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Approximating chaotic saddles for delay differential equations
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Chaotic saddles are unstable invariant sets in the phase space of dynamical systems that exhibit transient
chaos. They play a key role in mediating transport processes involving scattering and chaotic transients. Here
we present evidence (long chaotic transients and fractal basins of attraction) of transient chaos in a “logistic”
delay differential equation. We adapt an existing method (stagger-and-step) to numerically construct the chaotic
saddle for this system. This is the first such analysis of transient chaos in an infinite-dimensional dynamical
system, and in delay differential equations in particular. Using Poincaré section techniques we illustrate ap-
proaches to visualizing the saddle set, and confirm that the saddle has the Cantor-like fractal structure consis-
tent with a chaotic saddle generated by horseshoe-type dynamics.
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I. INTRODUCTION

Many physical systems exhibit transient chaos; that is
they behave in an erratic, unpredictable way for some time,
but eventually settle down to rest or periodic motion. Rolling
dice, tossing coins, and other means of generating random
outcomes are familiar examples. A similar phenomenon is
observed in experiments on fluids [1]. Mathematical models
also can exhibit long chaotic transients, e.g., the Hénon map
[2,3], coupled Van der Pol oscillators [4] and the kicked
double rotor [5]. Despite the diversity of these examples,
they are thought to share in common a universal dynamical
mechanism, which is the existence in phase space of an un-
stable, fractal invariant set on which the dynamics are cha-
otic [2,6]. Such a set has been called a chaotic saddle (owing
to its saddle-type instability) or strange repeller.

A chaotic saddle generates transient chaotic dynamics by
the following mechanism. Phase-space orbits originating ex-
actly on the saddle remain chaotic for all time, but due to the
saddle’s instability these orbits are not experimentally ob-
servable. Rather, a typical phase-space trajectory enters a
neighborhood of the saddle via its stable manifold, and there-
after shadows the saddle for some time during which it ex-
hibits the erratic motion associated with the chaotic dynam-
ics on the saddle. After this chaotic transient period the
trajectory exits the saddle along its unstable manifold, even-
tually to be captured by an attracting set (typically a fixed
point or periodic orbit, but possibly a chaotic attractor).

Because the dynamics on unstable sets cannot be ob-
served directly, it is often asserted that such sets have little
relevance to experimental observations. However, in tran-
sient chaos it is precisely the transient behavior that is of
interest. Indeed, Kantz and Grassberger [2] have argued that,
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owing to the mechanism described above, a unified under-
standing of chaotic transients relies on an analysis of the
dynamics on the unstable chaotic set.

A fairly complete analysis is possible for systems that
exhibit horseshoe-type dynamics [7], such as the celebrated
homo- or heteroclinic chaos that occurs due to the transversal
intersection of stable and unstable manifolds of an equilib-
rium point or periodic orbit [8]. In this situation the saddle is
known to be a product of Cantor sets, and the dynamics on it
are conjugate to a subshift of finite type (a generalization of
the Smale horseshoe [9]), yielding a symbolic coding of the
dynamics on the saddle.

However, it is often difficult to obtain such rigorous re-
sults for realistic models, so that there is an active literature
on the numerical detection and approximation of chaotic
saddles. Here the essential problem is to construct a numeri-
cal trajectory that lies very near the saddle for an arbitrarily
long time, the idea being that such a trajectory will shadow a
true trajectory on the saddle. This is accomplished by repeat-
edly making small (i.e., at the limit of numerical precision)
perturbations of a numerical trajectory, so that it remains
indefinitely within a small neighborhood of the saddle. Varia-
tions on this theme, differing only in the method of choosing
suitable perturbations, include the ‘“straddle-orbit method”
[4], “stagger-step method” [5], the “PIM triple procedure”
[3], and most recently a gradient search algorithm due to
Bollt [10]. All have fairly severe limitations. The straddle-
orbit and PIM triple methods apply only if the unstable
manifold of the saddle is one-dimensional. The other meth-
ods suffer from the exponential growth of phase-space vol-
ume with dimension, which greatly hinders the search for
successful perturbations if the system dimension is greater
than about 4. The construction of a general-purpose algo-
rithm for approximating chaotic saddles remains an open
problem.

In this paper we consider the problem of approximating
chaotic saddles for delay differential equations (DDE’s).
DDE’s arise in models of phenomena in which the rate of
change of the system state depends explicitly on the state at
some past time, as for example in the case of delayed feed-
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back. Neural systems [11], respiration regulation [12], agri-
cultural commodity markets [13], nonlinear optics [14], neu-
trophil populations in the blood [12,15], and metal cutting
[16] are just a few systems in which delayed feedback leads
naturally to models expressed in terms of delay differential
equations.

DDE’s are also interesting because they serve as proto-
typical dynamical systems of infinite dimension, for which
both numerical and analytical methods are intermediate in
complexity between ordinary and partial differential equa-
tions. DDE’s therefore provide a natural ground for develop-
ing numerical methods for the analysis of transient chaos in
infinite dimensional systems, much as Farmer [17] has sug-
gested in the context of chaotic attractors.

For simplicity we consider only autonomous, evolution-
ary delay equations with a single fixed delay time 7 modeling
a process x(7) € R satisfying

B x50 ) (1)

for some f:R?—R. Most of the ideas presented here have
obvious generalizations to more general autonomous DDE’s,
e.g., with higher dimension, multiple delays, time varying or
distributed delays, and higher derivatives.

Aside from unpublished work referenced in [2], to date
there has been no account of transient chaos in delay differ-
ential equations. However, there is substantial evidence that
transient chaos does occur in some DDE’s. The present study
was motivated by the observations in [18,19] of fractal ba-
sins of attraction (a hallmark of transient chaos [6]) in delay
equations.1 Transverse homoclinic orbits (hence horseshoe
dynamics) have also been proved to occur in some DDE’s
[20-22], and there is numerical evidence [23] for transverse
homoclinic orbits in the Mackey-Glass equation [15]. These
results have been presented in discussions of attracting
chaos, whereas transient chaos in DDE’s has not specifically
been investigated. In particular, no attempt has been made to
identify and construct a chaotic saddle.

In the present work we investigate fractal basins of attrac-
tion and transient chaos for DDE’s, taking a particular “lo-
gistic” DDE as an example. We develop an implementation
of the stagger-step method applicable to DDE’s of the form
(1), and use it to construct and visualize the chaotic saddle
for our example.

Since the saddle is embedded in an infinite dimensional
phase space, it is difficult to visualize. We explore various
approaches to visualizing the saddle by using projections
onto R? and R?, and Poincaré section techniques to achieve
further reductions in dimension. This work paves the way for
a similar approach to other infinite-dimensional systems, for
instance systems modeled by evolutionary PDE’s.

II. BACKGROUND ON DELAY DIFFERENTIAL
EQUATIONS

We consider one-dimensional autonomous delay differen-
tial equations of the form (1) with x(r) € R, r=0. Properties

'In the DDE studied in [18] fractal basins are present even in the
absence of a delay. Our focus here is on systems where the dynami-
cal instability is caused by the delay.

PHYSICAL REVIEW E 75, 046215 (2007)

of such DDE’s and their solutions can be found, e.g., in
[24,25]. Here we summarize the most essential facts relevant
to our work.

Without loss of generality we can take the delay time 7 to
be 1, achieved by an appropriate rescaling of the time ¢ in
Eq. (1). Thus the DDE’s we consider have the form

x' (1) = fx(1),x(1 = 1)). 2)

For Eq. (2) to define a unique solution x(z), say for all ¢
=0, initial data must be furnished in the form of values x(7)
for all -1 <r=0. Otherwise, the right-hand side will fail to
be defined for some 7 € [0,1]. In order that Eq. (2) prescribes
a well-defined evolutionary process, we assume f is such’
that for any continuous initial function ¢:[—1,0]—R there
is a unique solution x(z) satisfying Eq. (2) for all z>0, to-
gether with the initial condition

x(1) = (1),

The DDE (2) can be regarded as a dynamical system on
the infinite-dimensional phase space C=C[-1,0], the space
of continuous functions on the interval [-1,0]. To see how
this can be so (see, for example, [25,26]), consider that a
solution x(7) is uniquely determined for all #>> 0 only if initial
data are given for all 7 [-1,0], in the manner of Eq. (3).
More generally the continuation of a solution for t>T is
uniquely determined by its history on the interval [T—1,T].
Let the function

te[-1,0]. (3)

x(s)=x(t+s), se[-1,0] (4)

represent the segment of a given solution x(7) on the delay
interval [t—1,t]. Since x, uniquely determines x,, for any 0
<r=t', we can take x, to be the phase point, at time ¢, for the
corresponding dynamical system. By virtue of continuity of
solutions of Eq. (2), x, € C for all t=0 so we take the phase
space to be C.

For each =0 let S,: C— C be the evolution operator that
takes x, to x,. That is,

Si(xo) = x,, (5)

where x,(s) =x(¢t+s) and x(z) is the solution of Egs. (2) and
(3) corresponding to the initial function ¢=x, e C. Since the
DDE is autonomous, it is invariant under time translation, so
that S, has the semigroup property [25]: S, is the identity
transformation, and S,,,,=S,°S,, for all 7, #'=0. Thus the
family of transformations {S,:7=0} determine a continuous-
time dynamical system on C.

Figure 1 illustrates the relationship of the evolution opera-
tor S, to a given solution x(¢) of the DDE. The action of S, on
a function xye C has a simple geometric interpretation: it
consists of continuing the initial function ¢=x, as a solution
x(t) of the DDE, restricting the resulting function to the in-
terval [z—1,¢], then translating this function to time 0.

’E.g., feC! and |f(u,v)| <N(t)max{|u|,|v|} for some positive
continuous function N(z) [24].
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FIG. 1. Action of the evolution operator S, for a DDE. A given
initial function ¢=xye C generates a solution x(7) of the initial
value problem (2) and (3), which in turn defines the phase point
x; € C at time ¢. S, is the operator on C takes x( to x;.

For a given initial function ¢ € C we can recast the DDE
problem (2) and (3) as an abstract initial value problem in C
as follows:

x,=8,(xp), t=0

Xo = ¢ (6)

This initial value problem determines a trajectory {x,:r
=(0}CC. Any given DDE solution is thus identified with a
particular trajectory in C. For example, a periodic solution of
the DDE corresponds to a periodic orbit, i.e., a trajectory that
lies on an invariant closed curve in C. This identification of
DDE solutions with phase-space objects allows one to study
the DDE dynamics using the tools and concepts of dynami-
cal systems theory.

II1. BASINS OF ATTRACTION

For illustrative purposes we consider the “logistic” delay
differential equation

x' () ==x() + M\x(r = D[1 = x(r=1)], (7)

where N\ is a real parameter. For N\ near 6.16 we find that
there is just one asymptotically stable periodic solution,
whose graph is shown in Fig. 2. In numerical experiments,
every solution of Eq. (7) exhibits one of two possible
asymptotic behaviors: it either is eventually asymptotic to
the periodic solution, or else eventually diverges to —o.
These two asymptotic behaviors correspond to two attractors
in the phase space C for the dynamical system S—one an
attracting periodic orbit I'C C, the other an attractor “at in-
finity.” The set of initial functions ¢ e C such that S,(¢)
— T constitutes the periodic solution’s basin of attraction
BI).

Suppose x(f) is an asymptotically stable periodic solution
for the DDE (2). Let I'C C be the corresponding periodic
orbit for the dynamical system S,. The basin of attraction for

FIG. 2. The asymptotically stable periodic solution for the lo-
gistic DDE (7) with A=6.16. The period is approximately 3.38.
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I' is the set of initial functions ¢ e C such that the orbit
{8,(#):t=0} converges to I', i.e.,

BI) ={¢ € C:S(¢) — I as t — =} (8)

Since the basin of attraction is a subset of the infinite-
dimensional space C, it is difficult to visualize. By graphing
its intersection with some two-dimensional subset of C we
can gain some insight into the geometry of this set (a similar
technique is used in [19]).

Figure 3 shows a sequence of images, at increasing levels
of magnification, of the basins of attraction for the logistic
DDE (7). For each point (A,B) on a 2048 X 2048 uniform
grid, we compute a numerical solution generated by the ini-
tial function

¢(t)=A +sin(Bt), te]0,1]. 9)

If this solution is eventually asymptotic to the periodic solu-
tion shown in Fig. 2, then the function ¢ lies in the basin of
attraction B(I"), and we plot a pixel at the corresponding
point (A,B). Otherwise, the solution diverges to —©, and ¢
does not lie in B(I"). In this way we obtain an image in which
the set of black pixels approximates the basin of attraction
for the periodic solution I'. More precisely, the image repre-
sents part of the intersection of B(I') with the two-
dimensional subset® of C consisting of functions ¢ of the
form (9) parametrized by (A,B) € R%.

The basins of attraction shown in Fig. 3 have a self-
similar fractal structure; their boundaries appear to be the
product of a curve and a Cantor set. This structure is typical
of basins of attraction for dynamical systems that exhibit
transient chaos and possess an invariant unstable set on
which the dynamics are chaotic [4,7,27]. Phase points on the
basin boundaries lie on unstable invariant sets in C, includ-
ing unstable periodic orbits, chaotic saddles, and their stable
manifolds. The fractal structure of the boundaries therefore
reflects the fractal structure of the supposed chaotic saddle.
We conjecture that the dynamical system S, does possess
such a saddle; in the following sections we seek to construct
and visualize the saddle and analyze the dynamics on it.

From the intricate structure of the basins shown in Fig. 3
it is apparent that the DDE (7) must exhibit a form of sensi-
tivity to initial conditions (final state dependence [27]) at
least for initial functions near the basin boundary. Initial
phase points near the boundary are expected to shadow the
saddle’s stable manifold, and to exhibit the associated cha-
otic dynamics for some time before converging to one or the
other of the two attractors.

Indeed, solutions of Eq. (7) with long chaotic transients
are readily found. Figure 4 shows numerical solutions corre-
sponding to two near-identical initial functions, ¢; and ¢,,
differing by one part per million. Both exhibit a transient
chaotic period during which the solution behaves erratically,
followed eventually by convergence to the attracting periodic
solution. The solutions diverge rapidly for #>30 and remain

3The form of the initial functions ¢ given by Eq. (9) is somewhat
arbitrary. Any two-parameter family of functions in C would do,
provided this family intersects B(I").
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FIG. 3. Basins of attraction for the logistic DDE (7). From top
to bottom, each image shows an enlargement of the boxed region in
the previous image. For initial functions of the form ¢(1)=A
+sin(Bt), t €[0,1], a pixel is plotted at the point (A,B) if the cor-
responding solution is asymptotic to the periodic solution shown in
Fig. 2. White pixels correspond to initial functions that generate
solutions diverging to —ce.
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uncorrelated during the chaotic phase of their evolution.
Note that this sensitivity to initial conditions occurs only
during the transient phase, as both solutions eventually ex-
hibit the same asymptotic behavior of convergence to the
attracting periodic orbit.

IV. APPROXIMATING THE SADDLE
A. Discretizing the delay equation

Analytical tools for studying DDE’s are few, and in prac-
tice one must usually resort to numerical simulations. Thus
while it is useful to view a DDE as a dynamical system S, on
the infinite-dimensional phase space C, by discretizing the
delay equation one effectively introduces a finite-
dimensional dynamical system that approximates S,. It is to
this approximate system that we apply the stagger-step
method in order to approximate chaotic saddles for DDE’s.

Any fixed time-step integration method furnishes approxi-
mate solution values x,=x(nh) at times t=nh (n
=0,1,2,...), on a uniform grid, where # is the time step. We
choose h=1/M so that the delay interval [-1,0] is dis-
cretized into an integer number M of equal subintervals. For
ease of notation fix N=M+1. Then at time step n the vector

= (X,_pps e o XppoX,) € RY (10)

provides a discretized representation of the phase point func-
tion x,(s) € C. In the literature on numerical solution of
DDE’s, u” is the “history queue” at time step n.

The basic integration time step that takes u” to u"*!' im-
plicitly defines a map G:R¥—RY, such that u"*'=G(u").
(By contrast, recall that for a scalar ordinary differential
equation one time step is affected by an analogous transfor-
mation G:R— R.) This map approximates the action of the
time-A evolution operator S, [cf. Eq. (5)]. Thus we regard G
as a discrete-time dynamical system on R" that approximates
the corresponding discrete-time system S, on C.

A single integration time step makes only an incremental
change to u” on the order of the time step A, so that it is
convenient to define F=G" to be the dynamical system on
R¥ that carries out N integration time steps. Thus F approxi-
mates the action of the time-1 map S, taking the function
x/(5) 10 x5 (s).

In our implementation we use a fifth-order Runge-Kutta
time step to integrate from x,, to x,,,;, with N=250 and there-
fore a time step £=0.004. Piecewise cubic polynomial inter-
polation is used for evaluation of x(z—1) at times that do not
coincide with the uniform grid.

B. Applying the stagger-step method

We use the stagger-step method [5] to find arbitrarily long
chaotic solutions x(¢) and thereby construct the supposed
chaotic saddle, for the numerical dynamical system F on RV
that approximates the time-1 solution map for logistic DDE
(7). The details of the implementation are as follows.
Throughout, we take the norm on R" to be the maxnorm
[u|=max;|u;, both for the sake of computational efficiency
and because it gives a natural approximation of the sup-norm
on the function sapce C.

046215-4



APPROXIMATING CHAOTIC SADDLES FOR DELAY...

—
> -
S— }
g o

PHYSICAL REVIEW E 75, 046215 (2007)

=
QOHWWMMMAWWWWWWAWWNM
0

T T
40 80

+ 120 160 200

FIG. 4. Numerical solutions of the logistic DDE (7), illustrating chaotic transients and sensitive dependence on initial conditions.
Solutions x; and x, correspond, respectively, to near-identical initial functions ¢,(f)=¢ and ¢,=¢;+107® on [0, 1].

The stagger-step method requires that one define a suit-
able restraining region R C RN that contains no attractor for
F. To this end we take R to be the ball {u e RV:|ju| <30},
from which are deleted all points within a distance e=1072
of the attracting pelriodic4 orbit I" that corresponds to the
asymptotically stable periodic solution shown in Fig. 2. Thus
R excludes both the attractor I" and the attractor at infinity.

For each u € R define the transient lifetime

T(u) = min{n = 0:F"(u) ¢ R}. (11)

We set T(u)=c0 if F"(u) e R for all n=0; thus the set of
phase points u such that 7T(u)=c constitute an invariant set
that contains the chaotic saddle. For example, the second
solution in Fig. 4 has a transient lifetime of about 110. The
stagger-step method is motivated by the intuitive idea (justi-
fied in [3]) that where T(u) is large, u should be close to the
saddle. For R as defined in the preceding paragraph, we cal-
culate 7(u) as the number of iterations of F required to take
u"=F"(u) either outside a ball of radius 30 or to within & of
the attracting periodic solution.

For a given 0< <1 and T.>1 (we take 6=10"1" and
T:=90) the goal of the stagger-step method is to find a &
pseudotrajectory for F; that is, a trajectory {u":n=0} such
that

[F(u") —u™!| < &,

with T(u") = T for all n. This is accomplished by iterating as
follows:

e F@Y) if T(u") > T (12)
" | F(u"+ ") otherwise,

where " € RY is a randomly chosen stagger, with |[r" <,
such that T(u"+r") > T.. The direction of r, is chosen ran-
domly with uniform distribution on an N sphere. Following
the suggestion of [5], the search for a successful stagger is
made more efficient by randomly choosing the magnitude
[r,|| from an exponential distribution, such that log;|r,|| is
distributed uniformly on the interval (—15,-10). Staggers r,
are sampled from this distribution until one is found satisfy-
ing T(0"+1") > T

*The attracting set for the discrete-time system F=S; will be
quasiperiodic if the corresponding DDE solution has irrational
period.

Using this algorithm we are able to find stagger-step tra-
jectories {u"” € R¥:n>0} that lie entirely within the restrain-
ing region R for arbitrarily long times. We find that every
such trajectory appears to be aperiodic, and we suppose
therefore that u” is eventually very near the chaotic saddle
after some transient number of iterations during which u”
approaches the saddle along its stable manifold. Further-
more, different runs of the stagger-step algorithm, with dif-
ferent starting conditions and different sequences of random
staggers, all generate saddle trajectories that appear to have
the same geometry and statistics as reported in the following
section, suggesting that there is a unique chaotic saddle on
which the dynamics are ergodic.

By the relationship (10), corresponding to any stagger-
step trajectory is a time series {x,} which agrees, within pre-
cision &, with a numerical solution of the DDE. By construc-
tion such a solution exhibits an arbitrarily long chaotic
transient. Indeed, time series constructed in this way are
qualitatively very similar to those shown in Fig. 4, except
that convergence to the periodic solution or to the attractor at
infinity is deferred indefinitely.

V. VISUALIZING THE SADDLE

Phase-space objects for delay equations, being subsets of
the infinite-dimensional phase space C, pose significant chal-
lenges for visualization. Despite discretization, which ap-
proximates the DDE by a finite-dimensional dynamical sys-
tem on RY, this difficulty remains because of the large
dimension N (250 in our implementation).

One technique that has been used for visualizing phase-
space objects for DDE’s is to plot in two dimensions the
curve described by the point (x(z),x(z—1)) for a given solu-
tion x(). This construction can be interpreted as a projection,
from C onto R2 of the corresponding phase-space orbit
{x,} C C, according to the mapping

x, € C— (x,0),x,(- 1)) € R% (13)

Figure 5 shows such a projection of a stagger-step trajectory
constructed, as described in the preceding section, for the
logistic DDE (7). This trajectory appears to be aperiodic,
consistent with our supposition that the stagger-step trajec-
tory approximates a true trajectory on a chaotic invariant set.

Sensitive dependence on initial conditions, e.g., as illus-
trated in Fig. 4, provides further evidence for chaotic dynam-
ics of saddle trajectories. The Lyapunov spectrum on a
saddle trajectory can be used to quantify the degree of sen-
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FIG. 5. Projection of a trajectory on the chaotic saddle onto R>.
We plot the trajectory of the point (x(¢),x(t—1)) where x(1) is a
chaotic solution constructed by the stagger-step algorithm.

sitive dependence. Using standard techniques [17,28,29] ap-
plied to orbits of the time-1 map F near the saddle, we esti-
mate the five greatest base-2 Lyapunov exponents to be 0.53,
0.00, —1.06, —1.56, and —-2.01 (independent runs of the
stagger-step algorithm, differing in their initial conditions
and the sequence of random staggers, reproduce these expo-
nents to the number of decimal places given). That is, two
near-identical phase points originating near the saddle will
typically diverge exponentially as 2°3%" during their transient
period. We see that the saddle has just one unstable direction
along which trajectories diverge exponentially. (The zero ex-
ponent corresponds to the direction tangent to the flow S,.)
Note, however, that the positive Lyapunov exponent is based
on a trajectory on the unstable saddle set, and signifies ex-
ponential divergence only for phase-space trajectories near
the saddle. After a transient period, initially divergent trajec-
tories may in fact converge on the same attracting period
orbit, as in Fig. 4.

The correlation dimension [30] is frequently used to quan-
tify the geometry of complex phase-space objects. Using
standard time-delay embedding techniques [31] applied to a
long chaotic time series {x,} constructed from a saddle tra-
jectory, we estimate the correlation dimension of the chaotic
saddle to be 2.2+0.1. Thus the saddle appears to be a fractal
invariant set, of dimension intermediate between 2 and 3, on
which the dynamics are chaotic.

As the saddle’s dimension is greater than 2 it is not sur-
prising that its projection shown in Fig. 5 fails to be one to
one. However, we can hope to obtain a better representation
by projecting the saddle into R3 and using Poincaré section
methods to effect a further reduction in dimension. Figure 6
shows a saddle trajectory plotted in R* under the projection

x, € Cr (x,0),x,(=0.5),x,(- 1)) € R?
= (x(1),x(t - 0.5),x(t - 1)). (14)

Also shown are a series of cross sections [slices perpendicu-
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FIG. 6. Projection of the chaotic saddle onto R3. (a) shows a
single trajectory on the saddle: we plot the trajectory of the point
(x(t=1),x(z=0.5),x(r)) where x(z) is a chaotic solution constructed
by the stagger-step algorithm. (b) shows a series of cross sections
through this trajectory.

lar to the x(¢) axis] through the resulting three-dimensional
set, which show more clearly the geometric structure of the
saddle. At each cross section we plot the points of intersec-
tion of the saddle trajectory with a plane x(f)=x". This pro-
cedure constructs a Poincaré section through the saddle set,
with “surface of section”

3 ={x, € C:x,(0)=x"}, (15)

which is then projected onto R? under the map prescribed by
Eq. (14).

The Poincaré section with surface of section x'=1 is
shown in detail, at two levels of magnification, in Fig. 7. In
these images it appears that the projection in Eq. (14) is one
to one almost everywhere on the saddle. That is, with the
exclusion of points where the projection fails to be one to
one, the projection results in a faithful reconstruction or em-
bedding [31] of the saddle in R>. Figure 7 is qualitatively
very similar to chaotic saddles for the systems investigated in
[2-4,10], and suggests that the saddle has the fractal struc-
ture of a product of Cantor sets, as would be the case with
horseshoe-type dynamics [4,7].

VI. CONCLUSIONS

Here we have investigated transient chaos in delay differ-
ential equations, and we have given the first numerical con-
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FIG. 7. Poincaré section through the chaotic saddle, with “sur-
face of section” x(z)=1. For a chaotic solution x(¢) constructed by
the stagger-step algorithm, a pixel is plotted at the point
(x(z—1),x(r—0.5)) whenever x(¢)=1.

struction of a chaotic invariant set for the corresponding
infinite-dimensional dynamical system. Using the logistic
DDE (7) as an example, we have shown the existence of
fractal basins of attraction and solutions exhibiting long cha-
otic transients. These phenomena suggest the existence of a
chaotic invariant set in the infinite-dimensional phase space
C[-1,0].
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Using the stagger-step method we are able to construct
arbitrarily long aperiodic trajectories that appear to lie on an
unstable invariant set of fractal dimension (i.e., a chaotic
saddle or strange repeller). Although the saddle itself arises
in an infinite-dimensional phase space, it appears to be a set
of relatively low dimension, having, e.g., a correlation di-
mension of about 2.2. By a combination of projection and
Poincaré section techniques we are able to visualize a two-
dimensional cross section through this set, and thereby con-
firm that the saddle has a Cantor-like fractal structure that is
consistent with the presence of horseshoe-type dynamics.

There are a number of competing approaches to the ap-
proximation of chaotic saddles. The stagger-step method ap-
peared a priori to be the best choice here, because of the
high-dimensionality of our problem and because other meth-
ods are applicable only if the saddle has just one unstable
dimension. However, for the logistic DDE’s we have used
for illustration, the saddle does indeed turn out to have just
one unstable dimension. Therefore other techniques for ap-
proximating the saddle should be effective, and as these are
expected to be more efficient this is a promising direction for
further investigation.

The work presented here is also interesting in that it gives
the application of numerical methods for the construction of
a chaotic saddle to an infinite-dimensional dynamical system.
Previous authors have cited the “curse of dimensionality” as
a challenge inherent in approximating saddle systems in
more than a few dimensions. To our knowledge the investi-
gation in [10] of a nine-dimensional system of ordinary dif-
ferential equations has, until now, been the most ambitious in
this regard. Our successful construction of a chaotic saddle in
infinite dimensions represents a major step forward. In par-
ticular, the ideas presented here should be generalizable in a
straightforward way not only to more general DDE’s, but
also to evolutionary partial differential equations modeling
physical systems of interest, for example, in turbulence of
fluids. Extending our numerical approach to evolutionary
PDE’s is an obvious and potentially rich area for further
investigation.
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