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We investigate analytically and numerically the effect of inhomogeneities on the nonequilibrium dynamics
of wave patterns in the framework of a complex Ginzburg-Landau equation �CGLE� with parametric, nonreso-
nant forcing periodic in space and time. It is found that the forcing results in occurrence of traveling waves
with different dispersion properties. In the limiting case of forcing with very large wavelength, the waves have
essentially anharmonic spatial structure. We consider the influence of modulations on the development of an
intermittent chaos and show that the parametric forcing may completely suppress the appearance of chaotic
patterns. The relations between this and other pattern-forming systems are discussed. The results obtained are
applied to describe the dynamics of thermal Rossby waves influenced by surface topography.
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I. INTRODUCTION

Pattern formation occurs in a wide variety of natural non-
equilibrium systems and displays many common features of
the dynamics �1�. This universality is well captured by the
low-dimensional theoretical models and by the laboratory
experiments �1,2�. The models and the experiments focus on
studies of nonequilibrium phenomena and transitions to de-
terministic chaos in ideal, spatially extended homogeneous
systems �1,2�. Many natural systems are however inhomoge-
neous. The heterogeneities induce spatial and temporal
modulations, which affect significantly the pattern formation,
and this influence is far from being completely understood
�1,2�. Here we consider the effect of modulations on the
nonequilibrium dynamics of wave patterns, and report ana-
lytical and numerical solutions for the complex Ginzburg-
Landau equation �CGLE� with parametric forcing periodic in
space and time.

The complex Ginzburg-Landau equation

�A

�T
= �

�2A

�Y2 + �0A + D�A�2A �1�

is one of the generic models for studies of nonequilibrium
dynamics of spatially extended homogeneous systems, in-
cluding spontaneous wave modulation, spatiotemporal chaos,
intermittency, and oscillatory long-wave instability �2,3�. In
Eq. �1�, Y and T are the slow space and time variables, and
A�Y ,T� is a complex envelope function �e.g., the “amplitude
function”� of a slowly modulated short-wave system in the
frame of reference moving with the wave group velocity
�4,5�. The growth-rate coefficient �0 in Eq. �1� is real and
positive. The coefficients � and D are complex, �=�r+ i�i,
D=Dr+ iDi, where the subscripts r and i mark the real and
imaginary parts, and �r�0 and Dr�0 according to the sta-
bility criterion �2,6�. Equation �1� balances the processes of
the linear growth of the amplitude near the instability thresh-
old and its nonlinear saturation, augmented with diffusion,
dispersion, and the nonlinear frequency shift. The model �1�

describes the dynamics of a system invariant under the
spatiotemporal translations and gauge transformation
A→A exp�i��, �=const. The former symmetry is related to
translations of the large-scale wave envelope, whereas the
latter symmetry manifests the invariance to spatiotemporal
translations of the underlying short-scale wave patterns. The
interaction between large and small scales is a nonadiabatic
effect, and it is neglected in the framework of the CGLE �7�.
The heuristic equation �1� can be rigorously derived from the
first principles for a variety of physical systems, such as
optical systems, Faraday ripples, and rotating fluids �4,8�.
Numerous studies of the CGLE dynamics are summarized in
the review article by Aranson and Kramer �2�.

Our understanding of order and chaos has been signifi-
cantly advanced by the concept of universality �1,2�, yet, the
problem still sustains the efforts applied. An important issue
is a qualitative and quantitative correspondence between the
idealized, low-dimensional model description and a real, het-
erogeneous and multiscale phenomenon. The problem can be
viewed on one hand as a sensitivity of the model results to
heterogeneities and noise, which are always present and of-
ten hard to grip on in observations, and on the other
hand—as a control of the diverse pattern formation phenom-
ena by means of heterogeneities.

First attempts to study the effect of heterogeneities on the
nonlinear pattern-forming system have been made in the
1970s and 1980s �9,10�. The nonequilibrium dynamics of
steady patterns influenced by a slowly relaxed Goldstone
mode or forced stochastically with time have been consid-
ered in Refs. �11–14�. The representative laboratory experi-
ments are, respectively, surface-tension-driven convection
�15� and the electrically driven convection in nematic crys-
tals �16�. In these cases, a real Ginzburg-Landau equation is
augmented with a forcing term �e.g., the additive noise�,
which represents the modulations of the control parameter
and results in the essentially nonlocal character of the pattern
stability �11–14�.

For the complex Ginzburg-Landau equation, the case of a
resonant spatially periodic short-wave perturbation has been
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considered, with the perturbation wavelength close to or
multiple of the characteristic wavelength of the pattern. This
kind of perturbations augments the CGLE with an additional
term, which violates the gauge symmetry, while the invari-
ance of the envelope function to translations is kept. A gen-
eralization of this theory to the case of an oscillatory insta-
bility has been considered in Refs. �17,18�. Similar
modification of the amplitude equation is produced by a
resonant time-periodic forcing �19�.

The violation of the gauge symmetry of the CGLE by
parametric forcing has been a subject of numerous studies.
The analysis of synchronization, modulation, and depinning
phenomena �20–22�, creation of two-dimensional patterns
�23�, and dynamics of patterns and fronts for higher reso-
nances ��24–27�, and references therein� are to mention a
few. In the present paper, we consider another type of forc-
ing, that is the long-wave modulation of the system’s param-
eters whose characteristic spatial and temporal scales are
comparable with the characteristic scales of the complex
Ginzburg-Landau equation. This type of forcing does not
violate the gauge theory and induces a dependence of the
coefficients in the amplitude equation �1� on slow variables Y
and T. As in the region of validity of CGLE, the linear
growth is small, then, to the leading order, only the growth
rate coefficient �0 in Eq. �1� should be modified by the
modulations.

The studies of the CGLE with nonconstant coefficients
are still rather rare. Some special cases have been analyzed
by Malomed in the context of binary-fluid convection in a
narrow channel. In �28�, he has considered a parameter ramp,
which matches smoothly the subcritical and supercritical re-
gions of the channel, and has studied the ramp-induced
mechanism of the wave vector selection. Reference �29� ana-
lyzes the destabilization of the traveling waves and trapping
a solitary pulse by a smooth inhomogeneity. Zimmermann
et al. �30� considered a Swift-Hohenberg equations with the
stochastic modulation of the linear growth rate and an inho-
mogeneous stochastic term. An interesting problem of the
interaction of traveling waves with a spatially modulated co-
efficient of the nonlinear interaction has been discussed in
Ref. �31�. A modification of the CGLE, which contains an
additional non-gauge-invariant term �A* corresponding to a
subharmonic resonant forcing, has been considered in the
case of a spatially dependent coefficient � in �32�. Very re-
cently, the CGLE with a spatially modulated growth rate has
been applied for the analysis of the competition between
harmonic and subharmonic oscillations in a spatially forced
oscillating chemical reaction �33�. However, to the best of
the authors’ knowledge, general case of the influence of pe-
riodic �in space and time� nonresonant parametric forcing on
the nonequilibrium dynamics of wave patterns governed by
CGLE has never been investigated.

As a representative example of such inhomogeneous sys-
tem, one may consider, for instance, laser pulse propagation
in optical fibers and a magnetoconvection of rotating fluids
driven by a modulated magnetic field, or as an effect of the
surface topography on the dynamics of the Rossby waves in
geophysics. It is generally accepted that thermal Rossby
waves transport the angular momentum and internal heat in
the liquid outer core of the Earth �8�. These transports are

influenced significantly by the surface topography, i.e., by
the heterogeneities of the mantle-core boundary �34,35�. In
the laboratory, thermal Rossby waves have been studied in
experiments in a rotating liquid-filled sphere and in a cylin-
drical annulus �36�. To model the effect of surface topogra-
phy, the authors of Refs. �37–39� have considered the dy-
namics of thermal Rossby waves in a cylindrical annulus
with azimuthally modulated height, and have found in sev-
eral special cases the analytical and numerical solutions for
the system of the Navier-Stokes equations. The solutions ob-
tained have been interpreted as modulated Rossby waves and
as traveling waves �37–39�. Still a need remains in a model,
which could describe the effect of modulations on the dy-
namics of Rossby waves in a wide range of the forcing pa-
rameters and convection intensity, and could link this inho-
mogeneous system to other pattern-forming systems.

The present work considers the influence of periodic non-
resonant parametric forcing on the nonequilibrium dynamics
of wave patterns governed by the complex Ginzburg-Landau
equation. We find analytical and numerical solutions for the
modulated CGLE and show that the forcing causes the ap-
pearance of traveling waves with different dispersion prop-
erties. If the forcing wavelength is very large, the waves have
essentially anharmonic spatial structure. The effect of modu-
lations on the development of an intermittent chaos is con-
sidered. The results obtained indicate that the forcing can
regularize chaotic patterns and completely suppress the de-
velopment of the intermittent chaos �40�. We discuss the re-
lations of this pattern-forming system to other ones and ap-
ply the results obtained to describe the effect of surface
topography on the dynamics of thermal Rossby waves
�8,38,39�.

II. DYNAMICAL SYSTEM

The Boussinesq convection in a rotating cylindrical annu-
lus with homogeneous boundaries is characterized by the
convective rolls, which move in the azimuthal direction and
oscillate in space and time �8�. These are the thermal Rossby
waves. Their nonlinear dynamics and pattern formation are
governed by the complex Ginzburg-Landau equation, which
can be derived from the system of the Navier-Stokes equa-
tions near the convection onset �42�. If the annulus bound-
aries are modulated, the convection process is multiscale and
heterogeneous. For heterogeneous systems a rigorous deriva-
tion of the amplitude equation from the conservation laws is
an unresolved problem �1,2�. As discussed in the foregoing,
to model the nonlinear dynamics of a slightly inhomoge-
neous system, we augment the complex Ginzburg-Landau
equation �1� with the parametric forcing term:

�A

�T
= �

�2A

�Y2 + �0A + D�A�2A + f�Y − VT�A . �2�

Equation �2� is written in the frame of reference moving with
the group velocity V of the waves. Without forcing, f =0, the
problem is homogeneous, and the values of �0, Di�r�, and
�i�r� are determined by the parameters of the convective pro-
cess �42�. If Di / �Dr��1 and �i /�r�1/2, the convective pat-

terns with A= Ā appear for �0��rq
2,

ABARZHI et al. PHYSICAL REVIEW E 75, 046208 �2007�

046208-2



Ā = A0eiqY+i�0T, A0
2 = −

��0 − �rq
2�

Dr
, �0 = − �iq

2 + DiA0
2.

�3�

The primary solution, Eq. �3�, describes the pattern with a
wave vector close to the characteristic wave vector of the
convection onset. This solution is stable if �0−�rq

2�0. If
�i /�r	1/2 and Di�i / �Dr��r�1, the homogeneous system
evolves to spatiotemporal chaos through intermittency
�40,41�.

In general case, the parametric forcing in Eq. �2� is com-
plex and influences both the growth-rate and the linear fre-
quency of the wave patterns. In geophysical applications, the
dependence of the linear frequency on the forcing can be
neglected �8� and we consider

f�Y − VT� = 
eik�Y−VT� + 
*e−ik�Y−VT�, �4�

where 
 and k are the forcing amplitude and wave vector
with �
�k�1, and the star marks the complex conjugate. We
find analytical and numerical solutions for system �2� and �4�
and investigate the effect of the modulations on the forma-
tion of nonchaotic and chaotic wave patterns.

III. ANALYTICAL SOLUTIONS

In this section we derive analytical solutions for the het-
erogeneous system �2� and �4� and describe the asymptotic
dynamics of nonchaotic wave patterns.

A. Regular asymptotic dynamics

When the values of �i /�r�1/2 and Di�i / �Dr��r�1, the
homogeneous system exhibits nonchaotic dynamics �40�, and
the parametric forcing �4� transforms the primary solution
�3� into a modulated quasiperiodic wave,

A�Y,T� = eiqY+i�Ta�Y − VT,T� . �5�

Here a�Y −VT ,T� is a complex envelope function of the vari-
ables �Y −VT� and T, and in the general case ���0. In the
regular case, the amplitude a in Eq. �5� can be presented in
the form

a�Y − VT,T� = a0�T� + �
n=1




�an�T�e−ink�Y−VT� + bn�T�eink�Y−VT�� ,

�6�

where an�T�, bn�T�, and a0�T� are time-dependent Fourier
amplitudes, and, without loss of generality, the value of a0 is
real, Eq. �3�.

Substituting Eq. �6� in Eqs. �2� and �4�, we eliminate the
explicit dependence on the coordinate and time and derive an
infinite system of coupled equations for the Fourier ampli-
tudes:

�a0

�T
= �f0 + Da0

2 + 2D�a1a1
* + b1b1

* + a1b1��a0 + ¯ , �7�

�a1

�T
= f1

−a1 + db1
* + �D�a1a1

* + 2b1b1
*�a1

+ 2Da0�a1
*a2 + a2b1 + b1b2

*�� + a0
 + ¯ , �8�

�b1

�T
= da1

* + f1
+b1 + �D�2a1a1

* + b1b1
*�b1

+ 2Da0�a1a2
* + a1b2 + b1

*b2�� + a0
* + ¯ , �9�

�a2

�T
= f2

−a2 + db2
* + �Da0�2a1b1

* + a1
2�� + a1
 + ¯ , �10�

�b2

�T
= da2

* + f2
+b2 + �Da0�2a1

*b1 + b1
2�� + b1
* + ¯ ,

�11�

where f0=�0−�q2− i�, fn
±=�0−��q±nk�2− i���nkV�+2d

with n=1,2 , . . . and d=Da0
2. The dynamics of system

�7�–�11� depends on the control parameter �0, the wave vec-
tor q, and the forcing parameters 
 and k.

For the sake of simplicity, we focus below on the case of
zero group velocity, i.e., V=0. If the value of �0 is finite, the
wavelength of the modulation 1/k is finite and the amplitude

 is small, then, in zero order in 
 /�0 the solution for system
�7�–�11� coincides with the primary homogeneous solution,
i.e., a0=A0, �=�0, and an=bn=0 for n=1,2 , . . . �3�. In linear
in 
 /�0 approximation, the system �7�–�11� is reduced to

�a1

�T
= f1

−a1 + db1
* + a0
,

�b1
*

�T
= d*a1 + �f1

+�*b1
* + a0
 .

�12�

Equations �12� have solutions with steady a1=A1 and b1
=B1, where

A1 = −
a0
��f1

+�* − d�
�f1

−�f1
+�* − dd*�

, B1
* = −

a0
�f1
− − d*�

�f1
−�f1

+�* − dd*�
. �13�

In the framework of system �12�, the modulated solution
A=eiqy+i�0T�A0+A1e−ikY +B1eikY� is stable, if the growth rate
� of a slightly perturbed solution satisfies the condition
Re����0, where � obeys the equation

�� + 2f0���� − f1
−��� − �f1

+�*� − dd*� = 0. �14�

The region of stability of the modulated solution
A=eiqy+i�0T�A0+A1e−ikY +B1eikY� is narrower compared to
that of the primary solution �3�.

For nonlinear solutions for systems �2�–�4� and �7�–�11�,
the value of a0 deviates from A0, higher order terms with
wave vectors �q±nk� appear in the expansion �6�, and the
time dependence and the region of the Eckhaus stability
change. The linear solutions �12� and �13� indicate that the
system �2� and �4� may have a nontrivial nonequilibrium
dynamics if the wavelength of the modulation is very large.
Indeed, as k decreases, the amplitudes A1, B1 in Eq. �13�, and
therefore an and bn in Eqs. �7�–�11� increase and approach
the same or higher order of magnitude than a0. In this case,
the harmonic expansion �6�–�11� may not be applicable, and
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the nonlinear dynamics in system �2� and �4� can be de-
scribed via a long-wave expansion.

B. Anharmonic asymptotic solutions for large-scale
modulations

To find the nonlinear solutions in the case of modulations
with very large wavelength, we reduce the Ginzburg-Landau
equation ��2� and �4�� to a standard form,

AT = �1 + f̃�A + �1 + ic1�AYY − �1 − ic2��A�2A , �15�

where the subscript denotes the differentiation with respect

to the corresponding variable. We assume that f̃ does not
depend on time T and it is a 2� periodic function of the

coordinate kY, i.e., f̃ = f̃�kY�, and 0�k�1. Then, with
A=R�Y ,T�exp(i��Y ,T�), Eq. �15� is transformed into the
system

RT = �1 + f̃ − �Y
2 − R2�R − c1�2RY�Y + R�YY� + RYY ,

�16�

R�T = 2RY�Y + R�YY + c1�RYY − R�Y
2� + c2R3. �17�

Without forcing, f̃ =0 in Eq. �15�, the group velocity of a
disturbance propagating on the background of a periodic
wave is proportional to �c1+c2� �2�. The solution for the
system �16� and �17� depends therefore on the value of
�c1+c2�.

In the nonresonant case with c1+c2�0, we define the
slow variable y=kY, represent the solution in the form of a
spatially modulated and temporally monochromatic wave
with R=R�y�, �=��Y�+ i�T, �Y =Q�y�, and expand the
amplitude R=R0�y�+kR1�y�+¯ and the wave vector
Q=Q0�y�+kQ1�y�+¯ in terms of small k. Substituting these
dependencies in Eqs. �16� and �17�, we find to the leading
order

Q0
2 = −

� − c2�1 + f̃�
c1 + c2

, R0
2 =

� + c1�1 + f̃�
c1 + c2

. �18�

We see that the modulations of the local wave vector and the
local amplitude are in phase when the coefficients c1 and c2
have the same sign, and are out of phase when c1 and c2 have
the opposite signs. Solution �18� is valid, if Q0

2�y��0 and
R0

2�y��0 and � obeys the relation �max����min, where

�max=min(c2�1+ f̃�) and �min=max(−c1�1+ f̃�) for c1+c2�0.
The condition of compatibility �max��min imposes certain

limitations on the values of f̃ . We see, therefore, that for a

harmonic modulation with f̃ =2
 cos y the nonlinear solution

A�Y,T� 	 R0�kY�exp
i�
0

Y

Q0�kZ�dZ + i�T� �19�

is essentially anharmonic. Similarly, one can calculate the
higher order corrections.

In the resonant case with c1+c2=0, the group velocity in
Eq. �15� is zero, and the effect of the forcing is especially

strong. In this case, the change of the sign of Q0 leads to the
appearance of sources and sinks of waves, while vanishing
R0 corresponds to the creation of a “black hole,” in agree-
ment with the numerical solution discussed below in Sec. IV.
A nonsingular, temporally monochromatic solution in the
resonant case can be found for a relatively weak modulation

with f̃ =kg. Expanding �=�0+�1k+¯ in terms of small k,
we obtain to the leading order that the amplitude R0 is set by
the local wave vector Q0,

R0
2 = 1 − Q0

2, �0 = − c1, �20�

which obeys the nonlinear equation �1+c1
2�

1−3Q0
2

1−Q0
2 Q0y

=c1g�ky�+�1. We integrate this equation and find for Q0�y�
an implicit form

H„Q0�y�… = H„Q0�0�… +
c1

1 + c1
2�

0

y

�g�kz� − 
g��dz , �21�

where H�Q0��3Q0− 1
2 ln

1+Q0

1−Q0
and 
g� is the spatial average

of g. If the wave vector Q0 is in the region of the Eckhaus
stability, Q0

2�1/3, and the value of H(Q0�y�) in Eq. �21�
belongs to the interval �−Hm ,Hm�, with Hm=H�1/�3�, then
the solution for Eq. �21� exists and is uniquely defined.

Based on the foregoing theoretical analysis, we conclude
that for nonchaotic patterns governed by CGLE, the paramet-
ric forcing with a finite wavelength results in appearance of
traveling waves, quasiperiodic in space and time �5�. If the
forcing wavelength is very large, the spatial structure of
waves is essentially anharmonic, Eq. �19� and �20�.

TABLE I. Parameter values for nonchaotic runs.

Run �qL� / �2�� 
 �kL� / �2�� V

A0 10 0 0 0

A1 10 0.1+0.1i 2 0

A2 10 0.2+0.2i 2 0

B1 2 0.1+0.1i 10 0

B2 2 0.2+0.2i 10 0

C1 10 0.1+0.1i 2 0.01

C2 10 0.2+0.2i 2 0.01

D1 2 0.1+0.1i 10 0.01

D2 2 0.2+0.2i 10 0.01

FIG. 1. Run A0, no forcing.
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IV. NUMERICAL SOLUTIONS

To describe the influence of parametric forcing on the
formation of wave patterns and intermittent chaos, we find
numerical solutions for the rescaled complex CGLE �15� in a
wide range of the system parameters. In our simulations, the
parametric forcing depends on the coordinate and time,

f̃ = 
̃eik�Y−VT�+
*̃eik�Y−VT�, and both chaotic and nonchaotic
cases are considered, i.e., �c1 ,c2��R2:

AT = A + �1 + ic1�AYY − �1 − ic2��A�2A

+ �
̃ei�kY−VT� + 
*̃ei�kY−VT��A . �22�

The amplitude A=A�Y ,T� and initially A�Y ,T=0�=eiqY.
We solve Eq. �22� in the domain of size L=200 dis-

cretized on a mesh of 500 points. The spectral approach is
used to compute the derivative of A with high accuracy. The
boundary conditions in Y are periodic. Eq. �22� is integrated
in time using a fully implicit solver. The solver is based on
the backward differentiation formulas of the orders varied
from 1 to 5 to adapt the stiffness of the problem. The inte-
gration time for all cases is 5000 time units, and the time step
is automatically adjusted to enforce the integration accuracy.
The real and imaginary parts, the magnitude and the phase of
the amplitude A are calculated.

In the first series of runs we consider the influence of the
parametric forcing on the formation of regular waves and
choose the values of c1�0.2746 and c2�0.6020, which cor-
respond to regular patterns in observations of �39�. The val-

ues of other parameters q, k, V, and 
̃ are chosen to examine

the cases of forcing with large and small wavelengths, small
and finite amplitude, with and without group velocity, see
Table I.

The run A0 is the unforced reference case. The other runs
employ the two different ratios of k /q and the forcing am-

plitude 
̃, and account for the effect of the group velocity V.
Figure 1 shows the contour plot of the real part Re�A� and
the magnitude �A� of the amplitude A in the plane �Y ,T� for
the run A0 in Eq. �22�, with darker regions marking higher
values. The pattern represents a traveling wave, whose mag-
nitude is independent of space and time. This numerical so-
lution agrees quantitatively with the primary solution �3�.

Figures 2 and 3 present numerical solutions for Eq. �22�
for the run A1 with large forcing wavelength, k /q=1/5, and
for the run B1 with small forcing wavelength, k /q=5, re-
spectively. In both runs the forcing amplitude is small,

=0.1+0.1i, and the group velocity is zero, V=0. In agree-
ment with analytical solutions �13�, the patterns in Figs. 2
and 3 consist of traveling waves with different dispersive
properties, and the magnitude of the wave �A� is modulated in
space and is homogeneous in time. The slope of the lines
Re�A� changes its sign at some locations, which correspond
to sources and sinks of waves. In the domains between the
sources and sinks the local amplitude and the local wave
vector change the phase, Fig. 2, in accordance to the results
obtained in Sec. III. In each point, the frequency d arg�A� /dT
is the same, and the local phase velocity of the traveling
wave, proportional to the slope of the line Re�A�=const, de-
pends only on the coordinate Y and does not depend on time
T. It is remarkable that the spatial domains are characterized

FIG. 2. Run A1, forcing with large wavelength, small amplitude,
and zero group velocity.

FIG. 3. Run B1, forcing with small wavelength, small ampli-
tude, and zero group velocity.

FIG. 4. Run A2, forcing with large wavelength, large amplitude,
and zero group velocity.

FIG. 5. Run B2, forcing with small wavelength, large amplitude,
and zero group velocity.
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by alternating signs of the phase velocity even though the
modulation amplitude is rather small, see Figs. 2 and 3.

For runs A2 and B2 the forcing amplitude is large,

=0.2+0.2i, and the nonlinearity is more pronounced com-
pared to the cases A1 and B1. Patterns in Figs. 4 and 5 are
dominated by traveling waves, similar to those in Figs. 2 and
3. We see that the finite amplitude of the forcing results in
appearance of high-frequency temporal components in the
solutions A2 and B2, in agreement with the solutions in the
Sec. III, Eqs. �5� and �6�. For large-scale modulation, the
pattern consists of two kinds of domains: main-frequency
domains around wave “sinks,” which are characterized by a
relatively small local wave vectors, and double-frequency,
short-wave domains around the wave “sources,” see Fig. 4.
These domains are separated by a “grain boundary,” where
the phase slips are periodic �the black points in the field of
�A��. For a short-wave modulation, the phase slips are ob-
served as well, see Fig. 5.

For the sake of simplicity, our analytical solutions did not
account for the effect of the group velocity V and the time
dependence of the parametric forcing on the pattern forma-
tion. Our numerical solutions confirm the validity of this
assumption. Figures 6–9 show that the solutions in the cases
C1�2� and D1�2� with nonzero group velocity V=0.01 are
similar to the cases A1�2� and B1�2� with V=0, respectively.
We see that accounting for the group velocity V in the runs
Cs and Ds induce temporal modulations of the magnitude �A�
and causes additional complexity. However it does not lead
to nontrivial features of the nonequilibrium dynamics.

In the next series of runs, we study the influence of para-
metric forcing on the development of an intermittent chaos.

According to Ref. �40,41�, for unforced CGLE with 
=0 in
Eq. �22�, the region of parameters with c1�1/2 and c2�1 is
characterized by spatiotemporal intermittency and has cha-
otic solutions. To explore the forcing effect on the chaos
development, we set c1=0.6 and c2=1.4, similarly to �40�,
and compute the solution for Eq. �22� for various values of
the forcing parameters, see Table II.

Figure 10 shows the unforced solution for runs E0 and F0
and the development of chaos through intermittency: A wave
pattern, regular initially, becomes chaotic at a finite time,
identically to that in the observation of Ref. �40�. Our simu-
lations indicate that the development of chaos is sensitive to
the initial conditions. For smaller values of the wave vector
of the initial perturbation q, the chaos develop for a longer
time. For instance, in the case of q=6 the characteristic time
of the chaos development is about 100 times larger than in
the case of q=10. This sensitivity is due to the fact that
without forcing the transition to chaos is triggered by the
numerical errors. For smaller values of the wave vector of
the initial perturbation q, the “regular wave” solution is cal-
culated with much higher accuracy, and the errors are accu-
mulated much slower. Our simulations indicate as well that
the development of chaos may have either a transient or a
“quasiperiodic” character, and the chaos generation may be
sensitive to the method of the numerical solution. Figure 10
shows, for instance, that the intermittent chaos disappears at
a larger time and a different regular wave pattern appear. In
our simulations, the computation time is much longer than in
the simulations of Ref. �40�. A more detailed quantitative
comparison is hard to perform as the work �40� does not
describe the numerical scheme in detail.

FIG. 6. Run C1, forcing with large wavelength, small amplitude,
and nonzero group velocity.

FIG. 7. Run D1, forcing with small wavelength, small ampli-
tude, and nonzero group velocity.

FIG. 8. Run C2, forcing with large wavelength, large amplitude,
and nonzero group velocity.

FIG. 9. Run D2, forcing with small wavelength, large ampliu-
tude, and nonzero group velocity.
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Accounting for the parametric forcing influences the for-
mation of chaos dramatically. Figures 11–14 represent the
numerical solutions for chaotic runs E1–E4, when the forc-
ing has a large wavelength, k /q=1/5, either small or large

amplitude 
̃, with and without group velocity. The values of

parameters q, k, V, and 
̃ in runs E1–E4 correspond to those
in nonchaotic runs As and Cs. Figure 11 shows the numeri-
cal solution for run E1, when the forcing amplitude is small,


̃=0.05+0.05i. We see that in this case the chaos starts to
develop and then it is completely suppressed. Asymptoti-
cally, the pattern consist of traveling waves, whose magni-
tude �A� is modulated in space and is homogeneous in time.

In the run E3 the forcing amplitude 
̃ is large, leading to
additional complexity, see Fig. 13. However, in this case the
regular regions of the solutions are easy to identify as well.
Figures 12 and 14 present the solutions for the runs E2 and
E4 with nonzero group velocity, V=0.01. We see that ac-
counting for the group velocity, V�0, does not change the
characteristic features of the pattern and does not cause ad-
ditional instabilities. Compared to the “unforced” case E0, in
runs E1–E4 with large-scale forcing, the intermittent chaos
develops and then disappears much faster.

For runs Fs, the forcing has small wavelength, k /q=3,

either large or small amplitude 
̃, with and without group
velocity V, see Table II and Figs. 15–18. In runs Fs we
choose the same wavelength of the initial perturbation as in
runs Es, as for smaller values of q it takes longer for the
chaos to develop. Figures 15 and 16 shows the numerical

solution for runs F1 and F2, when the forcing amplitude is

small, 
̃=0.05+0.05i. Similarly to runs E1 and E2, the inter-
mittent chaos starts to develop and then it is suppressed. The
chaos suppression is complete when the forcing amplitude is
large, see Figs. 17 and 18. In these cases the wave pattern
remains regular for the entire computational time and the
intermittent chaos does not appear.

To summarize, according to our numerical results, under
parametric forcing, regular wave patterns in system �22� con-
sist of traveling waves, whose amplitude is modulated in
space and time, Figs. 2–9. The spatial modulations of the
waves occurs for any value of the forcing amplitude and
wavelength, whereas the high-frequency temporal compo-
nents appear when the forcing amplitude is sufficiently large.
The accounting for the group velocity results in additional
complexity, but does cause nontrivial features of the non-
equilibrium dynamics. Our simulations indicate that the in-
termittent chaos may be sensitive to the initial conditions and
the chaotic solution may have a transient �or “quasiperi-
odic”� character. The parametric forcing plays a crucial role
in the chaos development and may completely suppress the
development of chaos.

V. DISCUSSION

We have studied the influence of heterogeneities on the
nonequilibrium dynamics of wave patterns. The model is
represented by the complex Ginzburg-Landau equation with
parametric forcing dependent on the coordinate and time.
The case of periodic nonresonant forcing has been consid-

TABLE II. Values of the parameters for chaotic runs.

Run �qL� / �2�� f �kL� / �2�� V

E0 10 0 0 0

E1 10 0.05+0.05i 2 0

E2 10 0.05+0.05i 2 0.01

E3 10 0.1+0.1i 2 0

E4 10 0.1+0.1i 2 0.01

F0 10 0 30 0

F1 10 0.05+0.05i 30 0

F2 10 0.05+0.05i 30 0.01

F2 10 0.1+0.1i 30 0

F4 10 0.1+0.1i 30 0.01

FIG. 10. Runs E0 and F0, chaotic CGLE, no forcing.

FIG. 11. Run E1, chaotic CGLE, forcing with large wavelength,
small amplitude, and zero group velocity.

FIG. 12. Run E2, chaotic CGLE, forcing with large wavelength,
small amplitude, and nonzero group velocity.
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ered. Analytical and numerical solutions for the equation
have been obtained in a wide range of the system parameters.
The analysis and numerics agree with each other and indicate
the new features of the nonequilibrium dynamics. We have
found that in the nonchaotic case the parametric forcing re-
sults in the appearance of traveling waves with dispersion
properties. For finite values of the forcing wavelength, the
patterns consist of traveling waves quasiperiodic in space
and �when the forcing amplitude is large enough� in time.
For the forcing with very large wavelength, the nonlinear
solutions have essentially anharmonic spatial structure. We
have considered the influence of modulations on the devel-
opment of spatiotemporal chaos. According to our results,
the intermittent chaos may have a transient or quasiperiodic
character, and its appearance is sensitive to the initial condi-
tions. The parametric forcing may completely suppress the
development of chaotic patterns. Accounting for the tempo-
ral dependence of the parametric forcing does not change
significantly the character of the solutions obtained, in both
chaotic and nonchaotic cases. The results obtained indicate a
potential richness of the model, whose detailed qualitative
analysis is a subject of the further research.

Our model can be applied to study the effect of surface
topography on the dynamics of thermal Rossby waves. The
analytical and numerical solutions in the foregoing agree
with observations �37–39�, which reported that qualitatively
the modulations of the boundaries of the fluid tank or com-
putational domain result in appearance of traveling waves,
quasiperiodic in space and time. Compared to earlier studies

�37–39� our model �2� describes the effect of modulations on
the dynamics of Rossby waves in a much wider range of the
forcing parameters and convection intensity and reveals ef-
fects. These are, for instance, essentially anharmonic spatial
structure of wave patterns in the case of modulations with
very large wavelength and a dependence of the temporal
structure of the wave patterns on the forcing amplitude. Our
theory and numerics can be applied for a systematic quanti-
tative analysis of the dispersion properties of Rossby waves
influenced by the surface topography. It is worth mentioning
however that our model and the results obtained have a wide
range of applicability, going far beyond the Rossby waves.
This includes the control of the pulse propagation in optical
fibers, optical patterns, laminar-turbulent transition in a
boundary layer, various instabilities in convection, and many
others �1,2�. A consideration of the nonequilibrium dynamics
for these phenomena are subjects of further research. The
harmonic analysis, the long-term expansion, and the numeri-
cal simulations discussed in the foregoing can be used in the
future studies of the influence of heterogeneities on the non-
equilibrium dynamics of wave patterns.

A grip on the intermittent chaos in the systems described
by CGLE is a long-standing problem, see, e.g., Refs.
�43–51�. Our simulations indicate that development of chaos
is a very sensible process, and a relatively weak parameter
modulation is sufficient to terminate the development of
chaos and to create regular wave patterns. The present work
does not consider the mechanism of this phenomenon quan-
titatively. Qualitatively, one may expect that the parameter

FIG. 13. Run E3, chaotic CGLE, forcing with large wavelength,
large amplitude, and zero group velocity.

FIG. 14. Run E4, chaotic CGLE, forcing with large wavelength,
large amplitude, and nonzero group velocity.

FIG. 15. Run F1, chaotic CGLE, forcing with small wavelength,
small amplitude, and zero group velocity.

FIG. 16. Run F2, chaotic CGLE, forcing with small wavelength,
small amplitude, and nonzero group velocity.
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modulation enforces some of the Fourier amplitudes and
help them to “win” in the mode competition. Without forc-
ing, for long-wave dynamics the evolution of phase distur-
bances in CGLE is governed in general by one of the follow-
ing nonlinear equations: Burgers equation �i�, dissipation-
modified Korteweg–de Vries equation �ii�, and Kuramoto-
Sivashinsky equation �iii�. Our analytical solutions indicate
that one of the effects of the parametric forcing can be a
spatially distributed nonlinear phase shift. In the Eckhaus-

stable region, when the phase dynamics is governed by the
forced Burgers equation �i�, the problem can be solved using
the Hopf-Cole transformation. The exploration of the
Eckhaus-unstable region in the framework of models �ii� and
�iii� with additional forcing term can give one a clue on how
to effectively grip on the chaos development. We address
these important issues in the future.

�1� M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
�1993�.

�2� I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 �2002�.
�3� Y. Kuramoto and T. Tsuzuki, Prog. Theor. Phys. 55, 356

�1976�.
�4� K. Stewartson and J. T. Stuart, J. Fluid Mech. 48, 529 �1971�.
�5� A. C. Newell, Lect. Appl. Math. 15, 157 �1974�.
�6� J. T. Stuart and R. C. Di Prima, Proc. R. Soc. London, Ser. A

362, 27 �1978�.
�7� Y. Pomeau, Physica D 23, 3 �1986�.
�8� F. H. Busse and A. C. Or, J. Fluid Mech. 166, 173 �1986�.
�9� L. P. Vozovoi and A. A. Nepomnyashchy, J. Appl. Math.

Mech. 43, 1080 �1979�.
�10� P. Coullet, Phys. Rev. Lett. 56, 724 �1986�.
�11� E. D. Siggia and A. Zippelius, Phys. Rev. Lett. 47, 835 �1981�.
�12� M. I. Tribelsky and M. G. Velarde, Phys. Rev. E 54, 4973

�1996�.
�13� P. C. Matthews and S. M. Cox, Nonlinearity 13, 1293 �2000�.
�14� J. Roder, H. Roder, and L. Kramer, Phys. Rev. E 55, 7068

�1997�.
�15� S. J. VanHook, M. F. Schatz, W. D. McCormick, J. B. Swift,

and H. L. Swinney, Phys. Rev. Lett. 75, 4397 �1995�.
�16� M. M. Wu and C. D. Andereck, Phys. Rev. Lett. 65, 591

�1990�.
�17� G. V. Levina and A. A. Nepomnyashchy, Z. Angew. Math.

Mech. 66, 241 �1986�.
�18� A. A. Nepomnyashchy, J. Appl. Math. Mech. 52, 677 �1988�.
�19� C. Elphick, G. Iooss, and E. Tirapegui, Phys. Lett. A 120, 459

�1987�.
�20� H. Chaté, A. Pikovsky, and O. Rudzick, Physica D 131, 17

�1999�.
�21� S. Rüdiger, D. G. Míguez, A. P. Muñuzuri, F. Sagues, and J.

Casademunt, Phys. Rev. Lett. 90, 128301 �2003�.
�22� T. Ohta and H. Tokuda, Phys. Rev. E 72, 046216 �2005�.
�23� D. G. Míguez, E. M. Nicola, A. P. Muñuzuri, J. Casademunt, F.

Sagues, and L. Kramer, Phys. Rev. Lett. 93, 048303 �2004�.
�24� J. Kim, J. Lee, and B. Kahng, Physica A 315, 330 �2002�.
�25� Ch. Hemming and R. Kapral, Physica D 168-169, 10 �2002�.
�26� J. Kim and J. Lee, Phys. Rev. E 70, 016213 �2004�.
�27� A. Yochelis, Ch. Elphick, A. Hagberg, and E. Meron, Physica

D 199, 201 �2004�.
�28� B. A. Malomed, Phys. Rev. E 47, R2257 �1993�.
�29� B. A. Malomed, Phys. Rev. E 50, 4249 �1994�.
�30� W. Zimmermann, M. Seesselberg, and F. Petruccione, Phys.

Rev. E 48, 2699 �1993�.
�31� M. van Hecke and B. A. Malomed, Physica D 101, 131

�1997�.
�32� C. Utzny, W. Zimmermann, and M. Bär, Europhys. Lett. 57,

113 �2002�.
�33� M. Hammele and W. Zimmermann, Phys. Rev. E 73, 066211

�2006�.
�34� R. Hide, J. Fluid Mech. 49, 745 �1971�.
�35� K. D. Alridge et al., Surv. Geophys. 11, 329 �1990�.
�36� K. K. Zhang et al., J. Fluid Mech. 437, 103 �2001�.
�37� P. I. Bell and A. M. Soward, J. Fluid Mech. 313, 147 �1996�.
�38� J. Herrmann and F. H. Busse, Phys. Fluids 10, 1611 �1998�.
�39� M. Westerburg and F. H. Busse, Nonlinear Processes Geophys.

10, 275 �2003�.
�40� M. van Hecke, Phys. Rev. Lett. 80, 1896 �1998�.
�41� K. Nozaki and N. Bekki, J. Phys. Soc. Jpn. 53, 1581 �1984�.
�42� A. C. Or and J. Herrmann, Phys. Fluids 7, 315 �1995�.
�43� D. Battogtokh and A. Mikhailov, Physica D 90, 84 �1996�.
�44� D. Battogtokh, A. Preusser, and A. Mikhailov, Physica D 106,

327 �1997�.

FIG. 17. Run F3, chaotic CGLE, forcing with small wavelength,
large amplitude, and zero group velocity.

FIG. 18. Run F4, chaotic CGLE, forcing with small wavelength,
large amplitude, and nonzero group velocity.

INFLUENCE OF PARAMETRIC FORCING ON THE… PHYSICAL REVIEW E 75, 046208 �2007�

046208-9



�45� K. A. Montgomery and M. Silber, Nonlinearity 17, 2225
�2004�.

�46� B. Janiaud, A. Pumir, D. Bensimon, V. Croquette, H. Richter,
and L. Kramer, Physica D 55, 269 �1992�.

�47� W. J. Kuang and J. Bloxham, J. Comput. Phys. 153, 51
�1999�.

�48� P. Coullet, J. Lega, B. Houchmanzadeh, and J. Lejzerowicz,
Phys. Rev. Lett. 65, 1352 �1990�.

�49� C. J. Hemming and R. Kapral, Chaos 10, 720 �2000�.
�50� C. W. Meyer, G. Ahlers, and D. S. Cannell, Phys. Rev. Lett.

59, 1577 �1987�.
�51� P. Coullet and K. Emilsson, Physica A 188, 190 �1992�.

ABARZHI et al. PHYSICAL REVIEW E 75, 046208 �2007�

046208-10


