necessary
and sufficient condition for the transformation �19� to be
canonical. For the renormalized waves ãk, we can compute

	ãk
*ãl
 =

1

2�̃k

�	�Pk�2
 + �̃k
2	�Qk�2
��l

k, �21�

	ãkãl
 =
1

2�̃k

�	�Pk�2
 − �̃k
2	�Qk�2
��N

k+l. �22�

Since we have the freedom of choosing any �̃k �with the only
restrictions �20��, we can choose �̃k such that 	ãkãN−k
 van-
ishes. Thus the renormalized variables ãk for a strongly non-
linear system will behave like the bare variables ak for a
noninteracting system in terms of vanishing correlations be-
tween waves. Therefore we determine �̃k via

	�Pk�2
 − �̃k
2	�Qk�2
 = 0. �23�

Note that the requirement �23� has the form of the virial
theorem for the free waves but with the renormalized linear
dispersion �̃k. We rewrite Eq. �23� in terms of the kinetic and
quadratic potential parts of the energy of the mode k as
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�̃k

�k
=�	Kk


	Uk

. �24�

The k independence in Eqs. �11� and �12� leads to the k
independence of the right-hand side of Eq. �24�. This allows
us to define the renormalization factor � for all k’s by

� �
�̃k

�k
=�	K


	U

�25�

for dispersion �k. Here K=�k=1
N−1Kk and U=�k=1

N−1Uk are the
kinetic and the quadratic potential parts of the total energy of
the system �9�, respectively. Note that the way of construct-
ing the renormalized variables ãk via the precise requirement
of vanishing correlations between waves yields the exact ex-
pression for the renormalization factor, which is valid for all
wave numbers k and any strength of nonlinearity. The inde-
pendence of � of the wave number k is a consequence of the
Gibbs measure. This k independence phenomenon has been
observed in previous numerical experiments �6,12�. We will
elaborate on this point in the results of the numerical experi-
ment presented in Sec. III.

The immediate consequence of the fact that � is indepen-
dent of k is that the power spectrum of the renormalized
waves possesses the precise Rayleigh-Jeans distribution, i.e.,

ñk =
�

�̃k

, �26�

from Eq. �21�, where ñk= 	�ãk�2
. Combining Eqs. �2� and
�19�, we find the relation between the “bare” waves ak and
the renormalized waves ãk to be

ak =
1

2��� +
1

��

ãk +

1

2��� −
1

��

ãN−k. �27�

Using Eq. �27�, we obtain the following form of the power
spectrum for the bare waves ak:

nk =
1

2
�1 +

1

�2
 �

�k
, �28�

which is a modified Rayleigh-Jeans distribution due to the
renormalization factor �1+1/�2� /2. Naturally, if the nonlin-
earity becomes weak, we have �→1, and therefore all the
variables and parameters with tildes reduce to the corre-
sponding “bare” quantities, in particular, �̃k→�k, ãk→ak,
ñk→nk. It is interesting to point out that, even in a strongly
nonlinear regime, the “free-wave” form of the Rayleigh-
Jeans distribution is satisfied exactly �Eq. �26�� by the renor-
malized waves. Thus we have demonstrated that even in the
presence of strong nonlinearity, the system in thermal equi-
librium can still be viewed statistically as a system of “free”
waves in the sense of vanishing correlations between waves
and the power spectrum.

Note that, in the derivation of the formula for the renor-
malization factor �Eq. �25��, we only assumed the nearest-
neighbor interactions, i.e., the potential is the function of qj
−qj+1. One of the well-known examples of such a system is
the �-FPU chain, where only the fourth order nonlinear term
in V is present. In the remainder of the paper, we will focus

on the �-FPU to illustrate the framework of the renormalized
waves ãk.

III. NUMERICAL STUDY OF THE �-FPU CHAIN

Since its introduction in the early 1950s, the study of the
FPU lattice �13� has led to many great discoveries in math-
ematics and physics, such as soliton theory �3�. Being non-
integrable, the FPU system also became intertwined with the
celebrated Kolmogorov-Arnold-Moser theorem �11�. Here,
we extend our results of the thermalized �-FPU chain, which
were briefly reported in �12�.

The Hamiltonian of the �-FPU chain is of the form

H = �
j=1

N
1

2
pj

2 +
1

2
�qj − qj+1�2 +

�

4
�qj − qj+1�4, �29�

where � is a parameter that characterizes the strength of
nonlinearity.

The canonical equations of motion of the �-FPU chain are

q̇j =
�H

�pj
= pj ,

ṗj = −
�H

�qj
= �qj−1 − 2qj + qj+1� + ���qj+1 − qj�3 − �qj − qj−1�3� .

�30�

To investigate the dynamical manifestation of the renormal-
ized dispersion �̃k of ãk, we numerically integrate Eq. �30�.
Since we study the thermal equilibrium state �14–17� of the
�-FPU chain, we use random initial conditions, i.e., pj and qj
are selected at random from the uniform distribution in the
intervals �−pmax, pmax� and �−qmax,qmax�, respectively, with
the two constraints that �i� the total momentum of the system
is zero and �ii� the total energy of the system E is set to be a
specified constant. We have verified that the results discussed
in the paper do not depend on details of the initial data. Note
that the behavior of �-FPU for fixed N is fully characterized
by only one parameter �E �18�. We use the sixth order sym-
plectic Yoshida algorithm �19� with the time step dt=0.01,
which ensures the conservation of the total system energy up
to the ninth significant digit for a run time �=106 time units.
In order to confirm that the system has reached the thermal
equilibrium state �20�, the value of the energy localization
�21� was monitored via L�t��N� j=1

N Gj
2 / �� j=1

N Gj�2, where Gj

is the energy of the jth particle defined as

Gj =
1

2
pj

2 +
1

4
��qj − qj+1�2 + �qj−1 − qj�2�

+
�

8
��qj − qj+1�4 + �qj−1 − qj�4� . �31�
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If the energy of the system is concentrated around one site,
then L�t�=O�N�, whereas if the energy is uniformly distrib-
uted along the chain, then L�t�=O�1�. In our simulations, in
thermal equilibrium states, L�t� is fluctuating in the range of
1–3. Since our simulation is of microcanonical ensemble, we
have monitored various statistics of the system to verify that
the thermal equilibrium state that is consistent with the Gibbs
distribution �canonical ensemble� has been reached. More-
over, we verified that, for N as small as 32 and up to as large
as 1024, the equilibrium distribution in the thermalized state
in our microcanonical ensemble simulation is consistent with
the Gibbs measure. We compared the renormalization factor
�25� by computing the values of 	K
 and 	U
 numerically and
theoretically using the Gibbs measure and found the discrep-
ancy of � to be within 0.1% for �=1 and the energy density
E /N=0.5 for N from 32 to 1024.

We now address numerically how the renormalized linear
dispersion �̃k manifests itself in the dynamics of the �-FPU
system. We compute the spatiotemporal spectrum �âk����2,
where âk��� is the Fourier transform of ãk�t�. �Note that, for
simplicity of notation, we drop a tilde in âk.� Figure 1 dis-
plays the spatiotemporal spectrum of ãk, obtained from the
simulation of the �-FPU chain for N=256, �=0.5, and E
=100. In order to measure the value of � from the spatiotem-
poral spectrum, we use the following procedure. For the
fixed wave number k, the corresponding renormalization fac-
tor ��k� is determined by the location of the center of the
frequency spectrum �âk����2, i.e.,

��k� =
�c�k�

�k
, with �c�k� =

� ��âk����2d�

� �âk����2d�

.

The renormalization factor ��k� of each wave mode k is
shown in Fig. 2 �inset�. The numerical approximation �̄ to

the value of � is obtained by averaging all ��k�, i.e.,

�̄ =
1

N − 1 �
k=1

N−1

��k� .

The renormalization factor for the case shown in Fig. 1 is
measured to be �̄�1.1824. It can be clearly seen in Fig. 2
�inset� that ��k� is nearly independent of k and its variations
around �̄ are less then 0.3%. We also compare the renormal-
ization factor � obtained from Eq. �25� �solid line in Fig. 2
�inset�� with its numerically computed approximation �̄
�dashed line in Fig. 2 �inset��. Equation �25� gives the value
��1.1812 and the difference between � and �̄ is less than
0.1%, which can be attributed to the statistical errors in the
numerical measurement. In Fig. 2, we plot the value of � as
a function of � for the system with N=256 particles and the
total energy E=100. The solid curve was obtained using Eq.
�25� while the circles correspond to the value of � deter-
mined via the numerical spectrum �âk����2 as discussed
above. It can be observed that there is excellent agreement
between the theoretic prediction and numerically measured
values for a wide range of the nonlinearity strength �.

In the following sections, we will discuss how the renor-
malization of the linear dispersion of the �-FPU chain in
thermal equilibrium can be explained from the wave reso-
nance point of view. In order to give a wave description of

ω

k
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4

FIG. 1. The spatiotemporal spectrum �âk����2 in thermal equi-
librium. The chain was modeled for N=256, �=0.5, and E=100
�max�−8, ln � âk����2�, with corresponding gray scale, is plotted for a
clear presentation�. The solid curve corresponds to the usual linear
dispersion �k=2 sin��k /N�. The dashed curve shows the locations
of the actual frequency peaks of �âk����2.
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FIG. 2. The renormalization factor as a function of the nonlin-
earity strength �. The analytical prediction �Eq. �25�� is depicted
with a solid line and the numerical measurement is shown with
circles. The chain was modeled for N=256, and E=100. Inset: In-
dependence of k of the renormalization factor ��k�. The circles
correspond to ��k� obtained from the spatiotemporal spectrum
shown in Fig. 1 �only even values of k are shown for clarity of
presentation�. The dashed line corresponds to the mean value �̄. For
�=0.5, the mean value of the renormalization factor is found to be
�̄�1.1824. The variations of �k around �̄ are less then 0.3%. �Note
the scale of the ordinate.� The solid line corresponds to the renor-
malization factor � obtained from Eq. �25�. For the given param-
eters ��1.1812.
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the �-FPU chain, we rewrite the Hamiltonian �29� in terms
of the renormalized variables ãk �Eq. �19�� with �̃k=��k,

H = �
k=1

N−1
�k

2
�� +

1

�

�ãk�2 +

�k

4
�� −

1

�

�ãk

*ãN−k
* + ãkãN−k�

+ �
k,l,m,s=1

N−1

Tms
kl ��ms

kl ãkãlãm
* ãs

* + �2

3
�s

klmãkãlãmãs
* + c.c.


+ �1

6
�0

klmsãkãlãmãs + c.c.
� , �32�

where c.c. stands for complex conjugate, and

Tms
kl =

3�

8N�2
��k�l�m�s �33�

is the interaction tensor coefficient. Note that, due to the
discrete nature of the system of finite size, the wave space is
periodic and therefore the “momentum” conservation is
guaranteed by the following “periodic” Kronecker delta
functions

�ms
kl � �ms

kl − �ms
klN − �msN

kl , �34�

�s
klm � �s

klm − �sN
klm + �sNN

klm , �35�

�0
klms � �NN

klms − �N
klms − �NNN

klms . �36�

Here, the Kronecker � function is equal to 1, if the sum of all
superscripts is equal to the sum of all subscripts, and 0, oth-
erwise.

IV. DISPERSION RELATION AND RESONANCES

In order to address how the renormalized dispersion arises
from wave interactions, we study the resonance structure of
our nonlinear waves. Since the system �32� is a Hamiltonian
system with four-wave interactions, we will discuss the prop-
erties of the resonance manifold associated with the �-FPU
system described by Eq. �32� as a first step towards the un-
derstanding of its long time statistical behavior. We comment
that the resonance structure is one of the main objects of
investigation in wave turbulence theory �5,22–27�. The
theory of wave turbulence focuses on the specific type of
interactions, namely resonant interactions, which dominate
long time statistical properties of the system. On the other
hand, the nonresonant interactions are usually shown to have
a total vanishing average contribution to a long time dynam-
ics.

In analogy with quantum mechanics, where a+ and a are
creation and annihilation operators, we can view ãk

* as the
outgoing wave with frequency �̃k and ãk as the incoming
wave with frequency �̃k. Then, the nonlinear term
ãk

*ãl
*ãmãs�ms

kl in system �32� can be interpreted as the inter-
action process of the type �2→2�, namely, two outgoing
waves with wave numbers k and l are “created” as a result of
interaction of the two incoming waves with wave numbers m
and s. Similarly, ãk

*ãlãmãs�k
lms in system �32� describes the

interaction process of the type �3→1�, that is, one outgoing

wave with wave number k is “created” as a result of interac-
tion of the three incoming waves with wave numbers l, m,
and s, respectively. Finally, ãkãlãmãs�0

klms describes the inter-
action process of the type �4→0�, i.e., all four incoming
waves interact and annihilate themselves. Furthermore, the
complex conjugate terms ãkãl

*ãm
* ãs

*�lms
k and ãk

*ãl
*ãm

* ãs
*�klms

0

describe the interaction processes of the type �1→3� and
�0→4�, respectively.

Instead of the processes with the “momentum” conserva-
tion given via the usual �ms

kl , �s
klm, or �0

klms functions for an
infinite discrete system, the resonant processes of the �-FPU
chain of a finite size are constrained to the manifold given by
�ms

kl , �s
klm, or �0

klms, respectively. Next, we describe these
resonant manifolds in detail. As will be pointed out in Sec.
VI, there is a consequence of this finite size effect to the
properties of the renormalized waves.

The resonance manifold that corresponds to the �2→2�
resonant processes in the discrete periodic system therefore
is described by

k + l=
N

m + s ,

�̃k + �̃l = �̃m + �̃s, �37�

where we have introduced the notation g=
N

h, which means
that g=h, g=h+N, or g=h−N for any g and h. The first
equation in system �37� is the “momentum” conservation
condition in the periodic wave number space. This momen-
tum conservation comes from ��ms

kl � =1. �Note that ��ms
kl � can

assume only the value of 1 or 0.� Similarly, from ��s
klm � =1

and ��0
klms � =1, the resonance manifolds corresponding to the

resonant processes of types �3→1� and �4→0� are given by

k + l + m=
N

s ,

�̃k + �̃l + �̃m = �̃s, �38�

and

k + l + m + s=
N

0,

�̃k + �̃l + �̃m + �̃s = 0, �39�

respectively. For the processes of type �3→1�, the notation

g=
N

h means that g=h, g=h+N, or g=h+2N. For the

�4→0� processes, g=
N

h means that g=h+N, g=h+2N, or
g=h+3N.

To solve system �37�, we rewrite it in a continuous form
with x=k /N, y= l /N, z=m /N, v=s /N, which are real num-
bers in the interval �0,1�. By recalling that �̃k

=2�sin��k /N�, we have

x + y=
1

z + v ,

sin��x� + sin��y� = sin��z� + sin��v� . �40�

Thus any rational quartet that satisfies Eq. �40� yields a so-
lution for Eq. �37�. There are two distinct types of the solu-
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tions of Eq. �40�. The first one corresponds to the case

x + y = z + v ,

whose only solution is given by

x = z ,

y = v ,
or

x = v ,

y = z ,
�41�

i.e., these are trivial resonances, as we mentioned above. The
second type of the resonance manifold of the �2→2�-type
interaction processes corresponds to

x + y = z + v ± 1,

the solution of which can be described by the following two
branches:

z1 =
x + y

2
+

1

�
arcsin�A� + 2j , �42�

z2 =
x + y

2
− 1 −

1

�
arcsin�A� + 2j , �43�

where A� tan(��x+y� /2)cos(��x−y� /2) and j is an integer.
The second type of resonances arises from the discreteness
of our model of a finite length, leading to nontrivial reso-
nances. For our linear dispersion here, nontrivial resonances
are only those resonances that involve wave numbers cross-
ing the first Brillouin zone. As mentioned above, in the set-
ting of the phonon physics, these nontrivial resonant pro-
cesses are also known as the umklapp scattering processes.
In Fig. 3, we plot the solution of Eq. �40� for x=k /N with the
wave number k=90 for the system with N=256 particles �the
values of k and N are chosen merely for the purpose of
illustration�. We stress that all the solutions of the system
�40� are given by Eqs. �41�–�43�, and that the nontrivial so-

lutions arise only as a consequence of discreteness of the
finite chain. The curves in Fig. 3 represent the loci of �z ,y�,
parametrized by the fourth wave number v, i.e., x, y, z, and v
form a resonant quartet, where z=m /N, and y= l /N. Note
that the fourth wave number v is specified by the “momen-
tum” conservation, i.e., the first equation in Eq. �40�. The
two straight lines in Fig. 3 correspond to the trivial solutions,
as given by Eq. �41�. The two curves �dotted and dashed�
depict the nontrivial resonances. Note that the dotted part of
nontrivial resonance curves corresponds to the branch �42�,
and the dashed part corresponds to the branch �43�, respec-
tively. An immediate question arises: how do these resonant
structures manifest themselves in the FPU dynamics in the
thermal equilibrium? By examining the Hamiltonian �32�,
we notice that the resonance will control the contribution of
terms like ãk

*ãl
*ãmãs�ms

kl in the long time limit. Therefore we
address the effect of resonance by computing long time av-
erage, i.e., 	ãk

*ãl
*ãmãs
�ms

kl , and comparing this average �Fig.
4� with Fig. 3. To obtain Fig. 4, the �-FPU system was
simulated with the following parameters: N=256, �=0.5, E
=100, and the averaging time window �=400t̃1, where t̃1 is
the longest linear period, i.e, t̃1=2� / �̃1. In Fig. 4, mode k
was fixed with k=90 and the mode s, a function of k, l, and

m, is obtained from the constraint k+ l=
N

m+s, i.e., ��ms
kl � =1.

Note that we do not impose here the condition �̃k+ �̃l= �̃m
+ �̃s therefore �	ãk

*ãl
*ãmãs
�ms

kl � is a function of l and m. By
comparing Figs. 3 and 4, it can be observed that the locations
of the peaks of the long time average �	ãk

*ãl
*ãmãs
�ms

kl � coin-
cide with the loci of the �2→2�-type resonances. This obser-
vation demonstrates that, indeed, there are nontrivial �2
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FIG. 3. The solutions of Eq. �40�. The solid straight lines cor-
respond to the trivial resonances �solutions of Eq. �41��. The solu-
tions are shown for fixed x=k /N, k=90, N=256 as the fourth wave
number v scans from 1/N to �N−1� /N in the resonant quartet Eq.
�40�. The nontrivial resonances are described by the dotted or
dashed curves. The dotted branch of the curves corresponds to the
nontrivial resonances described by Eq. �42� and the dashed branch
corresponds to the nontrivial resonances described by Eq. �43�.
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FIG. 4. The long time average �	ãk
*ãl

*ãmãs
�ms
kl � of the

�-FPU system in thermal equilibrium. The parameters for the FPU
chain are N=256, �=0.5, and E=100. 	ãk

*ãl
*ãmãs
�ms

kl was com-
puted for fixed k=90. The darker gray scale corresponds to the
larger value of 	ãk

*ãl
*ãmãs
�ms

kl . The exact solutions of Eq. �40�,
which are shown in Fig. 3, coincide with the locations of the peaks
of �	ãk

*ãl
*ãmãs
�ms

kl �. Therefore the darker areas represent the near-
resonance structure of the finite �-FPU chain. �The two white lines
show the locations, where s=0 and therefore ãk

*ãl
*ãmãs�ms

kl =0.�
max�2, ln��	ãk

*ãl
*ãmãs
�ms

kl � �� with the corresponding gray scale is
plotted for a clean presentation.
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→2�-type resonances in the finite �-FPU chain in thermal
equilibrium. Furthermore, it can be observed in Fig. 4 that, in
addition to the fact that the resonances manifest themselves
as the locations of the peaks of �	ãk

*ãl
*ãmãs
�ms

kl �, the structure
of near resonances is reflected in the finite width of the
peaks around the loci of the exact resonances. Note that, due
to the discrete nature of the finite �-FPU system, only those
solutions x, y, z, and v of Eq. �40�, for which Nx, Ny, Nz, and
Nv are integers, yield solutions k, l, m, and s for Eq. �37�. In
general, the rigorous treatment of the exact integer solutions
of Eq. �37� is not straightforward. For example, for N=256,
we have the following two exact quartets k� = �k , l ,m ,s�: k�

= �k ,N /2−k ,N /2+k ,N−k�, k� = �k ,N /2−k ,N−k ,N /2+k� for
k
N /2, and k� = �k ,3N /2−k ,k−N /2 ,N−k�, k� = �k ,3N /2
−k ,N−k ,k−N /2� for k
N /2. We have verified numerically
that for N=256 there are no other exact integer solutions of
Eq. �37�. In the analysis of the resonance width in Sec. VI,
we will use the fact that the number of exact nontrivial reso-
nances �Eq. �37�� is significantly smaller than the total num-
ber of modes.

The broadening of the resonance peaks in Fig. 4 suggests
that, to capture the near resonances for characterizing long
time statistical behavior of the �-FPU system in thermal
equilibrium, instead of Eq. �37�, one needs to consider the
following effective system:

k + l=
N

m + s ,

��̃k + �̃l − �̃m − �̃s� 
 �� , �44�

where 0
��� �̃k for any k, and �� characterizes the reso-
nance width, which results from the near-resonance struc-
ture. Clearly, �� is related to the broadening of the spectral
peak of each wave ã��t� with �=k, l, m, or s in the quartet,
and this broadening effect will be studied in detail in Sec. VI.
Note that the structure of near resonances is a common char-
acteristic of many periodic discrete nonlinear wave systems
�28–30�.

Further, it is easy to show that the dispersion relation
of the �-FPU chain does not allow for the occurrence of
�3→1�-type resonances, i.e., there are no solutions for Eq.
�38�, and therefore all the nonlinear terms ãk

*ãlãmãs�lms
k are

nonresonant and their long time average 	ãk
*ãlãmãs
�lms

k van-
ishes. As for the resonances of type �4→0�, since the disper-
sion relation is non-negative, one can immediately conclude
that the solution of the system �39� consists only of zero
modes. Therefore the processes of type �4→0� are also non-
resonant, giving rise to 	ãkãlãmãs
�0

klms=0. In this paper, we
will neglect the higher order effects of the near resonances of
the types �3→1� and �4→0�.

In the following sections, we will study the effects of the
resonant terms of type �2→2�, namely, the linear dispersion
renormalization and the broadening of the frequency peaks
of ãk�t�. It turns out that the former is related to the trivial
resonance of type �2→2� and the latter is related to the near
resonances, as will be seen below.

V. SELF-CONSISTENCY APPROACH TO FREQUENCY
RENORMALIZATION

We now turn to the discussion of how the trivial reso-
nances give rise to the dispersion renormalization. This ques-
tion was examined in �12� before. There, it was shown that
the renormalization of the linear dispersion of the �-FPU
chain arises due to the collective effect of the nonlinearity. In
particular, the trivial resonant interactions of type �2→2�,
i.e., the solutions of Eq. �41�, enhance the linear dispersion
�the renormalized dispersion relation takes the form �̃k
=��k with �
1�, and effectively weaken the nonlinear in-
teractions. Here, we further address this issue and present a
self-consistency argument to arrive at an approximation for
the renormalization factor �. As it was mentioned above, the
contribution of the nonresonant terms has a vanishing long
time effect to the statistical properties of the system; there-
fore in our self-consistent approach we ignore these nonreso-
nant terms. By removing the nonresonant terms and using
the canonical transformation

ãk =
Pk − i�sc�kQk

�2�sc�k

, �45�

where �sc is a factor to be determined, we arrive at a simpli-
fied effective Hamiltonian from Eq. �32� for the finite �-FPU
system,

Heff = �
k=1

N−1
�k

2
��sc +

1

�sc

�ãk�2 + �

k,l,m,s=1

N−1

Tms
kl �ms

kl ãk
*ãl

*ãmãs.

�46�

The “off-diagonal” quadratic terms ãkãN−k from Eq. �32� are
not present in Eq. �46�, since ãk are chosen so that 	ãkãN−k

=0 �see Sec. II�. The contribution of the trivial resonances in
Heff is

H4
tr = 4 �

k,l=1

N−1

Tkl
kl�ãl�2�ãk�2, �47�

which can be “linearized” in the sense that averaging the
coefficient in front of �ãk�2 in H4

tr gives rise to a quadratic
form

H2
tr � �

k=1

N−1 �4�
l=1

N−1

Tkl
kl	�ãl�2

�ãk�2.

Note that the subscript 2 in H2
tr emphasizes the fact that H2

tr

now can be viewed as a Hamiltonian for the free waves with
the familiar effective linear dispersion �k=4�l=1

N−1Tkl
kl	�ãl�2


�5,12�. This linearization is essentially a mean-field approxi-
mation, since the long-time average of trivial resonances in
Eq. �47� is approximated by the interaction of waves ãk with
background waves 	�ãl � 
. The self-consistency condition,
which determines �sc, can be imposed as follows: the qua-
dratic part of the Hamiltonian �46�, combined with the lin-
earized quadratic part, H2

tr, of the quartic H4
tr, should be equal

to an effective quadratic Hamiltonian H̃2=�k=1
N−1�̃k � ãk�2 for

the renormalized waves, i.e.,
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�
k=1

N−1
�k

2
��sc +

1

�sc

�ãk�2 + �

k=1

N−1 �4�
l=1

N−1

Tkl
kl	�ãl�2

�ãk�2

= �
k=1

N−1

�̃k�ãk�2, �48�

where �̃k is the renormalized linear dispersion, which is used
in the definition of our renormalized wave, Eq. �45�, and
�̃k=�sc�k. Equating the coefficients of �k � ãk�2 on both sides
for every wave number k yields

1

2
��sc +

1

�sc

 + 4�

l=1

N−1
3�

8N�sc
2 �l	�ãl�2
 = �sc,

where use is made of Eq. �33�. After algebraic simplification,
we have the following equation for �sc:

�sc
3 − �sc =

3�

N
�
l=1

N−1

�l	�ãl�2
 . �49�

Using the property �21� of the renormalized normal variables
ãk, we find the following dependence of 	�ãk�2
 on �sc:

	�ãl�2
 =
1

2�sc�l
�	�Pl�2
 + �sc

2 �l
2	�Ql�2
� . �50�

Combining Eqs. �49� and �50� leads to

�sc
4 − A�sc

2 − B = 0, �51�

where

A = 1 +
3�

2N
�
l=1

N−1

�l
2	�Ql�2
 = 1 +

3�

N
	U
 ,

B =
3�

2N
�
l=1

N−1

	�Pl�2
 =
3�

N
	K
 .

The only physically relevant solution of Eq. �51� is

�sc =�A + �A2 + 4B

2
. �52�

The constants A and B can be easily derived using the Gibbs
measure.

Next, we compare the renormalization factor � �Eq. �25��
with its approximation �sc �Eq. �52�� from the self-
consistency argument. In the Appendix, we study in detail
the behavior of both � and �sc in the two limiting cases, i.e.,
when nonlinearity is small ��→0 with fixed total energy E�,
and when nonlinearity is large ��→	 with fixed total energy
E�. As is shown in the Appendix, for the case of small non-
linearity, both � and �sc have the same asymptotic behavior
in the first order of the small parameter �,

� = 1 +
3E

2N
� + O��2� ,

�sc = 1 +
3E

2N
� + O��2� . �53�

Moreover, in the case of strong nonlinearity �→	, both �
and �sc scale as �1/4, i.e.,

� � �sc � �1/4 �54�

�see the Appendix for details�. Note that, in �12�, we numeri-
cally obtained the scaling ���0.2, which differs from the
exact analytical result �54� due to statistical errors in the
numerical estimate of the power. In Fig. 5, we plot the renor-
malization factor � and its approximation �sc for the case of
small nonlinearity � for the system with N=256 particles
and total energy E=100. The solid line shows � computed
via Eq. �25�, the diamonds with the dashed line represent the
approximation via Eq. �52�, and the solid circles with the
dotted line correspond to the small-� limit �53�. In Fig. 5
�inset�, we plot the renormalization factor � and its approxi-
mation �sc for the case of large nonlinearity � for the system
with N=256 particles and total energy E=100. The solid line
shows � computed via Eq. �25�, the diamonds with the
dashed line represent the approximation via Eq. �52�, and the
dashed-dotted line corresponds to the large-� scaling �54�.
Figure 5 shows good agreement between the renormalization
factor � and its approximation �sc from the self-consistency
argument for a wide range of nonlinearity, from ��10−3 to
��104. This agreement demonstrates that �i� the effect of
the linear dispersion renormalization, indeed, arises mainly
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FIG. 5. The renormalization factor as a function of the nonlin-
earity strength � for small values of �. The renormalization factor �
�Eq. �25�� is shown with the solid line. The approximation �sc �Eq.
�52�� �via the self-consistency argument� is depicted with diamonds
connected with the dashed line. The small-� limit �Eq. �53�� is
shown with the solid circles connected with the dotted line. Note
that abscissa is of logarithmic scale. Inset: The renormalization fac-
tor as a function of the nonlinearity strength � for large values of �.
The renormalization factor � �Eq. �25�� is shown with the solid line.
�sc �Eq. �52�� is depicted with diamonds connected with the dashed
line. The large-� scaling �Eq. �54�� is shown with the dashed-dotted
line. Note that the plot is of log-log scale with base 10.
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from the trivial four-wave resonant interactions, and �ii� our
self-consistency, mean-field argument is not restricted to
small nonlinearity.

VI. RESONANCE WIDTH

Finally, we address the question of how coherent these
renormalized waves are, i.e., we study how the nonlinear
interactions of waves in thermal equilibrium broaden the
renormalized dispersion. We will obtain an analytical for-
mula for the spatiotemporal spectrum �âk����2 for the �-FPU
chain and compare the numerically measured width of the
frequency peaks with the predicted width.

In the Hamiltonian �46�, the nonlinear terms correspond-
ing to the trivial resonances have been absorbed into the
quadratic part via the effective renormalized dispersion �̃k.
Therefore the new effective Hamiltonian is

H̄ = �
k=1

N−1

�̃k�ãk�2 + �
k,l,m,s=1

N−1

T̃ms
kl �ms

kl ãk
*ãl

*ãmãs, �55�

where

T̃ms
kl = Tms

kl =
3�

8N�2
��k�l�m�s, k � m, and k � s

T̃ms
kl = 0, otherwise. �56�

The new interaction coefficient T̃ms
kl ensures that the terms

that correspond to the interactions with trivial resonances are
not doubly counted in the Hamiltonian �55� and are removed
from the quartic interaction. These new interactions in the
quartic terms include the exact nontrivial resonant and non-
trivial near-resonant as well as nonresonant interactions of
the �2→2� type.

We change the variables to the interaction picture by de-
fining the corresponding variables bk via

bk = ãke
i�̃kt,

so that the dynamics governed by the Hamiltonian �55� takes
the familiar form

iḃk = 2 �
l,m,s=1

N−1

T̃ms
kl �ms

kl bl
*bmbse

i�̃ms
kl t, �57�

where �̃ms
kl = �̃k+ �̃l− �̃m− �̃s �23�. Without loss of generality,

we consider only the case of k
N /2. As we have noted
before, only for a very small number of quartets does �̃ms

kl

vanish exactly, i.e., �̃ms
kl =0. We separate the terms on the

RHS of Eq. �57� into two kinds—the first kind with �̃ms
kl =0

that corresponds to exact nontrivial resonances, and the sec-
ond kind that corresponds to nontrivial near resonances and
nonresonances. Since, in the summation, the first kind con-
tains far fewer terms than the second kind, and all the terms
are of the same order of magnitude, we will neglect the first
kind in our analysis. Therefore Eq. �57� becomes

iḃk = 2 �
l,m,s=1

N−1

�T̃ms
kl �ms

kl bl
*bmbse

i�̃ms
kl t, �58�

where the prime denotes the summation that neglects the
exact nontrivial resonances.

The problem of broadening of spectral peaks now be-
comes the study of the frequency spectrum of the dynamical
variables bk�t� in thermal equilibrium. This is equivalent to
study the two-point correlation in time of bk�t�,

Ck�t� = 	bk�t�bk
*�0�
 , �59�

where the angular brackets denote the thermal average, since,
by the Wiener-Khinchin theorem, the frequency spectrum

�b����2 = F−1�C�t����� , �60�

where F−1 is the inverse Fourier transform in time. Under the
dynamics �58�, the time derivative of the two-point correla-
tion becomes

Ċk�t� = 	ḃk�t�bk
*�0�


= �− 2i �
l,m,s

�T̃ms
kl bl

*�t�bm�t�bs�t�ei�̃ms
kl t�ms

kl bk
*�0��

= − 2i �
l,m,s

�T̃ms
kl ei�̃ms

kl tJms
kl �t��ms

kl , �61�

where

Jms
kl �t� � 	bl

*�t�bk
*�0�bm�t�bs�t�
 .

In order to obtain a closed equation for Ck�t�, we need to
study the evolution of the fourth order correlator Jms

kl �t�. We
utilize the weak effective nonlinearity in Eq. �55� �12� as the
small parameter in the following perturbation analysis and
obtain a closure for Ck�t�, similar to the traditional way of
deriving the kinetic equation, as in �5,31�. We note that the
effective interactions of renormalized waves can be weak, as
we have shown in �12�, even if the �-FPU chain is in a
strongly nonlinear regime. Our perturbation analysis is a
multiple time-scale, statistical averaging method. Under the
near-Gaussian assumption, which is applicable for the
weakly nonlinear wave fields in thermal equilibrium, for the
four-point correlator, we obtain

Jms
kl �t��ms

kl = Ck�t�Cl�0���m
k �s

l + �s
k�m

l � . �62�

Combining Eqs. �56� and �62�, we find that the right-hand
side of Eq. �61� vanishes because

T̃ms
kl Jms

kl �t��ms
kl = 0. �63�

Therefore we need to proceed to the higher order contribu-
tion of Jms

kl �t�. Taking its time derivative yields

J̇ms
kl �t��ms

kl = 	�ḃl
*�t�bm�t�bs�t� + bl

*�t�ḃm�t�bs�t�

+ bl
*�t�bm�t�ḃs�t��bk

*�0�
�ms
kl . �64�

Considering the right-hand side of Eq. �64� term by term, for
the first term, we have
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	ḃl
*�t�bm�t�bs�t�bk

*�0�
�ms
kl

= ��2i �
�,�,�

�T̃��
l� b��t�b�

*�t�b�
*�t�e−i���

l�
���

l� �
�bm�t�bs�t�bk

*�0���ms
kl . �65�

We can use the near-Gaussian assumption to split the cor-
relator of the sixth order in Eq. �65� into the product of three
correlators of the second order, namely,

	bk
*�0�bm�t�bs�t�b��t�b�

*�t�b�
*
�ms

kl

=Ck�t�nmns��
k ���

m��
s + ��

m��
s � ,

where we have used that nm=Cm�0�. Then, Eq. �65� becomes

	ḃl
*�t�bm�t�bs�t�bk

*�0�
�ms
kl = 4iT̃ms

lk Ck�t�nmnse
−i�̃ms

lk
�ms

kl .

�66�

Similarly, for the remaining two terms in Eq. �64�, we have

	bl
*�t�ḃm�t�bs�t�bk

*�0�
�ms
kl = − 4iT̃kl

msCk�t�nlnse
i�̃kl

ms
�ms

kl ,

�67�

and

	bl
*�t�bm�t�ḃs�t�bk

*�0�
�ms
kl = − 4iT̃kl

msCk�t�nlnmei�̃kl
ms

�ms
kl ,

�68�

respectively. Combining Eqs. �66�–�68� with Eq. �64�, we
obtain

J̇ms
kl �t��ms

kl = 4iT̃ms
kl Ck�t�e−i�̃ms

kl t�ms
kl �nmns − nlnm − nlns� .

�69�

Equation �69� can be solved for Jms
kl �t� under the assumption

that the term e−i�̃ms
kl t oscillates much faster than Ck�t�. We

numerically verify �Fig. 9 below� the validity of this assump-
tion of time-scale separation. Under this approximation, the
solution of Eq. �69� becomes

Jms
kl �t��ms

kl = 4T̃ms
kl Ck�t��ms

kl e−i�̃ms
kl t − 1

− �̃ms
kl �nmns − nlnm − nlns� .

�70�

Plugging Eq. �70� into Eq. �61�, we obtain the following
equation for Ck�t�:

Ċk�t� = 8iCk�t� �
l,m,s

��T̃ms
kl �2�ms

kl 1 − ei�ms
kl t

�ms
kl

� �nmns − nlns − nlnm� . �71�

Since in the thermal equilibrium nk is known, i.e., nk
= 	�bk�t��2
=� / �̃k �Eq. �26��, Eq. �71� becomes a closed equa-
tion for Ck�t�. The solution of Eq. �71� yields the autocorre-
lation function Ck�t�

ln
Ck�t�
Ck�0�

= 8 �
l,m,s

��T̃ms
kl �2ei�ms

kl t − 1 − i�ms
kl t

��ms
kl �2

� �nlns + nlnm − nmns��ms
kl . �72�

Using this observation, together with Eq. �56�, finally, we
obtain for the thermalized �-FPU chain

ln
Ck�t�
Ck�0�

=
9�2�2

8N2�6�k �
l,m,s

���m + �s − �l��ms
kl

�
ei�ms

kl t − 1 − i�ms
kl t

��ms
kl �2 . �73�

Equation �73� gives a direct way of computing the correla-
tion function of the renormalized waves ãk, which, in turn,
allows us to predict the spatiotemporal spectrum �âk����2.
In Fig. 6�a�, we plot the analytical prediction �via Eq. �73��
of the spatiotemporal spectrum �âk����2��bk��− �̃k��2
=F−1�C�t����− �̃k�. By comparing this plot with the one pre-
sented in Fig. 6�b�, in which the corresponding numerically
measured spatiotemporal spectrum is shown, it can be seen
that the analytical prediction of the frequency spectrum via
Eq. �73� is in good qualitative agreement with the numeri-
cally measured one. However, to obtain a more detailed com-
parison of the analytical prediction with the numerical obser-
vation, we show, in Fig. 7, the numerical frequency spectra
of selected wave modes with the corresponding analytical
predictions. It can be clearly observed that the agreement is
rather good. One of the important characteristics of the fre-
quency spectrum is the width of the spectrum. We compute
the width W�f� of the spectrum f��� by

ω

k

(b)

0 1 2 3

40

80
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ω

k

(a)

0 1 2 3

40

80

120

−5

0

5

−5

0

5

FIG. 6. �a� Plot of the analytical prediction for the spatiotempo-
ral spectrum �âk����2 via Eq. �73�. �b� Plot of the numerically mea-
sured spatiotemporal spectrum �âk����2. The parameters in both
plots were N=256, �=0.125, E=100 and �=1.06, �=0.401. �
and � were computed analytically via Gibbs measure. The darker
gray scale correspond to larger values of �âk����2 in �-k space.
�max�−8, ln � âk����2� is plotted for clear presentation.�

INTERACTIONS OF RENORMALIZED WAVES IN… PHYSICAL REVIEW E 75, 046603 �2007�

046603-11



W�f� =
� f���d�

max�f���
. �74�

In Fig. 8, we compare the width, as a function of the wave
number k, of the frequency peaks from the numerical obser-
vation with that obtained from the analytical predictions. We
observe that, for weak nonlinearity ��=0.125�, the analytical
prediction and the numerical observation are in excellent
agreement. In the weakly nonlinear regime, this agreement
can be attributed to the validity of �i� the near-Gaussian as-
sumption, and �ii� the separation between the linear disper-

sion time scale and the time scale of the correlation Ck�t�.
This separation was used in deriving the analytical prediction
�Eq. �73��. However, when the nonlinearity becomes larger
��=0.25 and �=0.5�, the discrepancy between the numerical
measurements and the analytical prediction increases, as can
be seen in Fig. 8. Nevertheless, it is important to emphasize
that, even for very strong nonlinearity, our prediction is still
qualitatively valid, as seen in Fig. 8. In order to find out the
effect of the umklapp scattering due to the finite size of the
chain, we also computed the correlation �Eq. �72�� with the
“conventional” � function �ms

kl �i.e., without taking into ac-
count the umklapp processes� instead of our “periodic” delta
function �ms

kl . It turns out that the correlation time is approxi-
mately 30% larger if it is computed without umklapp pro-
cesses taken into account for the case N=256, �=0.5, E
=100. It demonstrates that the influence of the nontrivial
umklapp resonances is important and should be considered
when one describes the dynamics of the finite length chain of
particles. Finally, in Fig. 9, we verify the time-scale separa-
tion assumption used in our derivation, i.e., the correlation
time of the wave mode k is sufficiently larger than the cor-
responding linear dispersion period t̃k=2� / �̃k. In the case of
small nonlinearity ��=0.125�, the two-point correlation
changes over much slower time scale than the corresponding
linear oscillations—the correlation time is nearly two orders
of magnitude larger than the corresponding linear oscilla-
tions for weak nonlinearity �=0.125, and nearly one order of
magnitude larger than the corresponding linear oscillations
for stronger nonlinearity �=0.25 and �=0.5. This demon-
strates that the renormalized waves have long lifetimes, i.e.,
they are coherent over time scales that are much longer than
their oscillation time scales.
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FIG. 8. Frequency peak width W��âk����2� as a function of the
wave number k. The analytical prediction via Eq. �73� is shown
with a dashed line and the numerical observation is plotted with
solid circles. The parameters were N=256, E=100. The upper thick
lines correspond to �=0.5, the middle fine lines correspond to �
=0.25, and the lower solid circle and dashed line �almost overlap�
correspond to �=0.125.
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FIG. 7. Temporal frequency spectrum �âk����2 for k=30 �left
peak� and k=50 �right peak�. The numerical spectrum is shown with
pluses and the analytical prediction �via Eq. �73�� is shown with
solid line. The parameters were N=256, �=0.125, E=100.
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FIG. 9. Ratio, as a function of k, of the correlation time �k of the
mode k to the corresponding linear period t̃k=2� / �̃k. Circles,
squares, and diamonds represent the analytical prediction for �
=0.5, �=0.25, and �=0.125, respectively. Stars, pentagrams, and
triangles correspond to the numerical observation for �=0.5, �
=0.25, and �=0.125, respectively. The parameters were N=256,
E=100. The ratio is sufficiently large for all wave numbers k even
for relatively large �=0.5, which validates the time-scale separation
assumption used in deriving Eq. �70�. The comparison also suggests
that for smaller � the analytical prediction should be closer to the
numerical observation, as is confirmed in Fig. 8.
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VII. CONCLUSIONS

We have studied the statistical behavior of the nonlinear
periodic lattice with the nearest-neighbor interactions in ther-
mal equilibrium. We have extended the notion of normal
modes to the nonlinear system by showing that regardless of
the strength of nonlinearity, the system in thermal equilib-
rium can still be effectively characterized by a complete set
of renormalized waves, in the sense that those renormalized
waves possess the Rayleigh-Jeans distribution and vanishing
correlations between different wave modes. In addition, we
have studied the property of dispersion relation of the renor-
malized waves. The results we obtained in Sec. II are general
and can be applied to the large class of nonlinear systems
with the nearest-neighbor interactions in thermal equilib-
rium.

We have further focused our attention on the particular
system with the nearest-neighbor interactions—the famous
FPU chain. We have confirmed that the general renormaliza-
tion framework that we discussed above is consistent with
the numerical observations. In particular, we have shown that
the renormalized dispersion of the thermalized �-FPU chain
is in excellent agreement with the numerical one for a wide
range of the nonlinearity strength. We have further demon-
strated that the renormalized dispersion is a direct conse-
quence of the trivial resonant interactions of the renormal-
ized waves. Using a self-consistency argument, we have
found an approximation of the renormalization factor via a
mean-field approximation. In addition, we have used the
multiple time-scale, statistical averaging method to obtain
the theoretical prediction of the spatiotemporal spectrum and
demonstrated that the renormalized waves have long life-
times. We note that the results obtained here can be extended
to general nonlinear potentials with the nearest neighbor in-
teractions.

The scenario of the wave behavior in the thermal equilib-
rium we obtained here may suggest a theoretical framework
for the application of the wave turbulence to �-FPU in the
situation of near equilibrium.
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APPENDIX: LIMITING BEHAVIORS OF �
FOR THE THERMALIZED �-FPU CHAIN

We change variables yj =qj −qj+1 in the Hamiltonian �29�
for �-FPU to obtain

H�p,y� = �
j=1

N �1

2
pj

2 +
1

2
yj

2 +
�

4
yj

4� . �A1�

Next, we compute the pdf’s for the momentum and displace-
ment. Any pj is distributed with the Gaussian pdf zp
=Cp exp�−�−1p2 /2� and any yj is distributed with the pdf
zy =Cy exp(−�−1�y2+�y4 /2� /2), where Cp and Cy are the
normalizing constants. As we have discussed, the renormal-

ization factor � of the �-FPU system in thermal equilibrium
is given by Eq. �25�, and its approximation via the self-
consistency argument �sc is given by Eq. �52�. Here, we
compare the behavior of both formulas in two limiting cases,
i.e., the case of small nonlinearity �→0 and the case of
strong nonlinearity �→	. We will use the following expres-
sions for the average density of kinetic, quadratic potential
and quartic potential parts of the total energy of the system

	K

N

=
1

N
�
j=1

N
	pj

2

2

=
1

2
� , �A2�

	U

N

=
1

N
�
j=1

N
	yj

2

2

=
1

2
	y2
 , �A3�

	V

N

=
�

4N
�
j=1

N

	yj
4
 =

�

4
	y4
 . �A4�

In a canonical ensemble, the temperature of a system is given
by the temperature of the heat bath. By identifying the aver-
age energy density of the system with ē=E /N in our simu-
lation �a microcanonical ensemble�, we can determine � as a
function of ē and � by the following equation:

1

N
�	K
 + 	U
 + 	V
� = ē . �A5�

We start with the case of small nonlinearity �→0. Suppose
in the first order of the small parameter � the temperature has
the following form:

���� = �0 + ��1, �A6�

where �0=O�1� and �1=O�1�. We find the values of �0 and
�1 using the constraint �A5�. We use the following expan-
sions in the small parameter �:

�
−	

	

e−�1/2������y2+��y4/2��dy =��

8
��0�4 + �2�1

�0
− 3�0
��

+ O��2� , �A7�

�
−	

	

y2e−�1/2������y2+��y4/2��dy =��

8
��0�4�0 + �6�1 − 15�0

2���

+ O��2� , �A8�

�
−	

	 �y2 +
�

2
y4
e−�1/2������y2+��y4/2��dy

=��

8
��0�4�0 + �6�1 − 9�0

2��� + O��2� . �A9�

Then, in the first order in �, Eq. �A5� becomes

�0 + ��1 +
��/8��0�4�0 + �6�1 − 9�0

2���
��/8��0�4 + �2�1/�0 − 3�0���

= 2ē ,

and we obtain �0= ē and �1= �3/4�ē2. Therefore for the aver-
age kinetic energy density, we have
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	K

N

=
1

2
ē +

3

8
ē2� + O��2� , �A10�

and, for the average quadratic potential energy density, we
have

	U

N

=
1

2

��/8��0�4�0 + �6�1 − 15�0
2���

��/8��0�4 + �2�1/�0 − 3�0���

=
1

2
ē −

9

8
ē2� + O��2� . �A11�

Finally, we obtain Eq. �53�, i.e., for small �,

� = 1 +
3

2
ē� + O��2� . �A12�

Similarly, from Eq. �52�, we find the small � limit of the
approximation �sc,

�sc = 1 +
3

2
ē� + O��2� .

Now, we consider the case of strong nonlinearity �→	.
From Eq. �A5�, we conclude that temperature in the large �
limit, which we denote as �	, stays bounded, i.e., 0
�	


2ē, and, in the limit of large �, we obtain for Eq. �A5�

�	 +

�
−	

	 �

2
y4e−��/4�	�y4

dy

�
−	

	

e−��/4�	�y4
dy

= 2ē . �A13�

After performing the integration, we obtain �	= �4/3�ē, and
the average kinetic energy density becomes 	K
 /N= �2/3�ē.
For the average quadratic potential energy density, we have

	U

N

=
1

2

�
−	

	

y2e−��/4�	�y4
dy

�
−	

	

e−��/4�	�y4
dy

=
��3/4�
��1/4�

� 4ē

3�

1/2

. �A14�

For the renormalization factor, we obtain the following large
� scaling:

� =� ��3/4�
�3��1/4�

ē1/4�1/4. �A15�

Similarly, for the approximation of �sc, we obtain A=C�ē�,
B=4ē�, and C=2�3��3/4� /��1/4�. Therefore the large �
scaling of �sc becomes

�sc =�C + �C2 + 16

2
ē1/4�1/4, �A16�

which yields Eq. �54�.
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