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We study the dynamics of a one-dimensional discrete flow with open boundaries—a series of moving point
particles connected by ideal springs. These particles flow towards an inlet at constant velocity, pass into a
region where they are free to move according to their nearest neighbor interactions, and then pass an outlet
where they travel with a sinusoidally varying velocity. As the amplitude of the outlet oscillations is increased,
we find that the resident time of particles in the chamber follows a bifurcating �Feigenbaum� route to chaos.
This irregular dynamics may be related to the complex behavior of many particle discrete flows or is possibly
a low-dimensional analogue of nonstationary flow in continuous systems.
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Flows are a frequent topic of research among physicists—
fluid flow �1�, traffic flow �2�, crowd movement �3�, and
granular flow �4� are just a few examples. They are of par-
ticular interest because the particles that constitute the flow
can exhibit complex behavior at certain flow parameters.
There is a large body of work focused on understanding the
cause of this motion and predicting the patterns and struc-
tures that these flows produce �1–5�.

Most flows consist of many mutually interacting degrees
of freedom and a complete description of the dynamics is
often impossible. It is not surprising then, that theories have
historically focused on a statistical description of complex
flow �6�. Several studies, however, suggest that we can un-
derstand flows at a more fundamental level. Cellular au-
tomata fluid models are an example—for certain types of
flows, the scale and particulars of collisions seem unimpor-
tant to the overall structure of the flow �7,8�. The study of
bifurcations in Taylor-Couette flow �9� suggest that the com-
plicated motion in large scale flows can result from the in-
terplay of a few chaotic degrees of freedom. Several authors
have successfully extended these ideas to the general study
of large coherent structures in fluid flow �10�. Finally, it has
recently been shown that a one-dimensional series of nonlin-
ear oscillators, when driven, can behave quite similar to
larger scale turbulent flow �11�

We seek to study complex open-boundary flow using a
bottom up approach—by studying the simplest possible
flows that exhibit complex motion. The low-dimensional
model we present here is unique because particles interact
with linear forces and the system has open boundaries. There
are many studies of low-dimensional, closed-boundary dissi-
pative systems in the literature. Examples include driven,
damped pendulums, the Lorenz equations, and driven
Frenkel-Kontorova models �12,13�. Like these driven, dissi-
pative systems, the system we present continually gains and
depletes energy, but it also allows particles to pass across
boundaries into and out of the flow. Research of complex, yet
very low-dimensional, open-boundary systems is scarce in
the literature.

We present in this communication a simple one-
dimensional flow with open boundaries that exhibits chaotic
dynamics. The system consists of a line of point particles
interacting with nearest neighbors according to a linear force
law �Hooke’s law�. These particles travel towards an inlet at
constant velocity, pass into a region where they are free to
move according to their nearest neighbor interactions, and
then pass an outlet where they are driven so that they have a
sinusoidally varying velocity. This outlet driving force con-
tinually supplies energy to the system and energy is dissi-
pated when particles exit at any point away from their equi-
librium position. As the amplitude of the outlet oscillations is
increased, we find that the resident time of particles between
the inlet and outlet follows a bifurcating route to chaos. We
discuss the resulting dynamics of this system and suggest
possible implications for larger dimensional flows.

The system consists of a one-dimensional chain of iden-
tical point particles spaced a distance S apart and connected
by ideal springs. The particles travel in the x̂ direction
and their positions are labeled xi, where i is the index i
=1,2 , . . . ,N. The number of particles N is chosen large
enough so that the flow is sustained throughout our simula-
tions. Particles undergo different dynamics as they pass cer-
tain points along the flow. Figure 1 is a schematic of the
system.

The inlet is located at x=0, the outlet at x=L, and the
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FIG. 1. Diagram of the system. A series of point particles are
connected by ideal springs and initially spaced S apart. Before
reaching x=0 �the inlet� and after passing x=L �the outlet�, each
particle is constrained to the velocities shown. A particle moves
according to its nearest neighbor interactions when between these
points.
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region between is referred to as the chamber. The initial
spacing between particles, S, is chosen large enough so that
only one particle is located in the chamber at any moment in
time. The time when particle i reaches x=0 is labeled tin

i and
is calculated tin

i = iS /v. The time when particle i reaches x
=L is labeled tout

i and is determined implicitly from the equa-
tion xi�tout

i �=L. The velocity of a particle before and after
these times is constrained as given in Eqs. �1a� and �1b�.
Particle velocities are not constrained between tin

i and tout
i ,

ẋi = v, t � tin
i , �1a�

ẋi = v + A cos���t − tout
i ��, t � tout

i . �1b�

Here A and � are the amplitude and frequency of velocity
oscillations after reaching the outlet.

If we consider nearest neighbor interactions for all par-
ticles, then the forcing functions required for these con-
straints are nontrivial. This is simplified greatly by assuming
that particles before the inlet and after the outlet are not
influenced by their neighbors; the result is that there is no
forcing for particles before the inlet, and an oscillatory forc-
ing for particles, Fi=−A� sin���t− tout

i ��, after the outlet.
This asymmetry in interaction might exist in real flows in
two ways. First, if the flow consists of agents and not par-
ticles, then the chamber simply represents a region where
agents �who normally follow simple velocity patterns� sud-
denly become concerned about nearest neighbors. A physical
example of this might be the boundary between two regions
of traffic flow, where drivers who are normally unconcerned
about the cars around them change behavior to coincide with
neighboring vehicles at this boundary. Second, for continu-
ous flow, the regions of flow directly before the inlet and
directly after the outlet might contain much more mass than
the flow within the chamber. This means that flow within the
chamber would react to the motion of neighboring regions,
but once outside, would move with little regard for what is
occurring in the chamber.

The system as a whole could be replicated experimentally
by placing the string of particles on two separate conveyors
that are separated by a distance L and that lock the particles
in place—the first conveyor operates at constant velocity as
in Eq. �1a� and the second oscillates such that particles are
driven according to Eq. �1b�.

The following are the complete equations of motion for
the particles:

xi = vt − iS, t � tin
i , �2a�

mẍi + 2kxi = k�xi−1 + xi+1�, tin
i � t � tout

i , �2b�

ẋi = v + A cos���t − tout
i ��, t � tout

i . �2c�

All particles have the same mass, m, and the linear restor-
ing force, k, is the same for all springs. The solution for the
position of the ith particle for times tin

i � t� tout
i is given in

Eq. �3�. It is used to solve xi�tout
i �=L implicitly for tout

i using
Newton’s method,

xi�t� = B1 cos��2/�t� + B2 sin��2/�t� +
A

��2 − ��2�

�sin���t − tout
i−1�� + vt +

L − vtout
i−1 − S

2
, �3�

where

� = m/k , �4a�

B1 = −
L − vtout

i−1 − S

2
+

A

��2 − ��2�
sin��tout

i−1� , �4b�

B2 = −
A

�2/��2 − ��2�
cos��tout

i−1� . �4c�

In all of the following results, we use the following pa-
rameters: S=100, L=2, v=10, �=0.06, �=13.2, A=0–40.
These parameter values ensure that, at most, only one par-
ticle is located in the chamber at any moment in time.

For each particle we calculate the resident time within the
chamber. This quantity is defined

tres
i = tout

i − tin
i . �5�

tin
i is determined from Eq. �1a� and tout

i is determined by
numerically solving Eq. �3� for xi�tout

i �=L. Figure 2 shows
several return maps for the resident time �these map tres

i to
tres
i+1�. In general tres

i+1= f�tres
i , tres

i−1 , . . . �, but for this system,

tres
i+1 = f�tres

i � , �6�

i.e., the return map is one dimensional. This results from
constraining particle velocities before x=0 and after
x=L—reducing the system to only one degree of freedom.

As A is increased, a peak develops in the return map and
the fixed point eventually becomes unstable. The one-hump
map that develops is likely to exhibit the features of many
other unimodal return maps—specifically a bifurcation route
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FIG. 2. �Color online� Return map for tres
i for several values of

the amplitude, �a� A=0, �b� A=15, �c� A=25, �d� A=30, �e� A=35,
�f� A=40. Parameters for this simulation were S=100, L=2, v=10,
�=0.06, �=13.2.
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to chaos �14�. As Fig. 3�a� shows, this is indeed the case. The
system is iterated onto the attractor and the next 100 values
for tres

i are plotted for values of the amplitude, A, from 25 to
40. The resident time bifurcates several times and eventually
becomes chaotic before settling back to a period of three
dynamics. The first three bifurcation points are located at A
=29.0, A=32.1, and A=33.1.

In Fig. 3�b� we plot the Lyapunov exponent � for the
resident time as a function of the amplitude A. The Lyapunov
exponent is a measure of the separation of infinitesimally
close trajectories and in this case is calculated numerically
from the following equation:

� = lim
n→�

1

n�
i=0

n−1

ln�f��tres
i �� . �7�

When �	0 trajectories exponentially diverge, which pro-
duces chaos when the trajectories remain bounded. The sys-
tem becomes chaotic at A=33.4 where � first turns positive.

The system we present above is quite different than other
one-dimensional particle models in the literature �11,13�. In-
stead of using nonlinear interactions between particles, the
particles in our system interact with linear forces and con-
straints are applied abruptly at the boundaries. This shows

that complex motion can arise in a flow at the boundary
between simple constrained motions without the need for
nonlinear interactions between particles. Many large scale
flows contain regions where the dynamics are tightly con-
strained to regular motion, with complex motion occurring at
the boundaries between these regions. Simple models such as
the one we have presented can provide insight into how this
behavior develops.

Summarizing, we have presented a fully describable one-
dimensional flow of point particles connected by ideal
springs. Particle motion is constrained before reaching an
inlet and after passing an outlet, and the system is shown to
exhibit chaotic dynamics when particles are driven sinusoi-
dally after crossing the outlet. The outlet driving force con-
tinually adds energy to the system. No drag force is present,
but energy is dissipated when particles exit at any point away
from their equilibrium positions. The model can be reduced
to a one-dimensional map that produces chaotic dynamics,
showing that chaos can occur in flows at the boundary be-
tween simple constrained motion, even when particles in the
flow interact with linear forces.
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(a) (b) FIG. 3. �Color online� �a� Bi-
furcation diagram of tres

i plotted
for values of A from 25 to 40. �b�
The Lyapunov exponent, �, as a
function of the amplitude of outlet
oscillations, A, also from 25 to 40.
Parameters for this simulation
were S=100, L=2, v=10, �
=0.06, �=13.2. The first three bi-
furcation points are located at A
=29.0, A=32.1, and A=33.1; and
�	0 first at A=33.4.
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