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Direct observation and theoretical study of cavitation bubbles in liquid mercury
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The direct observation of cavitation bubbles emerging in liquid mercury under the action of mechanical
impacts and theoretical investigations on the experimental results have been made. Through a glass wall, the
image of cavitation bubbles appearing near or in contact with the wall was captured by high-speed cameras.
Discrepancies found between the bubbles’ growth rates determined experimentally and given by a single-
bubble theory have been discussed using a theoretical model of Rayleigh-Plesset type that takes into account
bubble-bubble and bubble-wall interactions. A theoretical equation for the asymptotic growth rate in a multi-
bubble case has been given and time dependence of the growth rate under a constant negative pressure has

been clarified.
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I. INTRODUCTION

Cavitation in fluid machinery has been a serious issue in
many hydraulic applications, causing erosion of solid sur-
faces and resulting sometimes in destruction of structures.
Such a problem can also be found in high-power spallation
neutron sources, in which liquid mercury is used as the spal-
lation target material (and also as a coolant) [1-3]. In a series
of test experiments (see, e.g., Refs. [1-5]), it has been sug-
gested that intense pressure waves produced by proton spal-
lation reactions in the mercury target should lead to cavita-
tion in liquid mercury, which results in erosion of the target
vessel caused by violent collapse of cavitation bubbles and
will seriously shorten the target lifetime (the current estima-
tion of the lifetime is about 30 hours which is much shorter
than the previously predicted value, 2500 hours, determined
by radiation embrittlement [6]). To overcome this issue, re-
search groups in the Japan Atomic Energy Agency (formerly
the Japan Atomic Energy Research Institute) and the Oak
Ridge National Laboratory have been performing various ex-
perimental (both in-beam and off-line) and theoretical inves-
tigations.

In this paper, we report the direct observation of cavita-
tion bubbles emerging in liquid mercury, which is a conclu-
sive evidence of the occurrence of cavitation, and perform
theoretical investigations to understand the experimental re-
sults. Although the previous experiments have provided in-
direct evidences of cavitation (e.g., pitting damages on metal
plates and strong acoustic pulses probably induced by the
collapse of bubbles), no direct observation has been achieved
so far. In order to resolve this lack of direct evidence, we
have performed an experimental study using a magnetically
driven impact test device, called MIMTM (Magnetic IMpact
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Testing Machine) [4], and high-speed cameras [7]. In the
experimental system, cavitation is induced by mechanical
impacts on the mercury container, which produce a negative
pressure in liquid mercury. One serious difficulty in the di-
rect observation of cavitation bubbles in liquid mercury
comes from the opacity of liquid mercury. As is commonly
known, liquid mercury is an opaque liquid and thus makes it
impossible for one to see through what takes place inside
(probably because of this difficulty, only a very few studies
have been made previously on cavitation in liquid mercury
[8,9]). We overcame this difficulty by a rather primitive ap-
proach, setting a glass window on the upper side of the mer-
cury container. The image of cavitation bubbles appearing
near, or in contact with, the glass window was captured by
high-speed cameras. Theoretical discussions on the experi-
mental results are given by using a system of equations of
Rayleigh-Plesset type, and attempts are made to explain no-
ticeable discrepancies found between the experimental and
theoretical values of the growth rate of bubbles. Bubble-
bubble and bubble-wall interactions under a constant nega-
tive pressure were the main concerns in the theoretical inves-
tigation. Time dependence of the growth rate due to the
interactions has been clarified theoretically. In this paper we
mainly give a qualitative discussion since there must be sig-
nificant experimental uncertainties much larger than in the
case of water that resulted from the opacity and are unavoid-
able at present.

In Sec. II the experimental setup is illustrated and the
experimental results are presented. In Sec. III theoretical in-
vestigations on the experimental results are given focusing
on the growth rate of cavitation bubbles. Section IV summa-
rizes the present paper.

II. EXPERIMENT

Figure 1 illustrates the experimental setup when the pres-
sure inside the mercury is measured. The body of the
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FIG. 1. Experimental setup when the pressure inside the mer-
cury is measured. The shallow cylinder filled with liquid mercury is
the main body of the MIMTM system. The mechanical impacts are
imposed from the bottom by electromagnetic force.

MIMTM system is a shallow cylinder made of stainless
steel, filled with liquid mercury (not degassed) of about
120 cc. Mechanical impacts are imposed on the mercury
from the bottom of the cylinder by a magnetic coil whose
output can be controlled by changing the electric current.
The pressure change inside the cylinder is measured using a
pressure sensor (Entran® EPXH) attached on the upper panel
of the cylinder. Figure 2 shows the pressure profile for an
input power of 560 W recorded at a sampling rate of 50 kHz.
After a rapid decrease, the pressure appears to be in a satu-
rated state at about —0.123 MPa lasting for about 1 ms,
which is followed by strong (positive) pressure pulses. To
investigate in detail what happened during this period, we
have attempted to observe the inside of the mercury through
a glass window embedded in the upper panel; see Fig. 3 for
the experimental setup for image recording. We used two
kinds of high-speed cameras; one is a high-speed shutter
camera (NAC, DiCAM PRO) which allows us to take clear,
high-resolution images, and the other is a high-speed video
camera (NAC, Memrecam fx RX6) which is used to take
high-frame-rate, but rather low-resolution, movies of dy-
namical behaviors.

Photographic series of the recorded phenomenon are
shown in Figs. 4 and 5. Figure 4 shows the high-resolution
images at time=0.5 ms and 1.7 ms measured from the time
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FIG. 2. Pressure change inside the mercury generated by a
single mechanical impact.
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FIG. 3. Experimental setup when the bubble behavior is ob-
served. The pressure sensor in Fig. 1 is replaced with a glass win-
dow, through which the mercury surface is monitored. The image is
recorded by a high-speed camera (a high-speed shutter camera or a
high-speed video camera) through a mirror.
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when a mechanical impact was imposed, and Fig. 5 shows
three series of cutout images at three different locations
taken from the movie. Many spherical cavities expanding
and then rapidly shrinking can be seen clearly in the liquid
mercury, some of which experienced mutual coalescence as
shown in the lowest series of Fig. 5. They must be bubbles
that emerged through cavitation caused by the negative pres-
sure. The bubbles were expanding when the absolute pres-
sure (the atmospheric pressure plus the pressure change
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FIG. 4. High-resolution images of the mercury surface captured
by a high-speed shutter camera through a glass window. The obser-
vation was made at 0.5 ms and 1.7 ms after imposing the impact.
The width of the panels correspond to 13 mm. Many cavities can be
seen, which must be cavitation bubbles. The average distance be-
tween nearby bubbles is a few millimeters.
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FIG. 5. Time sequences of the images of the mercury surface at
three different locations, captured by a high-speed video camera.
The width of the frames corresponds to 1 mm. The radius change of
the bubbles can be deduced from this series of images. The two
bubbles shown in the lowest series experienced mutual coalescence
during the expansion phase.

shown in Fig. 2) was negative, and then collapsed away or
disappeared from our sight at around 2 ms. The growth rate
of the bubbles, i.e., the time derivative of the bubbles’ radii,
deduced from the captured pictures is on the order of 1 m/s,
and their lifetime, the time period where the bubbles are
visible, is about 1.5 ms. The collapse time of the bubbles is
well correlated with the time when the strong pressure pulses
were detected, an observation which may prove that the
pulses were emitted by the bubble collapse.

III. THEORETICAL INVESTIGATIONS

We have performed theoretical investigations on the
growth rate and maximum size of the observed bubbles, both
of which should have a strong correlation with the erosion
intensity that the bubbles will have. We have not discussed
the collapse phase since it was unfortunately not clearly re-
corded particularly during the period where the bubbles were
very small. The theoretical model used in the present study is
a Rayleigh-Plesset equation involving a term that represents
bubble-bubble (or, in some cases, bubble-wall) interaction,

.. 3. Pm i «\ 1d RZR
RiRi+—Ri2—_=—pe_()— 2 _L;/)’ (1)
2 P P jetji Ty dt
20 Ri0)3K 20 4u .
i=Pot\Po+— | —| ——-—"R—-Py, (2
Pmi=Py ( 0 Ri0>(Ri Ri Ri i 0 ()

where R; is the time dependent radius of bubble i, p.(f) is
the driving pressure, p is the density of liquid mercury, r; is
the distance between the centers of bubbles i and j, p,, is the
vapor pressure, Py is the atmospheric pressure, o is the sur-
face tension, R; is the equilibrium radius of bubble i, and
is the viscosity of liquid mercury. This system of equations
governs the forced volume oscillation of N spherical bubbles
interacting with each other through sound (see, e.g., Refs.
[10-13] for recent studies using this kind of theoretical
model). The last term of Eq. (1) denotes the pressure of the
sounds emitted by the other bubbles measured at the position
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of bubble i, representing bubble-bubble interaction through
sound. Bubble-bubble interaction in a sound field is known
to alter the physical properties of bubbles in diverse ways
(see, e.g., Refs. [10-12,14—-18] for recent studies), and hence
we have examined its effects on the behavior of cavitation
bubbles in liquid mercury. In the theoretical model, the sur-
rounding liquid is assumed to be incompressible, which
holds well in the expansion phase of the present case because
the growth rate (=1 m/s) is much smaller than the sound
velocity of liquid mercury (1450 m/s at room temperature).

The bubble dynamics in single-bubble cases (i.e., for r;;
— o) predicted theoretically is shown in Figs. 6(b) and 6(c§
by solid curves. Here, the recorded data shown in Fig. 2 was
used for p.,(t), and seven different initial radii were assumed
as the equilibrium size of cavitation bubbles is in general not
known. The other parameters used are p=13 528 kg/m?, p,
=0.28 Pa (negligibly small compared to P, and —min[P,
+px(D]), Py=0.1013 MPa, ¢=0.47 N/m, «=1, and u
=1.52X 1073 Pas. For R;=92 um and R;;=8.95 um,
rapid, unbounded growth of the bubbles is observed during
the negative-pressure period, whereas for R;;=8.5 um and
9 um an oscillatory behavior probably centered at the equi-
librium radius for the negative pressure can be seen. The
latter case, which corresponds to the situation where the
bubble radius does not exceed the (dynamic) Blake critical
radius, exhibits a completely different behavior from that of
the experimentally observed bubbles and is thus not dis-
cussed further in this paper.

Significant qualitative and quantitative differences are
found between the experimental observations (the symbols in
Fig. 6) and theoretical results, though they are in reasonable
agreement with each other in some respects. The growth rate
and maximum radius in the experiment are considerably
smaller than the theoretical ones, while the lifetime shows a
reasonable agreement between experiment and theory. Also,
the growth rate in the experiment appears to be time depen-
dent, while the theoretical one seems to converge to an al-
most constant value after the transient has decayed. There are
several possible factors causing the discrepancies. One
comes from the opacity of liquid mercury, which must lead
to significant uncertainties in optical observations; there is a
possibility, for example, that the bubbles’ main body greater
than the observed circles is hidden by the mercury veils cov-
ering the surface of the glass window. Also, physical effects
that are not taken into consideration in the theory (e.g.,
evaporation and condensation, gas diffusion, or some other
effect) could be the origin of the discrepancies. Furthermore,
bubble-bubble and bubble-wall interactions must have a con-
siderable influence on the bubbles’ dynamics because in the
experiments many bubbles emerged simultaneously in the
proximity of a glass wall. In what follows, in order to clarify
as much as possible the origin of the discrepancies, we dis-
cuss the last factor by employing Eq. (1).

Though Eq. (1) is a model equation for spherical bubbles
in an unbounded domain, it is, under some assumptions, also
applicable to other configurations. In the present study we
consider two cases: a case of spherical bubbles staying near a
wall and a case of hemispherical bubbles located on a wall.
Since the problems can be transformed into the interaction of
spherical bubbles in an unbounded domain, both cases can
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FIG. 6. (Color online) Experimental and numerical results: the
pressure change (a) and the bubble radii given experimentally (sym-
bols) and numerically using a single-bubble model (lines) [(b) in
linear scale and (c) in log scale] as functions of time. The numbers
presented in panel (b) denote the equilibrium radii (wm) assumed in
the numerical study. The three sets of experimental data shown
were taken from the recorded images. The bubble denoted by the
crosses collided with a neighboring bubble at about 1.5 ms.

be addressed with Eq. (1). Assuming that the glass wall is flat
and rigid and the sound reflection at the glass surface is
in-phase, due to the mirror effect of the wall [18] the inter-
action between a spherical bubble and the nearby wall can be
approximately transformed into the interaction of two iden-
tical bubbles in an unbounded domain oscillating in-phase
with each other, separated by 2 times the distance between
the bubble center and the wall surface. Hemispherical
bubbles on the wall in the present case, as suggested by
Bremond et al. in a study of cavitation in water [13], may be
treated as spherical bubbles in an unbounded domain, be-
cause the maximum thickness of the viscous boundary layer
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formed on the wall surface in the expansion phase [
~0.01 mm, estimated by (ut,/p)"? with t,=1 ms] is much
smaller than the maximum bubble radii and hence the wall
only acts as a mirror. These problem transformations allow
us to use a single theoretical model [Eq. (1)] to analyze both
cases. Though we only present results for the former case
below, they can also be regarded as results for the latter case:
a case of two spherical bubbles near the wall, for example, is
equivalent to a case of four hemispherical bubbles on the
wall. (In a future study the model would be used to investi-
gate more complex cases such as the interaction of bubbles
on the wall with bubbles in the bulk of liquid mercury.)

Let us consider the dynamics of spherical bubbles near
the glass wall. Assuming that the distance between the center
of bubble i and the wall is D; and, for simplicity, all D; have
the same value equal to D, Eq. (1) is rewritten into

" 3. Pmi 1 dR’R;
Rl‘Ri+_Rl~2—p_:—&———(1 )
2 p p 2D dt
N 2
1 1)\dR/R;
- 2 (—+—>—;( 2 @
j=tj#i \ij o Sij dt

where s; j=(ri2j+4D2)” 2 is the distance between the centers of
bubble i and the mirror image of bubble j. The second term
and the last term, respectively, on the right-hand side denote
the amplitudes of the sounds emitted by the mirror image of
bubble i and by bubble j and its mirror image. The radius-
time curves for N=2 determined by Eq. (3) are shown in Fig.
7. In all cases shown in the figure, the maximum radii are
remarkably decreased by the bubble-bubble and bubble-wall
interactions and hence the numerical results become closer to
the experimental ones. Interestingly, the explosive expansion
of the bubble with an equilibrium radius of 9.2 um observed
in Fig. 6(b) was suppressed by the larger neighboring bubble;
see Fig. 7(c). This may be caused by the positive pressure
from the neighboring bubble, which enlarges the effective
critical radius. The lifetime of the explosively expanding
bubbles is slightly extended by the interactions, a result
which is consistent with the previous experimental observa-
tions on bubble-wall interaction (see, e.g., Ref. [19]).

We have further discussed the growth rate to obtain a
simple theoretical estimation of it in a multibubble case. In
the experimental observation, the absolute pressure showed
such a characteristic pattern that it held at a negative constant
for about 1.2 ms. In the following, we thus study bubble
dynamics in a constant negative pressure. Let us consider a
case of two identical bubbles, that is, the case of Rjy=R»
and R;=R, with N=2. Assuming that p., is a negative con-

stant and R 1=~0 or, in other words, all the force terms are
approximately balanced, Eq. (3) is reduced to

3 1 2 2 .
[—+<—+—+—)R1]R%—@:_@, (4)
2 \D rp sp p p

For R >R, this equation gives the asymptotic growth rate
in a multibubble case,
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FIG. 7. (Color online) Effects of bubble-bubble and bubble-wall interactions in cases of two spherical bubbles near the glass wall. The
thin and thick lines denote the numerical results for isolated and interacting bubbles, respectively, given by solving the coupled Rayleigh-
Plesset equations, and the symbols denote the experimental results already shown in Fig. 6. Here, we assumed D=1.2 mm and r,
=2 mm with four different couples of equilibrium radii as indicated in the panels. As described in the text, the example considered here is
approximately equivalent to a case of four hemispherical bubbles (two couples of identical hemispherical bubbles) on the wall.

; U_P ~ Pex

R1= )4 0~ Pe .
3 1 2 2
—+|=+—+— R |p
2 D I S12

When the separation distances are infinite, this equation con-
verges to

5)

Rlz pv_fo_pex’
2P

(6)

which is the asymptotic growth rate in single-bubble cases
given previously [20]. From Egs. (5) and (6) one can see that
both the bubble-bubble and bubble-wall interactions reduces
the growth rate, and the asymptotic growth rate in multi-
bubble cases depends on the instantaneous radius while it is
not radius dependent in single-bubble cases; actually, the
lines in Fig. 7 for the interacting cases are slightly curved
even in the constant-pressure period. (The same tendencies
are also found when the bubbles have different radii; see the
Appendix.) This radius dependence is interpreted as follows:
in multibubble cases the amplitude of the total driving sound
acting on a bubble is time dependent even if p,., is constant
because the amplitudes of the sounds emitted by the neigh-
boring expanding bubbles are time dependent [note that

d(RJZ.Rj)/dt=2RjR12.+R12.iéj in Egs. (1) and (3) is not constant
even for R j:O], and hence the bubbles in multibubble cases

cannot be in steady growth. These theoretical results repro-
duce well the qualitative natures of the experimental result.

Last, we have performed a comparative study to confirm
the quantitative accuracy of Eq. (5). The solid curves in Fig.
8 show the bubble radii and growth rates for R;q=Rj,
=10 wm determined numerically by solving Eq. (3). Here,
the pressure change was idealized as p.,=0 MPa for <0 s
and p.,=—0.123 MPa for +=0 s, and the radius and growth
rate of an isolated bubble are also shown for reference. The
dashed curves denote the asymptotic growth rates given by
Egs. (5) and (6) with the bubble radii determined numeri-
cally shown in the upper panel. This figure clearly shows the
noticeable difference in the growth rates of isolated and in-
teracting bubbles. The asymptotic values are in reasonable
quantitative agreement with the full numerical solutions,
proving that the theory accurately describes the characteris-
tics of the explosively expanding bubbles, e.g., the remark-
able decrease of the growth rate due to bubble-bubble and
bubble-wall interactions.

IV. CONCLUSION

In summary, we have reported the direct observation of
cavitation bubbles in liquid mercury, which was enabled us-
ing a glass window. The present experimental result offers a
conclusive evidence of the occurrence of cavitation in liquid
mercury. The theoretical investigations taking into account
bubble-bubble and bubble-wall interactions have partly ex-
plained the qualitative and quantitative discrepancies found
between the observed data and a single-bubble theory, i.e.,
the time dependence of the growth rate in experiment and its
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FIG. 8. (Color online) Asymptotic behavior of the growth rate
under a constant negative pressure. Shown are the radii (the upper
panel) and the growth rates (the lower panel) of isolated and two
interacting bubbles for R;y=R,y=10 um given by solving the
coupled Rayleigh-Plesset equations (the solid lines) and the corre-
sponding asymptotic growth rates given by Eq. (5) (the dashed
lines). Here the separation distances were assumed as in Fig. 7.

lower value than that given by the single-bubble theory.
Those observations and findings would be fundamental
knowledge for high-power pulse spallation neutron sources
using a liquid metal such as the J-PARC (Japan Proton Ac-
celerator Research Complex). However, further discussion is
absolutely needed to clarify, in particular, the effects of ex-
perimental uncertainties coming from mercury’s opacity,
which have never been confronted in the previous experi-
ments with water. We still have many unknowns resulting
from the experimental difficulty, such as the actual three-
dimensional shape of the cavitation bubbles, the macroscale
structure of the cavitation field, and the matter whether other
bubbles exist over the visible bubbles. Improving the experi-
mental technique to achieve a finer observation of cavitation
bubbles in such an opaque liquid would be a challenging
task. Also, refining the theory by considering the interaction
effects of a larger number of bubbles, including those in the

PHYSICAL REVIEW E 75, 046304 (2007)

bulk of the mercury, would be necessary to provide a quan-
titatively accurate prediction.
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APPENDIX

The asymptotic growth rate for N=2 with R;y# Ry is

determined as follows: Assuming Iéj%O and R;>R;y (j
=1,2), Eq. (3) reduces to

3 R, - Py- 1 1)\.
( >R2 w_sz(__'__)R%’
2" D p o S

(A1)
3 R Py—
( 2) 2 p 0 peX—ZRl(—+—>R%
2 D p oo S
(A2)
From these, we obtain
) Py
R]= Pv 0 pex, (A3)
Fp
eli-e) (5o
3 R R,
F=—-+—+2|—
2 D rip ( ) <R2 Rz)
p— + —
S12
(A4)

which is the time-dependent asymptotic growth rate of
bubble 1, and gives the growth rate of bubble 2 by exchang-
ing 1 and 2 in the subscripts. This reduces to Eq. (5) when
Rip=Ry, and to Eq. (6) when the separation distances are
infinitely large.

We make brief remarks on the magnitude of Eq. (A3).
Since 5;,>2D, and assuming R;< ?‘mz, the last term of Eq.
(A4) is positive, and the remaining terms in the same equa-
tion are always positive. Thus one knows that F= > , which
means that the asymptotic growth rate in double bubble
cases (A3) is smaller than that in single-bubble cases not
only when R,y=R,, but also when R;y# R,,. Obviously Eq.
(A3) is radius dependent as in the case of R y=Ry.
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