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Mixing efficiency in an excitable medium with chaotic shear flow
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The effect of a time-periodic chaotic shear flow on an excitable chemical medium is studied numerically.

Stirring effects on pattern formation strongly depend on the shear amplitude and the ratio of the advective and
chemical time scales (Damkohler number, Da). We have observed that the wave period increases with decreas-
ing Da below some critical value, afterwards the period decreases until complete wave annihilation. In the last
case, before final extinction, a set of uncorrelated, nonstationary excitable dots survive, whose number depends
on the mixing rate. Insights on the nature of this critical behavior are obtained through the calculation of the

mixing efficiency of the flow.
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I. INTRODUCTION

Many theoretical [1] and experimental [2] studies have
investigated the effects of stirring on nonlinear chemical me-
dia, especially under batch conditions on a continuously
stirred tank reactor (CSTR), and have shown that a spatially
distributed system may behave completely different from its
homogeneous reference system. It is often assumed that in-
creasing stirring leads to spatial homogenization through a
rapid increase of the overall oscillation period of the me-
dium. However, imperfectly mixed environments are com-
mon characteristics of many real chemical and biological
processes (see Refs. [3,4] and references therein). The pres-
ence of heterogeneities can be rapidly amplified in a nonlin-
ear chemical environment, and survive, even under strong
mixing conditions.

Excitable media display a very rich spatiotemporal behav-
ior with regimes ranging from fairly well ordered structures
of propagating waves [35] to highly uncorrelated spatiotem-
poral chaos. Since long ago, propagation of waves in excit-
able media has been studied mostly in the framework of
chemistry and biology. More recently, the combined effects
of reaction, diffusion, and advection have become an area of
active research [6,7].

The aim of this paper is to study the spatiotemporal pat-
tern formation in a system driven by a nonlinear chemical
dynamics corresponding to an excitable chemical reaction
under the presence of chaotic flows. For mixing rates below
final extinction of the excitable wave fronts, mixing effi-
ciency is not equally distributed through the medium giving
rise to an ensemble of single nonstationary excited dots that
vibrate with a frequency proportional to the stirring rate. For
time-periodic flows, the mixing process is a combination of
stirring, stretching, and folding, which generates intricate
structures with wide distributions of length scales that span
several orders of magnitude, even for large mixing strength.
The length scale distributions characterizing such structures
control the rates of diffusional homogenization and the rate
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of reactions taking place at small scales of the flow. Thus,
some excited dots can survive to the homogenization for
large stirring values. To that end, in this paper we have used
a sinusoidal chaotic shear flow [8,9] to study pattern forma-
tion under two different scenarios: (i) for slow fluid mixing,
wave fronts propagate through the medium, become dis-
torted due to the shear flow, and their wave period increases
with Da; and (ii) for mixing rates above some critical value
and below final extinction, nonstationary excited dots sur-
vive whose number and oscillation rate depend on the mix-
ing efficiency.

II. MODEL

The full model is defined by
aC )
E+(V-V)C=F(C)+DV C. (1)

Here, C=[u,v] and F=[F,,F,] is the nonlinear chemical
excitable dynamics represented by the two-variable Orego-
nator model [10],
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F,=u-v, (2)

where # and v are the dimensionless concentrations of
HBrO, and the catalyst, respectively. f is a parameter related
to the kinetics of the Belousov-Zhabotinsky reaction. g and &
are scaling parameters, and ¢ is the bromide flow due to
photochemical effects. The excitability of the medium is
measured in terms of 1/e. The diffusion matrix is diagonal
with coefficients (D,0).

The velocity field is modeled by a two-dimensional time-
periodic flow capable of producing repeated stretching and
folding of fluid parcels, a common characteristic of chaotic
mixing (Fig. 1). Thus, the velocity field V=[V,,V,] consists
of a periodic shear flow [8,9] given by
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Ty and A are the period and shear amplitude of the flow,
respectively [11], n is the number of periods, and ¢ is the
time. This velocity field is assumed to be independent of the
concentration vector C. For the discussion below, it is inter-
esting to rescale the model equations [4,9] by measuring
time in units of T, =t/ Ty, length in units of L, r=r/L, r
=(x,y), and velocity as V=V/U,, Uy=L/T;. This leads to
the equations, on dropping the bars for convenience,

u R
E+(V-V)u=DaFu+Pe Veu,
Jd
& (V- V)u=eDaF,, )
ot
where
Da=Ty/e, Pe=L%DT; (5)

are the Damkohler and Péclet dimensionless numbers. Da
measures the ratio of the advective and chemical time scales
and Pe gives the ratio between the advective and diffusive
transport. Large Damkohler numbers imply that the reaction
is very fast on the time scale of advection, while for small
values of Da, the reaction is slower than advection.

The reaction-advection-diffusion problem was integrated
on a L X L square lattice using an implicit method for advec-
tion and diffusion (spatial step size A=1) with a fourth-order
Runge-Kutta with time step Ar=0.001 for the time integra-
tion of the local chemical dynamics. Periodic boundary con-
ditions are imposed for the concentration gradients. Random
initial conditions are set for the concentration field, and the
flow was switched on after a spin-up of =200 t.u. (where
t.u. denotes time units). Results below are independent of the
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FIG. 1. Sketch of the shear flow, which takes place on a square
box with periodic boundary conditions. The flow is the combination
of two orthogonal motions, each with a sinusoidal velocity profile.
Each motion acts alternatively for one-half of a flow period.

), (n+%)TfSt<(n+1)Tf. (3)

initial random condition and the spin-up period. In the ab-
sence of advection, the resulting pattern is a train of wave
fronts with wave period T,,. The model (2)—(4) is investigated
for different periods 7, and shear amplitudes A of the flow.
The influence of the excitability on the obtained results is
also studied.

II1. RESULTS

The effect of the periodic shear flow on the chemically
excitable medium described by the Oregonator kinetics is
shown in Fig. 2. As the forcing frequency of the flow v,
=1/T; increases (keeping constant the shear amplitude A),
the resulting pattern moves from a periodic wave train to an
uncorrelated, noncoherent, set of excitable nonstationary
dots. Successive folding and stretching of fluid parcels in-
crease with stirring v, leading to fronts breakup. Annihilation
of some parts of the waves takes place only if a sufficiently
large amount of the inhibitor accumulates in front of the

'1' v ., 52 4 :

. “

- 4 Ty r
’ &

b, ¥ . 07

v 'l/ — ’

o ’o" L - ’

FIG. 2. Sequence of u fields for different values of the forcing
frequency vy for the periodic shear flow. From left to right and from
top to bottom plots: log;y vy=—1.0 (Da=200), log;, ¥;=—0.5 (Da
=63), log;o v;=-0.25 (Da=35), and log,; »=0.25 (Da=11), re-
spectively. Set of parameters: A=3.4, f=3, £=0.05, ¢=0.002, ¢
=0.002, D=1, and L=50. For these parameters, the model is excit-
able and the wave period Tp=~4.2 t.u.

046209-2



MIXING EFFICIENCY IN AN EXCITABLE MEDIUM WITH...

6
8

8° 8
3 G 6
o 4 o
o o
> >
© ©
=3 =4

2 1 0 1 2 2 2

Iog10 2 Iogmvf

FIG. 3. (Color online) Mean wave period as a function of the
forcing frequency vy for different values of the shear amplitude A
(a) and excitability 1/& (b). Wave periods are defined as the mini-
mum distance between two consecutive u-peaks. Periods were cal-
culated at each grid point of the lattice and a distribution of periods
was obtained as time goes on. Then, a mean value was calculated.
(a) Circles, A=3.4; triangles, A=2.4; squares, A=1.4; and stars, A
=0.4 (1/e=20). (b) Circles, 1/e=16, and squares, 1/£=22 (A
=3.4). The rest of the parameters are the same as in Fig. 2.

excitation wave. In this sense, increasing the shear amplitude
also favors this mechanism and planar wave fronts breakup
occurs at smaller frequency values. After breakup, wave
front ends tend to curl and spiral waves develop, which once
again are affected by the periodic shear flow and new breaks
occur, and so successively. Finally, for large forcing frequen-
cies only some excited points remain. This behavior is simi-
lar to others observed in chemical excitable media under the
effect of alternating electric fields [12]. Then, the electric
field played the role of a periodic advective field but only
acting in one direction. Here, the periodic shear flow is ca-
pable of producing repeated stretching of fluid elements, a
common characteristic of any chaotic advection.

In order to characterize the behavior of the chemical me-
dia, the mean wave period T is shown in Fig. 3(a) as a
function of the forcing frequency for different shear ampli-
tudes. For all values of A, the wave period reaches a maxi-
mum value at vy=vp,;,. This value moves toward lower val-
ues with increasing shear amplitude. The nature of this
behavior will be explained below in terms of the mixing
efficiency of the flow. As a consequence of the Damkohler
number (5) multiplying the chemical dynamics, for v,
< Vnix» the wave period increases with the forcing frequency.
Period enhancement is, as well, monotonously increasing
with the shear amplitude.

The rate of period enhancement is studied in terms of the
excitability of the medium 1/& [Fig. 3(b)]. For this purpose,
the dimensionless parameter looseness [12], defined as the
ratio between the period of the wave and the refractory pe-
riod of the medium, can be used as a measure of the mini-
mum time needed by a point to be reexcited after the passage
of a previous wave. As the excitability of the medium is
increased, looseness decreases and consecutive waves propa-
gate closer to each other with smaller amplitude which fa-
vors wave fronts breakup. Then, planar wave fronts break at
smaller shear amplitudes and frequencies but the value of
Vnix Temains the same. Period enhancement with mixing is
larger for smaller excitability but, in general, wave period
decrease with increasing excitability (or increasing Da) as
the reaction becomes faster than the advective field.
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FIG. 4. Sequence of finite-time Lyapunov exponent (FTLE)
fields for different values of the forcing frequency vy. The exponent
grows from darker to lighter regions of the pattern. 62 500 Lagrang-
ian particles were used in the simulations. The parameters are the
same as in Fig. 2.

For v;> vy, the behavior is completely different, initial
wave fronts are successively stretched and folded periodi-
cally, as before, but now without time to recover themselves
to their original shape, fronts are annihilated. Only in those
places where the mixing efficiency is small, some excited
dots survive whose number depends on their width and mix-
ing rate. Increasing the diffusion, wave fronts become wider
and more difficult to be broken. Only a small fraction of
excited dots can survive as the diffusion length \s"TfD in-
creases and larger areas of the lattice characterized by a
small mixing efficiency are needed now. In this case, increas-
ing diffusion favors an earlier homogenization. These excited
dots vibrate with a mean frequency 1/T that increases lin-
early with both the shear amplitude and the forcing fre-
quency, as
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FIG. 5. (Color online) Plot of the spatial average mixing effi-
ciency normalized by the forcing amplitude, (£)/A, as a function of
the forcing frequency vy The dashed line is the linear fit of the
numerical data for v;> vy ((€) ~Av)). Data symbols are the same
as in Fig. 3.
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where T, is the wave period of the chemical medium without
advection, and m is a fitting constant that increases with the
excitability of the medium. Equation (6) indicates that dots
vibrate faster for larger values of A and consequently smaller
values of vy will be needed to annihilate the remnant dots
before the medium could be considered to be completely
mixed (i.e., no excited points remain in the medium). Note in
Fig. 3(a) that curves end earlier for larger A indicating that
no periods were measured or patterns observed afterwards.

Insight into the pattern formation and the observed wave
periods maxima can be gained by calculating fields of the
finite-time  Lyapunov  exponent (FTLE) [13] \(9)
=(1/0)In[d(r)/d(0)], where d(z) is the distance among two
tracers, initially separated by d(0), at time z. FTLE accounts
for the integrated effect of the flow because it is derived from
particle trajectories, and thus is indicative of the actual trans-
port behavior. Figure 4 shows the Lyapunov exponents cal-
culated for the same parameters as in Fig. 2. In average, the
mean FTLE increases with the mixing frequency, so the time
needed to separate two fluid parcels decreases with increas-
ing v;. In other words, the mixing efficiency £(#) defined by
the ratio d(¢)/d(0) increases with v, (Fig. 5). Regions where
the FTLE is large are those where filaments are stretched in
one direction and thinned in an orthogonal direction; i.e.,
these are the regions where advection and diffusion best mix
the contents of the fluid and any excited front crossing that
region will be slowed down or annihilated. For small forcing
frequencies, large coherent regions form which can be fol-
lowed in space and time; they are translated and deformed by
the flow but conserve identity and do not disappear upon
further mixing. In this case, wave fronts can be broken, but
still large front pieces can be observed. Then, best mixing
will be obtained when these large coherent regions mix up
completely or at least they approach to that (\'s variance
tends to zero), and the FTLE pattern approaches a fractal set.
For the parameters of the simulation, this optimal value v,
can be attained as the minimum frequency such that the mix-
ing efficiency scales as Pe ~ v, (Fig. 5), the classical scaling
derived by the simplest eddy diffusion theory [14]. Then,
Vyix bounds from below the range of forcing frequencies for
which the excited dots oscillate at a rate proportional to the
mixing efficiency (1/T~ &~ Avy).
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IV. CONCLUSIONS

We have observed two different behaviors for pattern for-
mation as mixing increases. In the first case, wave period
increases with decreasing Da as expected. The rate of period
enhancement increases with the shear amplitude. Similar re-
sults have also been observed in the literature [2,9,15] under
different types of flows and/or active media. On the other
hand, for values of v larger than some critical value vy, no
waves were observed, but a set of excited dots spread
through the lattice whose oscillation period decreases with
decreasing Da. Then, full homogenization can be attained for
larger shear amplitudes but smaller frequencies. It is also
noticeable the similarity of the structures here found with
localized structures in reaction-diffusion systems, also called
oscillons [16]. In that case, structures remain localized but
almost stationary with time with just some periodic modula-
tion of their size and are believed to be the experimental
evidence of the coupling between Hopf and Turing modes. In
our present case, the structures remain shape-constant, but
oscillate with the frequency imposed externally and they
move with the flow, thus, remain stationary in a moving
frame of reference. In such a sense, a similarity can be es-
tablished although, now, the Turing-type instability is in-
duced by convection (like the FDS structures) [17]. More
recently, similar localized spots have been observed numeri-
cally in a bistable chemical model forced by a periodic shear
flow where the Da number is great enough to sustain a dis-
turbance, but not as great as to lead to a global homogeneous
state [18].

We expect our results to be valid for any excitable me-
dium force with a time-periodic chaotic flow. The processes
observed here giving rise to successive wave fronts breakup
and period increasing are general to any reaction-diffusion-
advection model where the Da number multiplies the reac-
tion term. Besides, as chaotic advection develops, only ex-
cited dots can survive at places of the lattice where mixing
efficiency is smaller than in neighboring places. Experimen-
tally, similar results should be observed for setups where
large ranges of Da numbers and low values of the diffusion
(large Péclet numbers) could be attained.
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