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We have measured the multiscale wrinkling that occurs along the edge of torn plastic sheets. The plastic
deformations produced by tearing define a new metric on the sheet, which then relaxes elastically. The resultant
patterns of wrinkles correspond to a superposition of waves of different wavelengths. Measurements of the
variation of the pattern as a function of the distance from the edge reveal a set of transitions, each of which
adds a new mode to the cascade. The wavelengths � in the cascade depend on both a geometrical length scale
Lgeo given by the metric near the sheet’s edge, and the sheet thickness t: �� t0.3Lgeo

0.7 . This scaling implies
vanishingly short wavelengths in the limit t→0. A possible geometrical origin of this behavior is discussed.
Finally, we show that our measurement and analysis techniques are applicable to the study of some wavy
patterns of leaves. These measurements reveal that the intrinsic geometry of a wavy leaf resembles that of the
torn plastic sheets. This supports the possibility that some leaves form waves through a spontaneous wrinkling,
rather than through an explicit three-dimensional construction.
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I. INTRODUCTION

Thin elastic sheets are common in nature. Thin sheets can
be easily bent but they are relatively rigid against in-plane
stretching and compression. This difference in rigidity is as-
sociated with the different scaling of the stretching and bend-
ing terms in the �Föppl-von Kármán� elastic energy func-
tional of a sheet �1�. The stretching term is linear with the
sheet thickness t, while the bending is cubic. Thus the
smaller t is, the more expensive stretching deformations are
compared with bending ones. Under compression a sheet
will reduce its elastic energy by buckling into shapes that
involve only small stretching deformations. Thus in many
cases equilibrium shapes of thin sheets are based on zero
stretching configurations.

The existence of bending energy �due to the finite sheet
thickness� leads to the selection of the zero stretching con-
figuration of minimum bending as a basis for the physical
solution. The bending term acts as a perturbation on this
configuration, smoothing it to form the energy minimum of
the sheet �1�. In such a perturbative solution, the length scale
that dominates the solution does not depend on the thickness
of the sheet. In this paper, we will refer to this selection of
equilibrium as the “small perturbation scenario.” A confined
slender rod is an example for such a mechanism. It buckles,
and with decreasing thickness its shape converges to a buck-
led arc that preserves its rest length and fulfills the boundary
conditions. The “wavelength” of the solution is determined
by the boundary conditions and does not depend on the rod’s
thickness.

However, there are cases when boundary conditions ex-
clude the existence of any smooth stretch-free configuration.
In these cases a perturbative treatment is not applicable

�since any stretch-free configuration would have an infinite
bending energy� and a wavy equilibrium configuration is set
by minimization of the full energy functional; we call this the
“wrinkling scenario.” The equilibrium configuration is char-
acterized by the formation of the small scale structure with
an explicit thickness dependence of the scaling. Examples
are the wrinkling �2–4� and blistering �5–8� of constrained
sheets.

Recently we observed that multiscale wavy structure can
appear even on sheets that are free of any external constraint.
We found that the edge of a torn plastic sheet can form a
cascade of similar buckles over many length scales �9�. We
proposed that the observed fractal structures correspond to
the minimum of the elastic energy of sheets whose edges
were stretched by the irreversible plastic deformations that
accompanied the tearing. Further, we suggested that the same
mechanism could describe other thin membranes such as
leaves. In this view, symmetry breaking in growing thin
membranes can result from the coupling between geometri-
cal and mechanical properties of the tissue. Nechaev and
Voituriez �10� have proposed a partially overlapping view.
They have suggested that waviness of leaves appears when
the leaves have a negative Gaussian curvature; however,
their calculation was purely geometrical and did not involve
an energy-based selection mechanism. Recent experiments
�11,12� demonstrated that two-dimensional geometry is, in-
deed, important in leaf development and that leaf curvature
can be tuned genetically �11�. However, no study has yet
addressed the coupling between geometry and mechanics in
leaves, and no quantitative study of the intrinsic geometry of
leaves has been reported.

Several theoretical analyses motivated by our observa-
tions of multiscale wavy structures �9� have examined equi-
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libria of narrow elastic strips as a model problem �13,14�.
Numerical studies of wide sheets by Marder et al. �15� and
by Audoly and Boudaoud �16� obtained multiscale waves as
energy minima of sheets with elongated edges. In �16� the
authors studied the scaling of the shortest wavelengths in the
cascades and proposed a resonancelike mechanism for the
scaling of longer waves. They suggested that the observed
wavy shapes are very close to existing smooth stretch-free
configurations, perturbed by the bending energy of the sheet
�the “small perturbation scenario”�. This suggestion, how-
ever, has not been tested with experimental data.

In this paper we present and analyze measurements on
torn plastic sheets and leaves. The experimental system is
described in Sec. II, and the results are presented in Sec. III.
We show that the process of tearing a thin plastic sheet leads
to a hyperbolic equilibrium metric �i.e., a metric producing a
negative Gaussian curvature� on the deformed part of the
sheet, with an increasingly negative Gaussian curvature close
to the edge. We present measurements of wavelengths and
amplitudes of the waves and show that although the metrics
are smooth and monotonic, a cascade is generated through a
set of sharp transitions in which new modes emerge. Further,
in Sec. III B we show that the scaling of wavelengths de-
pends explicitly on the sheet thickness, as well as on the
prescribed metric. This scaling leads to several predictions,
one of which is that at vanishing thickness, sheets should
form wrinkles with infinitesimal wavelengths within the en-
tire deformed region, including at large distance from the
edge. We argue that the observed scaling suggests, in con-
trast with �16�, that the patterns are formed via a wrinkling
scenario, and we describe a possible geometrical origin of
the phenomenon. In Sec. III C we show how our ideas and
techniques can be applied to a quantitative study of wavy
leaves. The intrinsic metric of a leaf resembles that of the
wavy plastic sheets, i.e., it is hyperbolic and depends mainly
on the distance from the leaf’s edge. The conclusions are
presented in Sec. IV.

II. EXPERIMENTAL SYSTEM

Experiments are conducted on rectangular Teflon and
polyethylene sheets �thickness 12–500 �m, 10–20 cm in
x-y� that are pulled at a uniform rate on opposite sides, as
illustrated in Fig. 1. The tearing generates a traveling spade-
shaped crack. A resultant free sheet is then placed under a
“Conoscan 3000” noncontact profilometer, and the sheet’s

profile z�x ,y� is obtained with a resolution of 25 �m in the x
and y directions and 5 �m in the z direction. Next, y is
redefined to be the distance of a point from the edge, mea-
sured along the surface.

III. RESULTS

A. Torn plastic sheets

Since the in-plane plastic deformation resulted from a
steady propagation of the fracture tip, the deformation is in-
variant as a function of position x along the edge. This was
confirmed by analyzing movies of the propagating tips and
by the cutting experiment described in Sec. III B. Integration
of the profile z�x ,y� at a fixed y provides the length of the
sheet in the x direction. We call f�y� the ratio of length at a
given y to the length of the sheet prior to tearing. We show
three examples of f�y� in Fig. 2. The length element on the
deformed surface is dl2= �fdx�2+dy2, i.e., f�y� is the xx com-
ponent of the new equilibrium metric tensor produced by
tearing the sheet. Although the sheets are deformed plasti-
cally during the tearing �when the stresses near the tip are
dramatically enhanced�, there is no reason to expect any ad-
ditional plastic deformation after the tearing. Thus the relax-
ation of the deformed sheet is elastic.

The metric functions f�y� approach unity far from the
edge �where no plastic deformation has occurred� and in-
crease convexly close to the edge. For the conditions of our
experiments the amount of stretch at the edge f�0� is less
than 2 �see the examples in Fig. 2�. Different experimental
conditions �different materials, crack velocities, sheet dimen-
sions� lead to different metric functions, reflecting the differ-
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FIG. 1. A spade-shaped crack traveling in a polyethylene sheet
that is pulled horizontally. The sheet edges created by the tearing
have stable waves. y is the distance of a point from the edge, mea-
sured along the surface. The lines on the scale in the upper left
corner are 1 mm apart.
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FIG. 2. Metric function describing the elongation in the x direc-
tion as a function of y, measured for 0.20-mm-thick polyethylene
sheets for different conditions: top curve—crack velocity v
=0.5 cm/s, steady state; middle—v=5 cm/s, steady state;
bottom—v=5 cm/s, initial crack propagation. The resultant struc-
tures along the edge �inset� consists of three, two, and one genera-
tions, respectively.
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ent plastic deformation fields generated during the tearing.
Typically we observe stable configurations consisting of 1, 2,
and 3 generations of waves, as illustrated in the inset of Fig.
2. Patterns with up to six generations of similar waves were
observed in 12-�m-thick sheets �9�, but quantitative mea-
surements were not possible for these sheets because of the
low rigidity of such thin sheets.

In most cases the ratio of wavelengths of successive
modes was found to be close to 3 and was the same for
successive generations; that is, the patterns were self-similar.
However, ratios up to 5 were observed, and the ratio between
successive modes for a given sheet in some cases changed
for different generations. These observations are in accord
with �16�, where ratios of 3 and 5 were shown to be ener-
getically favorable in self-similar cascades.

Since equilibrium configurations of thin sheets involve
very small stretching deformations, we start by considering
the properties of isometrics, i.e., sheets with no stretching.
What can be said about the shapes of unstretched surfaces
that have exactly the metric prescribed by the tearing? The
celebrated Theorema Egregium by Gauss shows that the lo-
cal Gaussian curvature on a surface K�x ,y� �the product of
the principal curvatures� is set by the local metric coeffi-
cients and becomes in our case �see, e.g., �17��

K�y� = −
1

f

d2f

dy2 . �1�

Since f is convex, K�0 over the entire deformed zone. Thus
configurations with no stretching have everywhere saddlelike
points and a free sheet must “spontaneously” buckle out of
the plane to adopt this curvature, even without any con-
straints on the boundaries. The Gaussian curvature is invari-
ant with respect to x, but Eq. �1� does not tell us why equi-
librium configurations would involve a repetitive breakdown
of the translation symmetry in the x direction.

The height of the surface z�x ,y� as a function of x at
different distances y from the edge of a plastic sheet is shown
in Fig. 3�a�. We Fourier transform the spatial profiles to ob-
tain wave number spectra such as those in Fig. 3�b�. Graphs
of the mode amplitudes versus y �Fig. 3�c�� reveal transitions
at which modes of shorter and shorter wavelength are added
towards the edge; these transitions are not discernible in
graphs of f�y�. Three modes are distinguishable in Figs. 3�b�
and 3�c� �18�. In the next section we examine the scaling of
the wavelengths.

B. Wavelength scaling

Structures that are based on a stretch-free wavy configu-
ration could depend only on properties of the metric. Thus,
wavelengths would be set by the “geometrical” length scale
given by f�y�. In this case, there should not be an explicit
dependence of long wavelengths on the thickness, which
could enter only as a cutoff for the shortest possible wave-
length. However, if the cascades are formed through a wrin-
kling scenario, the sheet thickness t will explicitly affect all
wavelengths, including the long ones.

To test whether wavelengths at locations away from the
edge were set by local properties of the sheet, narrow strips

were cut off a torn sheet. The result was that the amplitude
and wavelength of the remaining sheet scarcely changed,
even when the cutting was done repeatedly �Fig. 4�. This
demonstrates dramatically that wavelengths are selected by
the local properties of a sheet.

The local length scale L�y� for wavelength selection
should be a combination of a geometrical local length scale
Lgeo�y� and the local thickness t�y�. To explore the depen-
dence on t, we conjecture a scaling relation with an adjust-
able scaling exponent �,

��y� � L��y� = t��y�Lgeo
1−��y� . �2�

An exponent �=0 would imply that the thickness is not a
relevant length scale and wavelengths are determined solely
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FIG. 3. The emergence of different modes in the cascade as a
function of the distance y from the edge of a 0.25-mm-thick poly-
ethylene sheet. �a� The amplitude z= f�x ,y� along lines of increasing
distance y from the edge �measured along the surface�: 0, 0.16,
0.34, 0.52, 0.69, 0.96, 1.41, 2.12, 2.83, and 4.43 mm. �b� Power
spectra for measurements in �a� at distances 0, 0.69, and 2.83 mm,
obtained from the full sample of 30 mm length �the spectra are
shifted vertically with respect to one another for visualization; k
= 2�

� �. The spectra reveal a long wavelength mode �only a single
wavelength of this mode is shown in �a�� at large y and smaller
wavelength modes closer to the edge. The shortest mode is split into
two side bands because it is a modulation of a curved base line
generated by the larger modes �see text�. �c� Normalized amplitudes
of the modes, which appear in �b�, as a function of the distance y
from the edge.
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by f�y�, while �=1 would imply that wavelengths do not
depend on the metric, but only on the thickness. We look for
a value of � that would collapse the data onto a single curve.
Several comments are appropriate regarding the proposed
scaling relation:

�1� Our measurements show that the sheet thickness de-
creases towards the edge, with a maximum measured de-
crease of 60% �while the full range of local sheet thickness
over the entire data set spans more than one order of magni-
tude�. Since both the metric and the sheet thickness vary
continuously with y, L�y� must also be a continuous function
of y. On the other hand, the observed wavelengths remain
fixed, and new wavelengths emerge at smaller y. Thus, any
assignment of a local length scale to a mode is somewhat
arbitrary. Despite this difficulty, our analysis aims to deter-
mine how the scaling of the entire pattern depends on the
thickness.

�2� The natural geometrical length scale Lgeo at a distance
y from the edge is the inverse geodesic curvature that is
prescribed by the metric along lines y=constant; Lgeo is an
intrinsic property in the sense that it is determined solely by
the metric and conserved under bending of a sheet. We de-
termine Lgeo by cutting narrow strips parallel to a sheet’s
buckled edge and flattening them between glass plates, as
illustrated in Fig. 5. A strip curls into an arc or ring whose
radius is Lgeo. Expressing the geodesic curvature with the

coefficients of the prescribed metric yields Lgeo�y�=
f�y�

f��y� . In

our sheets Lgeo is typically of order 1 mm on the edge, and
increases to values of order 1 m away from the edge, as
shown in Fig. 6.

�3� The distance from the edge y corresponding to a given
mode in the cascade is taken to be midway between its onset
and that of the onset of the next one. Changing the definition
of y to be the onset of the next mode hardly affected the
resultant scaling.

The scaling given by Eq. �2� implies
��y�

t�y� = � f�y�

f��y�t�y� �1−�
. To

test whether our data are described by such scaling, we plot

��y�

t�y� versus
f�y�

f��y�t�y� for data from all modes and sheet thick-

nesses. Figure 7 shows that the data are well described by

��y� � t�y�0.3� f�y�
f��y�

�0.7

. �3�

A least squares fit of the data to a line yields �=0.31±0.03.
The exponent � may well depend on f; its value is not uni-
versal.

The result in Fig. 7 suggests that the thickness is a rel-
evant length scale in determining wavelengths at all scales.
Thus the observations support the wrinkling scenario rather

than the small perturbation scenario. The decrease of
f�y�

f��y� as

y→0 �Fig. 6� leads to shorter and shorter wavelength modes
as the edge is approached. In contrast, an exponential f�y�
would result in a single wavelength, as has been demon-
strated by numerical simulations by Marder �15�, who also
found from simulations that a f�y� given by a sum of several
exponential terms or given by a power law yields a cascade
of waves.

The explicit thickness dependence of � has an important
consequence: if a sheet with a given metric has a thickness

FIG. 4. Comparison of the amplitude as a function of x at dif-
ferent y for the full sheet �solid lines� with the amplitude measured
after cutting off successive strips of 3 mm along the edge �dotted
lines�. The comparison shows that the wavelengths and amplitudes
are not affected by the removal of the strips. The values of y were
measured here in the laboratory frame with respect to the cut edge,
rather than along the surface as in the rest of the measurements we
present.
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FIG. 5. �Color online� The intrinsic geometry of a buckled sheet
is revealed by flattening thin strips cut parallel to the buckled edge;
a flattened strip curls into an arc or ring whose radius of curvature
is Lgeo. �b� Four narrow strips of equal width cut successively from
the edge of the sheet. �c� Flattened strips obtained at different dis-
tances from the edge, illustrating the increase in radii of curvature
with increasing distance from the edge. The local curvature along
each strip is the local geodesic curvature along the cut. The lines on
the right were taped onto the sheet prior to cutting, to aid in visu-
alization and orientation.
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that approaches zero, the sheet will wrinkle everywhere at
wavelengths that are vanishingly small. Even a relatively flat
sheet where Lgeo is large will develop wrinkles at short wave-
lengths, provided that its thickness is small enough. As the
ratio between Lgeo and t increases, the wavy pattern will
consist of short waves that are flat in the y direction, i.e., the
principal curvature in the x direction at the tops of ridges will
be much larger than in the y direction along the tops of
ridges. This difference between principal curvatures in-
creases as the thickness decreases, in contrast with the “per-
turbation scenario,” where the principal curvatures would be

as close to each other as possible in order to minimize the
bending energy.

The scaling in Eq. �3� resembles the wavelength scaling in
flat sheets that are wrinkled under confinement, which ex-
cludes the existence of a smooth, stretch-free, configuration
�2,3�. However, there is an important difference between our
system and the ones studied in �2,3�: our sheets are free, not
subjected to any constraint. How does a free sheet come to
be wrinkled, a behavior that results from confinement? We
propose that the wrinkling arises because there is no smooth
embedding of sheets with the prescribed metrics in Euclid-
ean space: any mathematical sheet that obeys exactly the
distribution of distances prescribed by the tearing, and is flat
at a large distance from the edge, must include regions with
infinite curvature. Thus, any physical sheet with this metric
will have infinite bending energy, no matter how thin it is. A
perturbative treatment, based on an isometry, is thus not ap-
plicable, and the entire energy functional must be minimized
simultaneously. The different thickness dependence of the
stretching and bending terms leads to an explicit thickness
dependence of the characteristic length scales.

Indeed, the embedding of hyperbolic metrics is far from
trivial. Hilbert proved in 1901 that the embedding of the
entire hyperbolic plane �a surface with a constant Gaussian
curvature K=−1� in three-dimensional Euclidean space can-
not be smooth �19� �a refined proof is given in �20��. Explicit
embeddings that were constructed involved singularities �10�
or an infinitely small structure �21�. Our finite-sized sheets
differ from the hyperbolic plane in that they have larger and
larger negative curvature towards their edges �Fig. 5� and
become completely flat far from their edges. We are not fa-
miliar with mathematical work that addresses embedding of
such surfaces. Our data suggest that such metrics do not have
any embedding that involves only long wavelengths. In this
case, our free sheets are “confined” by the Euclidean space
itself and respond by forming wrinkled structures.

C. Application to leaves

In this section the goal is to determine whether the shapes
of wavy leaves can result from an enhanced growth near
their edges, i.e., do some wavy leaves have essentially uni-
form growth parallel to their edge? We analyze leaves in the
same way as the buckled plastic sheets in Fig. 5. Narrow
strips of constant width are cut parallel to the edge of a leaf
and then flattened to determine the geodesic curvature along
lines y=constant �Fig. 8�. Measurements on a wavy bay leaf
reveal a geometry similar to that of the torn plastic sheets:
the radius of the strips decreases as the edge is approached
�Fig. 8�b��, indicating negative curvature. In contrast, for a
flat leaf �Fig. 8�a�� the radius increases towards the edge. Just
as for the plastic sheets, we find for a wavy leaf that the
geodesic curvature at a given y is nearly constant—features
on the leaf such as the system of veins or the leaf’s waviness
hardly affect f�y�. We conclude that uniform growth along
the edge of a leaf could lead to waviness, and the length
scales could be set by elasticity and geometry rather than by
explicit genetic encoding.

Since we find the metric of a leaf to be nearly independent
of x and to depend strongly on y, we can apply our method
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FIG. 6. The geodesic radius of curvature Lgeo for a
0.2-mm-thick polyethylene sheet, as a function of distance from the

edge. Lgeo was computed from Lgeo=
f�y�

f��y� , where f��y� was obtained

by numerical differentiation of f�y� for 0.1 mm intervals, for three
generations of waves �see Fig. 2�. The values of Lgeo would corre-
spond to the radii of curvature of strips if they were cut from the
sheet like those in Fig. 5�c�. Far from the edge Lgeo is much larger
than the largest observed wavelength, while near the edge the length
decreases exponentially, leading to the generation of the short
wavelengths of the buckled sheet. The decrease in Lgeo is a signifi-
cant difference between our sheets and the hyperbolic plane, where
Lgeo is constant.
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FIG. 7. �Color online� The wavelength � of the waves as a
function of the geometric length scale Lgeo, where both lengths are
normalized by the local sheet thickness t. The data for wave modes
of different generations and for sheets of different thicknesses all
collapse onto a single line that has slope 0.7, which implies ��y�
� t�y�0.3� f�y�

f��y� �0.7
. ��y�, t�y�, and f��y� were evaluated at a distance y

from the edge chosen to be in the middle between the onset of a
mode and the onset of the next shorter mode. The sheet thicknesses
were open circles: 508 �m; solid circles: 203 �m; crosses:
255 �m; solid triangles: 100 �m.
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for determining f�y� in plastic sheets to a leaf �Fig. 9�. The
resultant f�y� is shown in Fig. 9�c�. Since the leaf edge is
curved, we use locally a polar rather than Cartesian coordi-
nate system. In this coordinate system a flat surface has a
linearly increasing metric function f�y� �the Gaussian curva-
ture associated with a linear f�y� is zero�. We have deter-
mined f�y� for many wavy leaves from different plants, such
as Wisteria floribunda, Laurus nobilis �Bay leaf� and Lemon-
wood �Pittosporum eugenioides�. In all leaves we have mea-
sured a linear increase in f�y� in the flat region far from the
edge and a convex f�y� that increases as the leaf edge is
approached.

Our results demonstrate that profilometer scans of wavy
leaves can yield both their two-dimensional metric and their
shape in space. Future work should examine whether the
observed wavy shapes minimize the energy of an elastic
sheet with the measured metric. Such an analysis will indi-
cate when a measured metric suffices to explain the waves in
a leaf, and when other mechanisms are required. While such
analysis is left for the future, we mention recent work that
demonstrated that when the genetic control of the distribu-
tion of in-plane tissue production was perturbed, the leaves
that grew were distorted and wrinkled �11�.

IV. CONCLUSIONS

Our measurements on torn plastic sheets show that differ-
ent hyperbolic metrics formed during the tearing lead to dif-
ferent multiscale wavy structures. Away from the edge we
find long wavelengths and then, as the edge is approached,
shorter and shorter wavelength modes emerge at well defined
distances from the edge and are superimposed upon one an-

other. We have shown that the wavelengths in the patterns
are selected locally and depend on both the sheet thickness t
and a geometrical length scale Lgeo, which we computed
from measurements of the metric function f�y�: Lgeo= f / f�.
The wavelength was found to scale as �� t0.3Lgeo

0.7 ; thus for
t→0, �→0. This scaling indicates that the embedding in
Euclidean space of a sheet with the measured metrics must
involve infinitely small structure. Finally, we have shown
that the geometry of wavy leaves is similar to that of the
wavy plastic sheets and can be analyzed in a similar manner.
We have performed the first quantitative measurements of
the metrics and wavelengths of leaves. This work opens the
way for future studies of spontaneous wrinkling in growing
sheets in nature.
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FIG. 8. �Color online� The intrinsic geometry of a leaf is deter-
mined for �a� flat and �b� wavy leaves �from the same bay tree� by
the same method used in determining the properties of the torn
plastic sheet �Fig. 5�. Four narrow strips of equal width are cut
successively from the edge of the leaf and are flattened between two
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curvature is Lgeo. In the flat leaf Lgeo increases towards the edge,
while in the wavy leaf it decreases. In both cases Lgeo is nearly
constant along the edge. This indicates that the metric of the leaf
depends mainly on the distance from the edge �from �12��.
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FIG. 9. �Color online� A wavy leaf of Wisteria �a� is scanned
with a noncontact profilometer to obtain the profile in �b�, which is
used to obtain the metric function f�y� in �c�. This function is com-
pared with f�y� for a flat sheet with the same contour �solid line�,
which is linear, thus not generating Gaussian curvature. The differ-
ence between the two functions f�y� yields the excess length in the
wavy leaf compared to the flat leaf.
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