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A. Faissal Brito,1 José Arnaldo Redinz,2 and J. A. Plascak’

1Departanwm‘o de Fisica, Instituto de Ciéncias Exatas, Universidade Federal de Minas Gerais, C. P. 702-30123-970,

Belo Horizonte, MG, Brazil
2Deparlamento de Fisica, Universidade Federal de Vigosa 36570-000, Vicosa, MG, Brazil
(Received 11 November 2006; revised manuscript received 19 January 2007; published 9 April 2007)

We present an analysis of mapped surfaces obtained from configurations of two classical statistical-
mechanical spin models in the square lattice: the g-state Potts model and the spin-1 Blume-Capel model. We
carry out a study of the phase transitions in these models using the Monte Carlo method and a mapping of the
spin configurations to a solid-on-solid growth model. The first- and second-order phase transitions and the
tricritical point happen to be relevant in the kinetic roughening of the surface growth process. At the low and
high temperature phases the roughness W grows indefinitely with the time, with growth exponent S,
=(0.50(W~ tPv). At criticality the growth presents a crossover at a characteristic time ., from a correlated
regime (with B,,# 0.50) to an uncorrelated one (B, =0.50). We also calculate the Hurst exponent H of the
corresponding surfaces. At criticality, 3,, and H have values characteristic of correlated growth, distinguishing
second- from first-order phase transitions. It has also been shown that the Family-Vicsek relation for the growth

exponents also holds for the noise-reduced roughness with an anomalous scaling.
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I. INTRODUCTION

In recent years, the emergence of rough surfaces under
far-from-equilibrium conditions has been a central theme in
both experimental and theoretical statistical physics [1-3].
The application of self-affine fractals and scaling methods
was essential to the progress that has been made towards the
understanding of these nonequilibrium phenomena. The stan-
dard tools used to describe various self-affine structures ob-
served in disordered surface growth are the roughness «, the
Hurst H, and the growth B,, exponents [4—6]. The central
goal of this approach is to provide information about the
correlations between fluctuations of a space and/or time
varying property of the system. Theoretical modeling of self-
affine growth processes frequently used some of the models
investigated in critical phenomena, e.g., directed percolation
and random field Ising [4] and sine-Gordon [7] models.

On the other hand, the inverse problem, i.e., using the
roughness exponents to study the main features of the phase
diagram of equilibrium spin models, has not been much ex-
plored up to now. In 1997, de Sales et al. [8] have mapped
cellular automata (CA) configurations on solid-on-solid-like
profiles and used the Hurst exponent H to classify the el-
ementary Wolfram CA rules. They have also shown that this
exponent can be used to detect the frozen-active transition in
the one-dimensional Domany-Kinzel CA (DKCA) [8]. At-
man et al. [9] have also determined the exponent 3,, for a
growth process generated by the spatiotemporal patterns of
the DKCA. They have shown that S, presents a cusp at
criticality and conjectured that the growth exponent method
can be used to detect phase transitions in other models. The
advantage of this method to find the phase diagram of the
DKCA is that it was not necessary to wait for the system to
“thermalize,” a process which often expends a lot of compu-
tational time. Recently, this method was extended to the
Potts and clock models on the square lattice [10] and to the
Ising model in d=1 with long-range interactions [11]. It has
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been shown that the Hurst exponent method is able to detect
the equilibrium phase transitions and provides accurate nu-
merical determination of the critical temperatures of these
models without any reference to thermodynamic potentials,
order parameters, or response functions. The procedure used
by these authors consists in mapping the spatiotemporal pat-
terns generated by these models to a one-dimensional solid-
on-solid particle deposition. At criticality, the scaling proper-
ties of the interface can be related to those of the original
spin model. Similar methods were also used to study the
Edwards-Wilkinson equation with columnar noise [12],
sandpile models [13], and also the contact process [14].

We intend here to deepen the application of the surface
growth tools to magnetic spin models. The previous works in
magnetic spin systems [10,11] have been restricted to the
static (Hurst exponent) properties of the one-dimensional
mapped interfaces. In this work, we extend this technique,
measuring the Hurst and also the growth exponent of two-
dimensional surfaces generated by the g-state Potts model
and the spin-1 Blume-Capel model on the square lattice.
These models not only can be applied to real systems
[15-18] but also present rich critical behaviors: second- and
first- order phase transitions and a tricritical point. Our pri-
mary aim is not just to determine the criticality and phase
diagrams of the two-dimensional models, since in the litera-
ture there are plenty of very accurate methods using, for
instance, Monte Carlo simulations [19]. We are mainly inter-
ested in obtaining the dynamic critical behavior of their
growth surfaces and determining their corresponding univer-
sality classes which, from a theoretical point of view is, by
itself, important in what concerns the dependence of the
critical exponents on the dimensionality. We thus investigate
the behavior of the surfaces generated by these models at
criticality through the roughness and the exponents «, H, and
B,, and compare them with those coming from other one-
dimensional realizations.

The plan of this paper is as follows. In Sec. I we describe
the models and define the growth process which maps spin
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configurations into surfaces, as well as the scaling relations
expected for the system. In Sec. III, using this mapping, we
present numerical results for the growth exponent 3,, and for
the Hurst exponent H, which characterize the phase transi-
tions of the g-state Potts model and the spin-1 Blume-Capel
model on the square lattice. We also discuss the validity of
the Family-Vicsek scaling for the noise-reduced roughness
w". Finally, we conclude and indicate future directions of
this work in Sec. IV.

II. MODELS, SIMULATIONS, AND FORMALISM

A. Models

One of the models of this study is the g-state Potts ferro-
magnet [18,20], consisting of spin variables ¢; which may

take on ¢ discrete values 0;=0,1,...,(¢g—1) and are coupled
by the dimensionless Hamiltonian
- BHp=K2>, 80;.0)), (1)

(ij)

where &(0;,0;) is the Kronecker delta function [8(0;,0;)=1
when o;=0; and &0;,0,)=0 when o;# 0], the sum runs
over all pairs of nearest-neighbor sites in the lattice, K
=J/kgT, kg is the Boltzmann constant, 7 is the temperature,
and J>0 is the coupling constant. On the square lattice, in
the thermodynamic limit, the g-state Potts ferromagnet pre-
sents second-order phase transitions with distinct universal-
ity classes for g=2, 3, and 4 and first-order phase transitions
for ¢g=5 at the transition temperatures T,(q)=1/In(1+gq)
(in units of J/kg). The g=2 Potts model is equivalent to the
spin-1/2 Ising model.

The other model we consider is the spin-1 Blume-Capel
model [21,22] which can be viewed as a simple generaliza-
tion of the Ising model where the spin variables o; may take
on the discrete values o;=-1,0,1 and are coupled by the
dimensionless Hamiltonian

N

D
_BHB(j:KE(T[(Tj—_E(T%, (2)
(ij) kBTi=l

where the first sum here also runs over all pairs of nearest-
neighbor sites, D is the single-spin anisotropy parameter, and
N is the number of sites. On the square lattice, this model
presents a rich phase diagram with ordered ferromagnetic
and disordered paramagnetic phases separated by a transition
line that changes from an Ising-like continuous phase transi-
tion to a first-order transition at a tricritical point located at
kgT,/J=0.609(4) and d,=D,/J=1.965(5) [23,24].

B. Simulations

Here we consider numerical simulations of the models
defined above on square lattices with N=L X L sites submit-
ted to periodic boundary conditions. For updating the spin
configurations {o;(r)} we use a single spin-flip Monte Carlo
heat bath algorithm.

The surface growth process consists in accumulating
(summing) all the values assumed by the variables o(1")
over the first + Monte Carlo time steps. Specifically, to a
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unique sequence of spin states ({o,(0)},{o;(1)},...,{c()})
corresponds a surface {h;(z)} with the height h;(¢) at site i
given by

t

h(t) = 2 pit"), (3)

t'=0

with p;(t')=0(¢t') for the spin-1 Blume-Capel model and
pi(t")=+1 or =1 when o;(t')=0 or 1 for the g=2 Potts
model, p;(t')=+1, 0 or =1 when o(t')=0, 1, or 2 for the
=3 Potts model and so on. The model (3) defines a process
of the solid-on-solid type, resulting in an aggregate which is
compact (no vacancies) and without surface overhangs. The
interface advances in time by deposition (p>0) and evapo-
ration (p<0) of atoms on the initial substrate. In the low-
temperature phases of the spin models we expect that the
deposition processes dominate and the interface average
height increases with time. At high temperatures, the two
processes, deposition and evaporation, take place with equal
probability and the velocity of the interface goes to zero.
Thus the surface {h;(r)} can be thought of as a driven inter-
face whose dynamics, as we will show, reflects the critical
properties of the models.

Our simulations were performed with initial configura-
tions in which all the spins were ordered in the larger spin
value [for example, {0;(0)=1} for the Blume-Capel model]
and the initial deposit substrate was flat ({#;(0)=0}). Al-
though the final results are independent of this initial condi-
tion, it is closer to the flat substrate condition in surface
growth simulations. The system size in the simulations was
changed between L=32 and L=1024. The maximum Monte
Carlo time ranged from about t=10% to t=10°. To obtain
good statistics we took averages over 100-2000 independent
runs, depending on the model, the temperature, and the sys-
tem size.

C. Formalism

We turn now to the basic scaling analysis of the interface.
We characterize the development of the fluctuations of the
two-dimensional interface [with heights /;(r)] at time 7 over a
window of size € by the rms displacement function, or local
roughness, W(e, ) given by

W(e,1) = V(B = 12, (4)

where the brackets (- --); denote an average over the window

position i=1,2,... ,L?. The averages 7 and h? are defined
through

f=§§ﬂa, (5)

with the sum over the positions 7 inside a two-dimensional
window of linear size € centered at site 7;.

At long times the roughness behaves as [4-6] W(e,t
>1,)~ € where 1, is a crossover time and H is the Hurst
exponent. In this regime the roughness W(e,r) can distin-
guish two possible types of profiles. If it is random or even
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exhibits a finite correlation length extending up to a charac-
teristic range (such as in a Markov chain), then W~ €"/? as in
a normal random walk. In contrast, if the self-affine profile
has infinitely long-range correlations (no characteristic
length), then we expect H# 1/2.

The scaling ansatz for the global roughness W(L,?)
=W(e=L,t) with respect to time ¢ and the size L is [5,25]

W(L,1) ~ L"‘f( o ) (6)

where f(u) is a universal scaling function, « is the roughness
exponent, z,,=a/ B, is the dynamic exponent, and S,, is the
growth exponent. The function f(u)=const, at long times (¢
>1,), and f(u) ~ uPv at short times (1<<t,). So, at short times,
we expect W(t)~ tPr». At long times, when the lateral (spa-
tial) correlation length of the growth process equals the lat-
tice length L, the roughness saturates and behaves as
W(L,%)~ L* The crossover time 7, between these two re-
gimes grows as .~ L. The particular case in which W does
not saturate, growing instead as W(L,t) ~ "2, corresponds to
uncorrelated growth. Thus the exponent « is not defined for
this case and f,,=1/2. Typically, the exponents H=p,,
=1/2 are characteristic of the random deposition (RD)
growth model, in which a column is randomly chosen along
the substrate and a particle is launched vertically until it is
deposited at the top of the selected column. In general, H and
a are most often the same thing, in particular when the
simple Family-Vicsek scaling applies [5,25]. However, «
# H has been observed in wood [26] and granite fracture
surfaces [27].

Equation (3), in fact, defines a model of an aggregate of
noninteracting particles deposited or evaporated by corre-
lated mechanisms (the Potts model and Blume-Capel model
dynamics). In the present case, away from criticality, the
correlation length ¢ and correlation time 7 of the spin models
are finite, and the corresponding noise in the deposition pro-
cess is correlated only over short ranges. We expect that in
this case, for times greater than 7, the noise appears uncor-
related, and that the RD growth exponents, H=,,=1/2, are
verified from the first steps in the growth process.

In contrast, at a continuous phase transition, ¢ and 7 di-
verge and the correlations are long ranged, giving a power
law decay of the noise autocorrelation. In this case, the ex-
ponents H and ,BEE) should deviate from 1/2. From Eq. (3)
we can actually estimate the value of the growth exponent
Bif) at a continuous transition temperature T=T,. We get (a
similar result was obtained in Refs. [28,9])

o_1_P
B, e

(L — ), (7)
where B, v, and z are, respectively, the order parameter
(m(T)~|T-T,P), correlation length [&T)~|T-T.7"], and
dynamic critical [ 7(L) ~ L*] exponents of the spin model. For
the two-dimensional (2D) Ising universality class, the critical
exponent values are S=1/8, v=1, and, within the heat bath
dynamics, z=2.17 [19,29], which results i 1n ,8(‘) =0.942. For
the g=3 (¢=4) Potts model we expect ,8 )~0.939 (0.969)
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FIG. 1. Some typical interfaces obtained from equilibrium spin
configurations of the g=2 Potts model (Ising model) on the square
lattice with L=64 at the temperatures 7=0.1345, T=1.1345=T,
and T=2.1345.

and, at the tricritical point of the Blume-Capel model, ,855)
=(.968 (we have adopted the value of z=2.17, although our
results are, within the error bars, also consistent with the
exponent z=2.198 from Ref. [29]). At a first-order phase
transition there is no long-range correlations and we expect
H=p,=1/2 even at T=T,.. However, in cases where the or-
der of the transition is difficult to be distinguished in finite
systems, these RD values cannot be attained in the simula-
tions. In the g=5 Potts model, for example, there is an ap-
parent divergence of the correlation length in the critical re-
gion and pseudocritical exponents $=0.07 and v=0.59 can
be defined [30]. By assuming the validity of Eq. (7) in this
case, we obtain ,855)20.945.

III. RESULTS

In what follows the temperature 7" is measured in units of
J/kg. Figure 1 shows typical snapshots of the surfaces gen-
erated by equilibrium spin configurations of the g=2 Potts
model (Ising model) on the square lattice with L=64. For
T#T, we observe that the surfaces appear rough down to
short length scales, whereas for 7=T, the surface presents
large fluctuations.

In Fig. 2 we show some plots of the roughness W as a
function of temperature at large arbitrary fixed times (of or-
der 2 10%) and system sizes L=32 and L=64, exhibiting
peaks at temperatures T,, around the critical temperatures of
the corresponding spin models. These results correspond to
averages over typically M =200 samples. We show curves for
the ¢g=2, 3, 7, and 10 Potts model and the Blume-Capel
model with different anisotropy parameter values (d=D/J),
including the tricritical one d,. We also observe that as we
increase the system size the peaks in W increase and become
sharper. For all the first-order transitions and the tricritical
point of the Blume-Capel model the curves exhibit cuspid-
like shapes.

From T,, at which W exhibits a peak, it is possible to
obtain the transition temperatures of the system in the ther-
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FIG. 2. The roughness W as a function of temperature at large
arbitrary fixed times and sizes L=64 (for g=2, 3, 7, and 10 Potts
model and the Blume-Capel model with different anisotropy param-
eters d=D/J, including the tricritical one d,) and L=32 (lower
curves shown only for g=2, g=3, d=1, and d=0).

modynamic limit. The usual finite-size scaling approach pro-
vides in this case first- and second-order transition lines
which are in good agreement with the exact (or previous
approximated) values of the corresponding models (they
agree, within the error bars, with those from Refs. [23,24] for
the Blume-Capel model).

A. Growth exponent 3,

The curves shown in Fig. 2 are for fixed sizes and time.
For a fixed size L, as the time increases, the roughness W
grows indefinitely for any non-null temperature, which is
characteristic of an asymptotic uncorrelated dynamics. Simi-
lar results were obtained for a probabilistic cellular automa-
ton [28] and for the contact process [14] where the saturation
of W can be observed only if the averages include the
samples which reach the absorbing state (in which the inter-
face is pinned and W remains fixed) exhibited in these sys-
tems. At temperatures away from criticality, the roughness is
independent of the system size L and the fitted straight lines
to the data show that, after a fast transient, the roughness
increases with f3,,=0.50, characteristic of uncorrelated

T T T
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T T
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A
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0 2 3 4 5
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FIG. 3. Log-log plot of the roughness W vs time ¢ at T=T, for
different models and L=64. The dashed line is a guide for B,
=0.50. The curves are for the g=2 and ¢g=7 Potts model and for the
Blume-Capel model with d=1.9712 and d==d,. The error bars are
smaller than the symbol sizes.
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FIG. 4. (a) Log-log plot of the roughness W vs time ¢ at T
=T. for the g=2 Potts model with various values of L. The arrow
indicates the characteristic time 7. according to the text. (b) The
same as in (a) but for the Blume-Capel model with d=1.9752. (c)
Extrapolation of ,855) vs L™% for the g=3 (¢=0.626) Potts model
and for the Blume-Capel model with d=d, (¢$=0.89).

growth. The situation is, however, quite different at 7. In
Fig. 3 we show double logarithmic plots of the roughness W
vs time ¢t for the g=2 and ¢g=7 Potts model and for the
Blume-Capel model with d=1.9712 and d=d, at their tran-
sition temperatures. We observe, in general, for T=T,, the
existence of two distinct linear portions in the curves of W,
whose intersection point defines a size dependent character-
istic time 7.(L). This crossover defines two straight lines, one
for long times, with the same slope as for T far from T,
B,,=0.50, and another one for r<t,, with ,B )>0.50 charac-
teristic of correlated growth. The data used to determine ﬁ

were then obtained for short times (+<<10%) and M= 2()00
samples. At the second-order transitions we observed a sig-
nificant dependence of the values of ,Bff) with the system
size, as can be seen in Fig. 4(a) for the g=2 Potts model. At
the first-order transitions this dependence of ,85:") on L is very
weak, as can be seen in Fig. 4(b) for the Blume-Capel model
with d=1.9752. We have thus extrapolated the data of BSVC)
for 1/L— 0 and obtained values which, at the second-order
transitions, agrees well with the values predicted by scaling
arguments, according to Eq. (7). Some examples of the esti-

046106-4



DYNAMICS OF ROUGH SURFACES GENERATED BY TWO-...

TABLE I. Summary of the exponents ﬂE:) and H for the g-state
Potts model (P,) and for the Blume-Capel model (BC,). The values
in the second column are the results coming from Eq. (7) and those
in the third and fourth columns are from the present simulations.
The exponents H for g=10 and d=1.9878 are quite difficult to be
obtained because the roughness saturates very fast as a function of
€ (€'—0). The exponents are also shown for directed percolation
(DP), contact process (CP), and Domany-Kinzel cellular automata
(DKCA) universality classes in d=1+1 dimensions according to

[9].

Model BY B H
Py 0.942- -- 0.945(4) 0.725(6)
P 0.939--- 0.937(1) 0.730(4)
Py 0.969- - 0.970(6) 0.735(5)
Pys 0.945--- 0.941(1) 0.714(5)
Py 0.830(6) 0.626(8)
P, 0.800(1) 0.50(1)
Poio 0.699(4)

BCg 0.942--- 0.950(8) 0.715(6)
BCye 05 0.942- - 0.946(7) 0.703(7)
BC, -1 9655 0.968 - 0.970(3) 0.709(5)
BCyei o710 0.820(7) 0.468(5)
BC=1.9878 0.501(2)

DP 0.8405 0.643
CP 0.839(1) 0.63(3)
DKCA, o5 0.82(2) 0.61(3)
DKCA, -1 0.99(1) 0.99(2)
DKCA, -1 0.81(1) 0.60(3)
DKCApzzo 0.78(2) 0.61(3)

mate of ,855) for 1/L—0 are shown in Fig. 4(c). The numeri-
cal results are given in Table I and are also plotted in Fig. 5.
The exponent ¢ in Fig. 4(c) has been adjusted in order to get
the minimum )2 in the corresponding linear fittings (these

1.00 ¢

0.90F o—o B

0.80 = H

0.70 &

0.60 F ()

050F T T T T T T T T T
1 2 3 4 5 q 6 7 8 9 10

1.00

0.90 ; o . / o—o B(C)

0.80 ; Tricritical Point .. HW

0.70

0.60 (b)

0.50 ; 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1

1.950 1.960 1.970 1.980 1.990
d

FIG. 5. Growth exponent Bff) and Hurst exponent H vs (a) the
number of states g of the Potts model and (b) the anisotropy param-
eter d of the spin-1 Blume-Capel model.
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finite-size corrections to the exponent S, are just ad hoc
guesses, and we are not aware of any better scheme for such
extrapolation).

At a first-order phase transition there are no long-range
correlations developing and we should expect ,BEVC)= 1/2.
However, some models can present very large correlation
length and correspondingly large critical slowing down at the
transition and the true first-order behavior can only be caught
for very large lattice sizes. In the g=5 Potts model, for ex-
ample, the estimated correlation length is of order of 2000
lattice spacings and the pseudocritical exponents B==0.07
and v=0.59 [30] lead to a prediction of B55)=0.945 which,
even in this case, agrees very well with the obtained numeri-
cal value 0.941(1). From Table T we can note that a ,855)
# 1/2 is also obtained for ¢=6,7, and ¢g=10 and d=1.9712
(we are not aware, in these cases, of any pseudocritical ex-
ponent to compare with), meaning that our limited system
sizes do not attain the correct value ﬂi:): 1/2 in the thermo-
dynamic limit. However, as can be seen in Fig. 5, our results
show that for increasing values of ¢ in the Potts model and d
in the Blume-Capel model, the exponents ,855) approach in-
deed the expected value 1/2, corresponding to uncorrelated
growth. We can also see that for the second-order transitions
there is a quite good agreement of the extrapolated values to
those coming from the scaling relation (7).

To determine the crossover time 7.(L) we measured the
intersection of the two fitted lines, one with 83,,= BE:)(L) for
short times and the other with ,,=0.5 for long times, as
shown by the arrow in Fig. 4(a) for ¢g=2. The maximum size
in which we studied this crossover was L=256 due to the
large computational demand necessary, in some cases, to ob-
serve the (3,,=0.50 regime. At the second-order transitions
we obtained that .~ L1 with the values of the exponent z;
agreeing with the value of the dynamic critical exponent z of
the spin model within the heat bath dynamics. At the first-
order transitions we obtained curves for 7.(L) which saturate
as L increases.

We can understand the crossover (shown in Fig. 3) in the
roughness dynamics at T, as a consequence of the decay of
the long-ranged correlations in the spin models at criticality.
In this sense the characteristic time 7, seems to be a measure
of the finite-size relaxation time 7 of the spin models dynam-
ics at criticality, in support to the fact that we observed z;
=z.

B. Hurst exponent H

In order to characterize the spatial correlations in the
grown surfaces at the equilibrium regime (ﬁif)zO.S) of the
spin models, we calculated the local exponent H at times
greater than f.. Contrary to what happens in obtaining the
growth exponent, in this case the procedure is much more
time consuming. We have considered here t=2X 10° and
M =200 samples. As an example, Fig. 6 shows log-log plots
of the local roughness W vs the window size € for the
Blume-Capel model at the tricritical point (a) and for the ¢
=7 Potts model at the first-order transition (b). The power-
law portions of the curves, before the saturation regime,
yields the Hurst exponent H, which in these cases give H
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FIG. 6. Log-log plot of the roughness W at times greater than 7.
vs window size € for (a) the Blume-Capel model with d = d, and (b)
the g=7 Potts model. The error bars are smaller than the symbol
sizes.

=0.709(5) and H=0.50(1), respectively. Similar behavior is
obtained for other values of ¢ and d, whose values are given
in Table I and depicted in Fig. 5, where one can clearly see
that the local Hurst exponent reaches the expected value H
=1/2 much faster than the growth exponent.

The values of the local roughness W(e) seems to be a
measure of the average size of the spin islands or magnetized
domains limited by the correlation length £. In this sense, the
exponent H is a measure of the local spatial correlations at
the phase transitions. In fact, at continuous phase transitions
we obtained H=0.7, reflecting the long-range correlations,
while at the first-order transitions we obtained H=1/2. We
also observed that the crossover length € (L) between the
power-law portions of the curves of W(e) and the saturation
regime [see Fig. 6(a)] grows as a power law € (L) ~ L* (with
x=1) for the second-order transitions and tricritical point
and saturates to a finite value at the first-order transitions.
This saturation of € is hard to be seen in the very weak
first-order transitions but is very fast in the other cases. For
the g=10 Potts model and for the Blume-Capel model with
d=1.9878, for example, € is of order of only ten lattice
spacings and the estimates of the local exponent H are quite
difficult. The saturation of €"(L) for a small finite value at the
thermodynamic limit is also observed in all models at tem-
peratures away from 7.

C. Family-Vicsek and anomalous scalings

The fact that the roughness W grows indefinitely as time
increases, even at the second-order critical temperatures, as
can be seen in Fig. 3, is related to the intrinsic noise in the
Monte Carlo algorithms. After the transients, the systems
follow a random walk in the phase space, adding a Gaussian
noise to the temporal behavior of the mapped surface rough-
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FIG. 7. Log-log plot of the saturation values of the noise-
reduced roughness W* as a function of L. The data are for the
Blume-Capel model with d=0, d=1.9172, and d =d,. The error bars
are smaller than the symbol sizes.

ness W. This noise gives a diffusive factor in the thermal
averages, resulting in the asymptotic ¢'/> behavior. This
means that @«— o and that the Family-Vicsek scaling (6),
namely z,,=a/B", is no longer valid. A way to extract the
effect of the intrinsic noise from W, and to study the evolu-
tion of the roughness without this trivial growing, can be
done by defining the new roughness W such that

W(e 1) =t"’W(e,1). (8)

So, the noise-reduced roughness W(e, 1) should have a be-
havior similar to regular surface growing processes, scaling

as W(e,t>1 )~6H at short times as W*(t)~tﬁw and at

long times as W"(L,%)~ L“ where also 7, ~sz It means
that for #>1, and for a given L, W" is a constant and the t1m¢
behavior of W~ /2 is preserved. We expect that H =H, z,
=z, ,8:;= B,—0.5, and & can now be obtained through the
graphs of W(L,%) vs L. In Fig. 7 we show typical examples
of the saturated value of W* as a function of the system size
L. We observed that for the first-order transitions the curves
of W*X L saturate, which results in a"=0 at the thermody-
namic limit. This is consistent with a finite correlation length
in these cases. At the tricritical point and second-order phase
transitions, the fitted straight lines yield the roughness expo-
nent «". From this we can show that the Family-Vicsek scal-
ing [Eq (6)] holds for these cases, with «" in place of a and
z,=a’/ ,8 For instance, for the Blume-Capel model at d
=0 we have, from Table I, ,8 =0.942-0.5=0.442. This gives

: —Z,B =0.959, which is comparable to the measured value
a"=0.954(7) from Fig. 7. Similar results are obtained for
other second-order transitions, including the Potts model. At
the tricritical point we have a*zzﬁ:,zl.OZ, suggesting that
this transition may lead to a surface with super-roughening
behavior (the term super-roughening has been used when the
global exponent o> 1).

A log-log plot of the noise-reduced roughness W" as a
function of time ¢ for the Blume-Capel model with d=0 is
shown in Fig. 8. The inset in this figure shows these same
data collapsed for a“=0.954(7) and z=2.17. The collapse
fails for short times because the system is still uncorrelated.
We also observed that at the second-order transitions the lo-
cal roughness exponent H is different (smaller) from the glo-
bal value o which means that the surfaces are not self-
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FIG. 8. Log-log plot of the noise-reduced roughness W* as a
function of time ¢ for the Blume-Capel model with d=0. Inset
shows this same data collapsed for a=0.954(7) and z=2.17.

affine. Since the local and global surface fluctuations have
different scaling exponents, the noise-reduced roughness pre-
sents intrinsic anomalous scaling [27,31,32]. For example,
for the Ising universality class we obtained a"=0.954(7)
while H=0.72, for the Blume-Capel model with d=d, we
obtained a”"=0.98(2) while H=0.709(5). This fact is consis-
tent with the idea that at the continuous transitions the cor-
relations in the spin models are distinct at large and small
length scales. As expected, for first-order transitions the
anomalous scaling is stronger than for second-order ones
(note that in this case one has a*=0 and H=0.5).

IV. CONCLUSIONS

Defining a growth model based on the dynamics of the
g-state Potts model and of the spin-1 Blume-Capel model on
the square lattice, we have studied the phase transitions in
these systems through the roughness technique.

We have shown that the growth surfaces exhibit distinct
characteristic dynamics, measured by the growth exponent
B,,» and local spatial correlations, measured by the Hurst
exponent H. For T# T, the growth is always uncorrelated
and B,,=0.50 and H=0.50. At T=T, the roughness presents
a crossover from a correlated regime (£<r,) to an uncorre-
lated one (¢>r.). At this crossover the growth exponent
changes from a value ,855) >0.50 to B,,=0.50. The crossover
time ¢, is a measure of the finite-size relaxation time 7 of the
spin models at 7.

For a fixed time 7>t the roughness W has sharp peaks at
temperatures 7,,, whose extrapolated values agree well with
the static critical temperatures of the spin models on the
square lattice. The peaks are rounded at the second-order and
cuspidlike at the first-order phase transitions and at the tric-
ritical point.
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The results of this study point out that one can determine
the order of the transition, the critical temperature, as well as
static and dynamic critical exponents of spin models through
the same scaling methods applied to surface growth phenom-
ena. Our results for the Hurst exponent at equilibrium (¢
>1,) are consistent with long-range correlations (H=0.7) at
the second-order and short-range correlations (H=0.5) at the
first-order phase transitions. Although the present approach
is restricted to the Potts and Blume-Capel models on the
square lattice, we believe that our results can be extended to
any transition observed in lattice spin models.

From Table I one can note that the dynamic and static
surface exponents (B, and H) for g=2, d=0, and d=1.95
(i.e., second-order phase transitions) agree within the error
bars, being in the same universality class, as expected. For
q=3, g=4, and at the nonclassical tricritical point, the expo-
nents are different and in agreement with Eq. (7). However,
in this case, the values for the exponents seem not to change
quite as much from different universality classes. The change
in the exponents are, nevertheless, clear when compared to
the one-dimensional versions of surface growth, shown in
Table I for directed percolation (DP), contact process (CP),
and Domany-Kinzel cellular automata (DKCA) universality
classes in d=1+1 dimensions, according to [9].

The Family-Vicsek relation holds for the noise-reduced
roughness W* with an intrinsic anomalous scaling, character-
istic of surfaces which are not self-affine.

We have chosen to apply the growth exponent method to
these spin models because they are prototypes of statistical
mechanical systems exhibiting second- and first-order phase
transitions and also a tricritical point. Although they were
originally proposed as simple models of ferromagnetic sys-
tems, today they have been applied to a diverse range of
phenomena such as the freezing and evaporation of liquids,
the folding of proteins, social networks, neural networks, and
glassy substances. Thus the results found here might be help-
ful in future investigations of these phenomena.

Another problem we can address using this roughness
method is the study of phase transitions of the Kosterlitz-
Thouless type, such as that which occurs in the XY model on
the square lattice. Also, the universality of two-dimensional
disordered spin models, in which the Harris conjecture fails
[33], could also be addressed by this approach. We intend to
examine these questions in a future work.
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