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Billiards are idealizations for systems where particles or waves are confined to cavities, or to other homo-
geneous regions. In billiard systems a point particle moves freely except for specular reflections from rigid
walls. However, billiard walls are not always completely reflective and measurements inside can also open the
billiard. Since boundary openings have been studied extensively in the literature, we rather model leakages
inside the billiard. In particular, we investigate the classical dynamics of a leakage for a continuous family of
billiard systems, that is, the stadium-lemon-billiard family. With a single parameter the geometry of the billiard
can be tuned from stadium �being fully hyperbolic� over circle �integrable� to the lemon-shaped billiard �mixed
chaotic�. For the stadium billiard we found an algebraically decaying mean escape time with the linear size �
of the leakage �nesc���−1 together with an exponential decay of the survival probability distribution. The
finding is nearly independent of the position and size of the leakage, as long as the leakage is much smaller
than the system size, and it is in good agreement with a stochastic map approximation of the dynamics. Due to
the mixed phase space for lemon billiards, the mean escape time depends both on the position and geometry of
the leakage. For systems where quasiregular motion dominates, we found a linear dependence of the mean
escape time, �nesc��1−�, which we refer to as flooding law. Our findings are helpful in understanding
dynamics of leaking Hamiltonian systems.
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I. INTRODUCTION

Billiard systems have been intensively studied over sev-
eral decades both experimentally and theoretically. In the
great majority of billiards considered in the literature a per-
fectly reflecting boundary encloses a domain in which the
long-term dynamics of a freely moving particle or wave is
under investigation. Examples for integrable �regular� bil-
liards represent rectangular, elliptic, and circular geometries.
In almost every case, the slightest deformation makes them
nonintegrable. Consider, for example, the stadium billiard in
Fig. 1. Whereas every starting position in phase-space of the
circle billiard �a=0� corresponds to regular motion, for a
�0 the motion is ergodic, mixing, and exponentially un-
stable with Lyapunov exponent ��a1/2 for a�1 �1�.

Theory and experiments on the wave dynamics in micro-
wave cavities and quantum dots have greatly benefited from
each other with the consequence of a considerable number of
publications �2–7�, see Ref. �8� for an overview. Also, optical
billiard experiments have attracted enormous interest. In par-
ticular, we refer to Refs. �9,10� where ultracold atoms
bounce off beams of light that form the boundary of the
billiard. Experiments performed by Chinnery and Humphrey
are worth noting since they provide a mesoscopic approach
to the field that allows for excellent comparison between
experiment or numerics and theory. They investigated acous-
tic resonances of an insonified water-filled stadium billiard
with a schlieren visualizing system �11�. Moreover, much
effort has been devoted to classical, semiclassical, and quan-
tum mechanical studies on regularity and chaos in billiards
�12–21�.

Billiards whose walls are not fully reflective, or com-
pletely closed, play an important role as models to study
chaotic phenomena in open systems but also have a vast bulk
of applications, e.g., in the field of optical microresonators

where chaoticity is desired to significantly enhance the emis-
sion directionality �22�. Stadium-shaped microcavities have
been studied in a number of publications �23�. For several
geometries the dynamics of billiards with a single hole in the
boundary have been investigated in the context of the decay
of chaotic systems and chaotic wave scattering �24–26�. In
order to demonstrate the existence of Maxwell’s daemon in
chaotic billiards, Zaslavsky coupled two billiards through a
small hole �27�. Interestingly, the daemon accomplishes a
difference in the pressures of the two chaotic particle gases.
A beautiful example for a two-hole leaking of the circle bil-
liard represents Bunimovich and Dettmann’s demonstration
of a direct connection between leaking billiard experiments
and the Riemann hypothesis �28�. We also mention works on
chaotic scattering in ballistic circle and stadium microstruc-
tures, cross junctions, and cut-circle billiards �29–33�. Elec-
tric density measurements of leaking microwave billiards in
configuration space have been performed by Alt and co-
workers �34,35�.

Besides billiards, leaking Hamiltonian systems have been
studied in different contexts, e.g., for the standard map, the
restricted three-body problem of celestial mechanics, and
transport problems in incompressible fluids �36,37�. It has
been shown that suitable Poincaré surface of sections where
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FIG. 1. �Color online� Schematic representation of stadium �a
�0�, circle �a=0�, and lemon-shaped �a�0� billiard.
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points are colored with respect to the corresponding orbit’s
escape time reveal computationally quickly a backbone of
the system’s phase-space and provide considerable insight in
the leaking dynamics of the system. In the next sections we
apply this approach to the stadium-lemon-billiard family, see
Fig. 1. Instead of opening the boundary we introduce a small
leakage inside the billiard. An experimental realization could
be a microwave billiard where the antenna plays the role of
the internal leakage �34,35�.

II. MODEL

Bunimovich first considered a stadium billiard where two
semicircular arcs with radii R are joined by tangential
straight lines with lengths 2a�0 �38�, see Fig. 1. The limit-
ing case a=0 is the integrable circle billiard. Recent interest
has been devoted to the case −2�a�0 where straight lines
no longer exist but two circular sectors form a boundary
which resembles a lense or lemon �14,17�.

The phase-space of this one-parameter family of billiards
is conveniently described by Birkhoff’s coordinates: the
�normalized� arc-length coordinate 0�s�1 along the
boundary and p�cos��� being the momentum coordinate
�energy is scaled out� where 0���� is the incident angle.
With this choice of coordinates the phase-space mapping
M : �sn , pn�→ �sn+1 , pn+1� is symplectic �12�. The radii R in
Fig. 1 can be scaled out and the cases p= ±1 correspond to
orbits being tangential to the boundary. Hence throughout the
paper we assume unit system radii R�1 and consider the
phase-space specified by 0�s�1, and −1� p�1.

For the nontrivial cases a�0, there are two reflexion
symmetries that can be expressed by the operation
S : �s , p�→ f�s , p� where

f�s,p� = 	
�s,p� for 0 � s � 1/4,

�1/2 − s,− p� for 1/4 � s � 1/2,

�s − 1/2,p� for 1/2 � s � 3/4,

�1 − s,− p� for 3/4 � s � 1.

 �1�

Note that due to the arclength normalization, S is indepen-
dent of geometry parameter a. In addition to the reflexion
symmetries, the billiard exhibits a time-reversal symmetry
T : �s , p�→ �s ,−p�. It is important to mention that, first,
throughout the paper we partly break the symmetries by
placing a leakage inside the billiard, and second, the leakage
can be formally considered an internal boundary.

III. ESCAPE TIME DIAGRAMS

We now investigate position and extent of escape orbits
for the case that a circular leakage with radius � is placed in
the configuration space. We consider different positions of
the circular leakage as illustrated in Fig. 2.

Figure 3 shows an escape time diagram �ETD� for the
�s , p� plane. Each point represents a starting point in phase-
space. The color codes the number of reflections before es-
cape.

A. Stadium billiard

Figure 4 displays the ETDs for the stadium billiards. The
white horizontal stripes in the ETDs represent the �margin-
ally stable� orbits created by perpendicular reflections be-
tween the stadiums’ straight line segments. These orbits are
called bouncing-ball orbits. The dimension of the leakage is
imprinted in the diagrams: The width of the slits in the upper
ETDs represents the hole diameter 2�. The stripe-shaped re-
gions in black represent particles that leak out after a single
reflection. The upper diagram line corresponds to billiards
that are leaked by circular middle holes of radii �=0.01,
�=0.05, �=0.1, and �=0.2. If the circular leakages are re-
placed by quadratic leakages of equal areas, corresponding
�magnifications of the� ETDs are virtually unaffected �not
shown�. As illustrated in the lower diagram line in Fig. 4 the
position of the leakage �see Fig. 2� has a widely more pro-
found impact on the diagram structure than the leakage ge-
ometry. Note that shifting the hole away from the center of
the billiard breaks one of the reflexion symmetries.

Figure 5 shows the dependence of the escape time dia-
grams on the control parameter a for the stadium case
a�0. Though the phase-space is known to be hyperbolic for
any a�0, the escape time diagrams demonstrate the exis-
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FIG. 2. �Color online� Schematic view of the leakage positions
�disks�. Half of the system size is portioned in such a way that five
disks are placed equidistantly, disk 1 is centered, and disk 5 is
tangent to the boundary.
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FIG. 3. �Color online� Ranges and color legend for escape time
diagrams �ETD�. Parameter values for the displayed example with
central circular hole: a=−0.2, hole radius �=0.05, and Nmax

=10 000. The color legend displays the normalized escape time
nesc /Nmax where nesc is the number of reflections before escape, and
Nmax denotes the maximal number of reflections during the simula-
tion. The lighter the color the longer the particle is trapped in the
billiard. White colored phase-space points correspond to nesc

=Nmax, black ones correspond to nesc=1.
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tence of a rather complex topology on position and extent of
long- and short-lived motion. Figure 5 displays the situation
for eight different values of a. First, the regular phase-space
for a=0 �see black stripe in Fig. 6� is more and more ragged
with increasing parameter value a. Second, the dominance of
long-lived motion of the circularlike geometries a�0 is de-
stroyed by the onset of escape regions. The inset in the ETD
for a=0.1 in Fig. 5 displays the ETD when the leakage is
placed tangential to the boundary �see Fig. 2, position 5�—
rather than central. As a consequence, even for values of a
close to zero, regions of long-lived motion are displaced by
regions of escape due to tangential leakage of the so-called
whispering-gallery orbits with p� ±1.

B. Lemon billiard

We now investigate the mixed phase-space domain of the
stadium-lemon-billiard family, that is, the parameter region

a�0. In Fig. 7 we provide a phase-space overview display-
ing ETDs for the range −2�a�0. The phase-space structure
of each diagram is partitioned into three main domains.
White colored island chains of regular �almost quasiperiodic�
motion with the corresponding periodic centers �not shown�
in a sea of highly structured chaos �light or blue regions�.
The linear scale of the leakage is represented in the plain
unstructured �nonfractal� escape basins in black or dark blue.
The insets in the ETD for a=−0.1 in Fig. 7 show the behav-
ior for a→−0. For examples of corresponding orbits �that
are not hindered by the leakage� we refer to the bulk of
literature triggered by the coining paper, Ref. �14�.

We now investigate how the position of the leakage af-
fects the phase-space structure in the ETDs for a�0. In Fig.
8 we show for five different values of the geometry param-
eter a four diagrams corresponding to four off-centered leak-
age positions. More precisely, each diagram line provides the
ETDs for the leakage positions 2, 3, 4, and 5 as explained in
Fig. 2.

Under the shift of the leakage from the center to the bor-
der, islands representing never escaping orbits �partly� disap-
pear when their corresponding quasiperiodic orbits are
�partly� blocked by the leakage in configuration space, see
the lower diagram line �e� in Fig. 8. In contrast to that be-
havior, lemon billiards with phase-space that is dominated by
chaotic motion are not profoundly affected by the leakage
position, see diagram line �b� corresponding to a=−1 in Fig.
8.

IV. MEAN ESCAPE TIME DISTRIBUTIONS

For billiards the �mean� escape time distribution has been
studied both experimentally and theoretically, see in addition
to the previously cited works, Ref. �39� and references
therein. To be precise, we define the mean escape time as

2ε

FIG. 4. �Color online� Escape time diagrams for the Birkhoff
phase space, i.e., the �s , p� plane, and for a=1. The color of a point
codes the number of reflections before escape through a circular
central leakage �upper diagram line�, and decentrally placed leak-
ages �lower line�. White points represent bounded motion �maximal
number of specular reflection is Nmax=10 000�, all other points rep-
resent starting positions of escape orbits. The lighter the color, the
larger the number of reflections �see scale in Fig. 3�: black
�nesc=1�, white �nesc=Nmax�. Upper line, from left to right: hole
radius �=0.01, �=0.05, �=0.1, and �=0.2. Lower line: decentral
disk positions 2, 3, 4, and 5 �see Fig. 2� for fixed radius �=0.1.

pos5

FIG. 5. �Color online� Escape time diagrams for the stadium
billiard with central circular hole of radius �=0.05 for varying val-
ues of a�0. Values for a from left to right: 0.1, 0.2, 0.3, 0.4 �upper
diagram line�, 0.5, 0.8, 1.4, 2.1 �lower diagram line�. Inset: ETD for
a=0.1 but for the tangential leakage position 5.
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FIG. 6. �Color online� Iteration maps for lemon-shaped
�a=−1.0, a=−0.5�, circle �a=0�, and stadium �a=0.5, a=1.0�
billiard for a centered �position 1 in Fig. 2� circular leakage with
radius �=0.05. The diagram plane is the �full� phase-space region
�0�s�1, −1� p�1� �see also Fig. 3�. Black points indicate an
escape after a single reflection when the trajectory begins at the
corresponding starting position in phase-space �s , p�. Red points
represent trajectories which end up in the hole after two reflections,
green and blue correspond to three and four reflections, respec-
tively. White indicates a survival after four reflections.
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�nesc� � �nesc�s,p��/Nmax, �2�

where brackets �·� on the right hand side denote the average
over the phase-space �0�s�1, −1� p�1� and nesc�s , p� is
the escape time �number of reflections� for each starting
phase-space position �s , p� of the trajectory. As throughout
the paper, Nmax is the maximal number of reflections.

A. Phase-space dominated by chaotic motion

In Fig. 9 we plot the mean escape time vs the leakage size
for five different hole positions. As expected, for the hyper-
bolic cases a=0.5 and a=1 all curves are close to a power-
law behavior. The power-law approximation of the decay is
better the smaller the hole size: in Fig. 10 we plot the scaled
mean escape time for a=1 vs the hole radius for small values
of the leakage size 10−4���10−1. As can be seen in the
log-log-plot, for small leakage sizes, the mean escape time
decays as a power of −1. For large hole sizes, that is, of the
order of the system size, finite-size effects cause deviations
from the theoretical curve.

In the following we show that it is sufficient to consider
the billiard map with strongly chaotic dynamics as a stochas-
tic map in order to explain the power law for the mean es-
cape time dependence on the leakage dimension. Let P�n�

denote the probability that the particle leaves the system after
n elastic reflections. Denoting with p the probability to leave
the system in a time step, the survival probability is then
given by

Psurv�n� = �1 − p�n �
n	1

e−pn. �3�

The probability for the particle not to leave the system
through the leakage during the first n−1 reflections, but at

a)

c)

d)

b)

e) a=−0.03 a=−0.01a=−0.05

FIG. 7. �Color online� Escape time diagrams for various param-
eter values a�0 for fixed circular hole radius, �=0.05, that is cen-
tered. Nmax=10 000. Left to right: −1.97, −1.9, −1.8, −1.7 �a�, −1.6,
−1.5, −1.4, −1.3 �b�, −1.2, −1.1, −1.0, −0.9 �c�, −0.8, −0.7, −0.6,
−0.5 �d�, −0.4, −0.3, −0.2, −0.1 �e�. Insets: ETD for a=−0.05,
−0.03, and a=−0.01.
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FIG. 8. �Color online� Escape time diagrams for four decentral
positions of a circular hole. �=0.05 is fixed, N=10 000. Left to right
in a diagram line: leakage position 2, 3, 4, and 5. a=−1.9 �a�,
a=−1.0 �b�, a=−0.7 �c�, a=−0.5 �d�, a=−0.2 �e�.
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FIG. 9. �Color online� Mean escape time distribution depen-
dence on circular leakage position for a=0.5 �solid symbols�, and
for a=1 �open symbols�. The bold line is the power law 1/�.
Curves are arbitrarily normalized to coincide at �nesc�=1.
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time step n, is given by P�n�= Psurv�n−1�
 p. Putting this
together we have

�nesc� = 
n=1

�

nP�n�

=
p

1 − p

n=1

�

n�1 − p�n

=
p

1 − p
�q

d

dq
n=0

�

qn�
q=1−p

=
p

1 − p
� q

�1 − q�2�
q=1−p

=
1

p
, �4�

where we here consider the limit Nmax→�. Since the hole
represents a stripe in phase-space, the escape probability in
each time step is p=� /A, A being the total area in phase-
space. Hence we obtain �nesc���−1 in good agreement with
the data for ��1.

B. Phase-space dominated by regular motion

Figure 11 shows the mean escape distribution for the qua-
siregular case a=0.1. We mean by quasiregular the case
when the Lyapunov exponent of a hyperbolic system is posi-
tive but close to zero �as for a→0�. As a consequence, the
ETDs are dominated by quasiregular orbits �see, e.g., light or
blue regions in Fig. 5�. In contrast to Fig. 9, only for the
tangential leakage position can the mean escape distribution
be approximated by the 1/� power law. We can understand
this behavior because for the billiard with the tangential leak-
age whispering-gallery orbits can leave the system �see also
inset in Fig. 5�. All other data curves corresponding to posi-
tions 1–4 �see Fig. 2� lie between the 1/� law and a 1−�
curve, the origin of which will be explained later.

In Fig. 12 we plot the mean escape times of billiard sys-
tems whose distributions can be well approximated by either
theoretical curve. Strikingly, systems dominated by regular

motion have distributions that follow the 1−� law, and sys-
tems with phase-space dominated by chaotic motion have
distributions that can be well approximated by the 1/� law.
Note that in contrast to the survival probability function
Psurv�t� measurements in the literature for different mixed
chaotic systems �39�, P��� cannot be approximated by simple
crossovers of power laws or exponential decays. The fine
structure of the P��� curves for the mixed phase-space mir-
rors the dependence on position and extent of resonances,
and leakage position.

If the phase-space is dominated by regular regions, leak-
ing the phase-space has the effect that the regular regions in
the Poincaré surface of section are flooded by regions of
escape. For the integrable circle billiard, being the case
a=0, this fact is straightforward to see. Consider a hole in
the unit circle billiard centered in the middle, with radius
��1. Trajectories that have a tangential intersection with the
hole must satisfy

�cos���� = � , �5�

if � denotes the incident angle, see Fig. 1. Due to the identity
p�cos���, for every starting position s on the unit circle,
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FIG. 10. �Color online� Mean escape time distribution for small
circular leakages in a double-logarithmic plot �a=1.0�. For small
leakage sizes data are in good agreement with the theoretical curve
�power law�. FIG. 11. �Color online� Mean escape time distribution for

a=0.1 and five leakage positions. The bold lines are the theoretical
curves 1−� and 1/�, respectively. Curves are arbitrarily normalized
to coincide at �nesc�=1.
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FIG. 12. �Color online� Mean escape time distribution. Average
escape time vs linear hole size. The bold lines are the theoretical
curves 1−� and 1/�, respectively. Curves are arbitrarily normalized
to coincide at �nesc�=1.
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trajectories with momentum −�� p�� will escape through
the leakage. As a consequence, the fraction of escape orbits
Aesc in the �s , p� plane, 0�s�1, −1� p�1, is Aesc= 2
�

2 =�
from which we read off the mean escape time �in the limit
Nmax→�� as �nesc�=1−�.

V. CONCLUSIONS

We studied the dynamics of leaking billiards. Rather than
open the boundary we considered leakages inside the bil-
liard. Our investigation was motivated by works on leaking
Hamiltonian systems together with recent applications. As a
suitable one-parameter billiard system we focused on the
stadium-lemon-billiard family as a prominent chaotic system
that can be tuned from fully hyperbolic behavior to a mixed
chaotic behavior. In the context of leaking Hamiltonian sys-
tems �37�, it is known that leaking is capable to reveal the
phase-space structure �i.e., the chaotic saddle�, here repre-
sented in terms of escape time diagrams. We demonstrated
how the position and geometry of the leakage affects the

dynamics. The mean escape time dependence on the size of
the leakage is algebraic—as known for openings of the
boundary for hyperbolic systems �24�. This finding corre-
sponds to an exponentially decaying survival probability dis-
tribution and could be fully explained by a stochastic map
approach. On the other hand, for systems where the phase-
space consists to a large extent of regular orbits, we numeri-
cally found a linear dependence of the mean escape time on
the leakage dimension as �nesc��1−�. Regions of regular
orbits in phase-space are flooded by escape domains as the
leakage increases. For the integrable circle billiard we com-
prehended the phenomenon analytically.

In a slightly broader context, our investigations extend
recent work on time continuous leaking systems �36� and
represent examples for leaking Hamiltonian systems in their
configuration space.
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