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We introduce an immunization method where the percentage of required vaccinations for immunity are close
to the optimal value of a targeted immunization scheme of highest degree nodes. Our strategy retains the
advantage of being purely local, without the need for knowledge on the global network structure or identifi-
cation of the highest degree nodes. The method consists of selecting a random node and asking for a neighbor
that has more links than himself or more than a given threshold and immunizing him. We compare this method
to other efficient strategies on three real social networks and on a scale-free network model and find it to be
significantly more effective.
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Immunization of large populations through vaccination is
an extremely important issue with obvious implications for
the public health �1–3�. The eradication of Small Pox
through a global mass vaccination campaign during the sec-
ond part of the 20th century represents, for example, a land-
mark in the history of the medical sciences �4�. Global or
national mass vaccination may, however, not always be pos-
sible. The number of vaccinated people may need to be mini-
mized due to severe side effects of vaccination such as for
Small Pox, or a temporary shortage of vaccine that could be
the case for a pandemic influenza. The cost for a vaccine
may also be an important limiting factor. Improving effi-
ciency of immunization is thus an urgent task.

Recently �5�, developments in the study of population
connectivities helped researchers in the field to present new
ideas on immunization, based on the heterogeneity in the
number of contacts between individuals. A number of strat-
egies have been proposed for lowering the required mini-
mum fraction fc of the population to be immunized. The
problem can be mapped to the well-known percolation prob-
lem where nodes are immunized �removed� up to a concen-
tration fc, above which the spanning cluster does not survive.
Random immunization of nodes has been shown incapable
of protecting the population when the contacts distribution is
wide, since the percolation threshold is close to fc=1, i.e.,
practically all nodes need to be immunized �6–8�. The best
known strategy today is believed to be targeted immuniza-
tion, where the highest connected nodes in the system are
immunized in decreasing order of their degree. In this case fc
is less than 10% �7,9,10�. For all practical applications,
though, this approach is unrealistic because it is a “global”
strategy and requires a complete knowledge of the high de-
gree nodes, which is in many cases impossible. An effective
strategy, called acquaintance immunization, was recently in-
troduced �11� that combines both efficiency and somewhat
greater ease of applicability. According to this scheme, a ran-
dom individual is selected, who then points to one of his
random acquaintances and this node is the one to be immu-
nized. This method is more efficient compared to random
immunization �fc is of the order of 20%–25%� but less effi-
cient than targeted immunization.

In this Rapid Communication, we introduce an immuni-
zation method which is practically as efficient as the ac-
cepted optimum strategy, but at the same time depends on
local information only. The method consists of selecting ran-
dom individuals and asking them to direct us to their friend
who is more connected than they are and this acquaintance is
immunized. If such a friend does not exist, we continue with
another random selection. Alternatively, in a second variation
of the method we ask the randomly chosen individual to
point us to a random neighbor that has a number of neigh-
bors larger than, e.g., k=5 �or an equally small and easily
countable threshold value�. If they point to such an indi-
vidual, the individual is immunized, otherwise we select an-
other individual. Similar results are obtained if the chosen
individual is asked to estimate his own number of contacts,
rather than of his random neighbor. Although this procedure
is simpler, the selection of a neighbor can also eliminate the
bias that may be introduced due to selfish people, lying about
their contacts in order to receive the vaccine themselves. The
method is proposed for social networks, but it is expected
that it can be even more efficient for technological networks,
such as, e.g., the Internet, where the number of links for a
given node is exactly known to the local network adminis-
trator, and need not be estimated.

Our method is local because the decision for immuniza-
tion of a given node is taken without the need to know the
connectivity of other nodes. This is in contrast with global
strategies where immunization of a node has to be decided
only after we have gathered information for the entire net-
work. This means that for immunization of, e.g., a city or a
country in a global method we have to send special teams to
collect this information and transmit it to a central place.
This central authority decides then which nodes should be
immunized and transmits back the outcome to the local au-
thorities which then go on with vaccinations. For a local
method, there is no need to collect or compare data from
other areas of the network. Based on the answer of each
individual, the decision is made immediately on whether a
node should be immunized or not.

We study the proposed method on real social networks
with a fat tail in their degree distribution, as well as on a
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random scale-free model network. We also compare this
method with several other immunization strategies, including
such that partial knowledge on the global network of con-
tacts is available and we demonstrate the advantage of the
proposed method via the improvement in fc.

The social networks used in this study represent different
interactions among the members of an online community, as
described in Ref. �12�. These interactions include �a� ex-
change of messages, �b� signing of guestbooks, �c� flirt re-
quests, and �d� established friendships. The first three net-
works are directed but we consider only their undirected
projection by transforming arcs into edges. No significant
difference is observed in the results for the undirected net-
work and the projections of the directed networks. The size
of the networks is of the order of N=104. The percentage of
immunized nodes is denoted with f , while the percentage of
nodes surveyed is denoted with p. The four strategies that we
employ are summarized below.

Strategy I. Immunize a node with probability proportional
to k�, where k is the number of connections and � tunes the
probability of preferentially selecting high-connectivity or
low-connectivity nodes. Large positive values of � tend to-
wards mainly selecting the hubs ��→� is equivalent to tar-
geted immunization�, the value �=0 represents the random
immunization model, while negative � values lead to select-
ing the lower-connected nodes �13�. This parameter can be
interpreted as a measure of the extent of our knowledge on
the structure.

Strategy II. Select a node with probability proportional to
k� and immunize a random acquaintance of this node. The
value �=0 corresponds to the acquaintance immunization
scheme �11�.

Strategy III. Select a random node and immunize one of
its acquaintances i, with probability proportional to ki

�, where
ki represents the degree of the neighbor.

Strategy IV. Select a random node and ask for an acquain-
tance, which is immunized if a certain condition is met. We
study two variations: �a� The selected node points randomly
to a node which is more connected than himself. If there are
no such neighbors, no node is immunized. �b� The selected
node is asked to choose a random neighbor with a degree
larger than a threshold value, kcut, then this acquaintance is
immunized. Equivalently, we can ask the node to estimate its
own degree. If it is larger than a threshold value we immu-
nize the node, otherwise we ignore it. These two variations
are similar when kcut= �k�. We call strategy IV the “enhanced
acquaintance immunization” �EAI� method.

In Figs. 1�a�–1�c� we present the results of fc for the four
described strategies applied to three of the social networks,
as defined by different types of interactions. All networks
follow similar patterns for a given strategy. In strategy I we
can see the abrupt decrease of fc when increasing � from
��0 �random immunization� with fc=1 to �=� �targeted
immunization� with fc�1. Strategy II presents an improve-
ment over the first strategy for values ��1. The critical
value fc presents a minimum at ��1, indicating that identi-
fication of large hubs actually deteriorates the results, since
the neighbors of large hubs, which are chosen to be immu-
nized, are with higher probability low degree nodes for dis-
sasortative networks, similarly with the acquaintance immu-

nization method �11�. Strategy III leads to a monotonic
decrease in fc and prevails from the first two methods when
we have limited global network knowledge, i.e., in the range
�� �0,1�. However, in strategy III we find that when �=�
�i.e., we always immunize the most connected neighbor� it
may be impossible to destroy the spanning cluster because
almost all selected nodes point to the same hubs. Finally, the
enhanced acquaintance immunization strategy seems to be
the most efficient method, although it assumes no knowledge
of the underlying structure �the method is independent of ��.
The value of fc is lower than an attack with �=3 and very
close to the results of the targeted immunization.

To gain more insight into the different immunization
methods, we also performed numerical simulations on a
model network. We consider each member of a population
represented by a node, while the acquaintances of a person
with other people form links. It is well-established that many
social networks follow a broad distribution in the degree of a
node, such as the power-law distribution P�k��k−�, where
the exponent � is usually found to be between 2���4
�5,14–16�. The above real networks are scale-free with �
�2.4 �12�. The results in Fig. 1�d� correspond to the four
strategies in such a model network �created with the configu-
ration random model �17�� with exponent �=2.5, which is
close to the reported exponent ��2.4 of the real networks
used. All strategies in this plot follow closely the results for
the real networks.

The two “transition” points for the first three strategies are
located at �=0 and 1. At �=0, strategies II and III coincide.
In the range �� �0,1�, strategy III is more efficient, indicat-
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FIG. 1. Critical immunized fraction fc of the population as a
function of � for �a�–�c� real-life social networks, and �d� a scale-
free network model with �=2.5. Four different strategies are used
as described in the text and indicated in the plot. The two symbols
correspond to the critical fraction for the strategies of the enhanced
acquaintance immunization method �the open circle corresponds to
asking for an acquaintance with threshold kcut=7, while the closed
circle corresponds to asking for a better connected node�.
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ing that in this range it is preferable to let the nodes choose
their neighbors according to their connectivity, rather than
selecting nodes with probability proportional to k� and fol-
lowing random links. The value ��1 is the optimum value
for strategy II. In practice, the process is equivalent to select-
ing a random link and immunizing one of the two nodes
attached to the given link �provided the uncorrelated network
hypothesis holds�. It is also interesting to note that up to the
value �=1 the acquaintance immunization strategy is supe-
rior to direct immunization of the initially selected nodes, but
close to this value the two methods yield a similar value for
fc. When ��1 the direct immunization method becomes
more efficient than acquaintance immunization.

The enhanced acquaintance immunization is, however,
found to be superior to all the above methods. The value of
fc for a given kcut value is of course independent of �, mean-
ing that it works equally well when there is no further infor-
mation on the network structure, i.e., global knowledge does
not offer any significant advantage over completely random
selections. Thus the strategy is local and easy to implement.
The choice of kcut, though, influences fc and can further re-
duce the fc value when more accurate knowledge on the
network structure is available.

The gain of this method for kcut=7 when compared to the
original acquaintance immunization method is about a factor
of 4, which is for practical purposes a significant improve-
ment. This striking variation is evident in Fig. 2, where the
critical percentage decays from fc�0.26 at kcut=1 �acquain-
tance immunization� to fc�0.06 at kcut=7. For kcut=7 the

strategy works comparably well to the targeted immuniza-
tion. The fraction fc, however, remains very low even when
the cutoff value kcut decreases to values close to, but less
than, 7. This stability over the value of kcut offers greater
flexibility since the method seems tolerant to mistakes of
lower degree nodes being pointed at for immunization, with-
out significant loss in the efficiency �even at a value of kcut
=4 the critical fraction fc remains lower than 10%�. The
results are different when we immunize directly the initially
selected random node �without asking for an acquaintance�
and only at kcut=7 the two methods seem to coincide �Fig.
2�. There exists, though, a critical degree above which this
strategy no longer works, simply because the number of
nodes with degree larger than this value is smaller than the
critical number needed for complete immunization. Thus it
seems preferable to remain conservative on the estimation of
kcut and choose a smaller value over a larger one.

A considerable advantage is gained even when the ques-
tion is posed in a much simpler way, i.e., we ask a random
node to direct us to a friend who is better connected than he
is and immunize him. This simple approach already offers a
significant improvement over the original acquaintance
method, as is evident in Fig. 2, although it is not as efficient
as when asking for a friend whose degree exceeds the cutoff
value. Since it is, however, much easier for an individual to
estimate an acquaintance who is better connected than him-
self, and practically everyone can understand and correctly
answer this simple question, we consider this method as a
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FIG. 2. Critical immunized fraction fc of the population as a
function of the threshold value kcut for the enhanced acquaintance
immunization strategy applied to �a�–�c� social interaction net-
works, and �d� random model scale-free network with �=2.5 �of
size N=105 nodes�. Closed symbols correspond to immunizing a
random neighbor of the selected node if its degree is �kcut and open
symbols to immunizing the selected node itself. The upper horizon-
tal dotted line is the result for acquaintance immunization, the
dashed line in the middle corresponds to immunizing a more con-
nected acquaintance, while the lower line refers to targeted
immunization.
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FIG. 3. Size of epidemics, measured via the fraction of nodes
belonging to the largest cluster over the number of not-immunized
nodes P��f�, as a function of the fraction f of immunized nodes. In
each plot, from top to bottom, the curves correspond to acquain-
tance immunization, EAI redirecting to a better connected node, the
EAI with kcut=7, and targeted immunization. �a�–�c� Real networks,
and �d� random scale-free network with �=2.5. Insets: Ratios for
f1 / fc of the critical immunized fraction fc over the critical fraction
f1 for acquaintance immunization �kcut=1� and pc / p1, i.e., the num-
ber of people surveyed, as a function of kcut for the EAI method.
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useful strategy which is easy to apply in real-life situations.
In order to assess the size of the epidemics in the immu-

nization process we measure the size of the spanning cluster
�epidemics size� as a function of the immunized nodes f . In
Figs. 3�a�–3�c� we present the fraction of nodes belonging to
the spanning cluster over the total number of nonimmunized
nodes for the real networks described above and compare the
targeted immunization with the enhanced acquaintance im-
munization and the original acquaintance immunization
methods. The results for the model scale-free networks �Fig.
3�d�� are averages over 100 different realizations of networks
with exponent �=2.5. In all cases the critical fraction for the
targeted immunization and the EAI with the cutoff value are
similar, while acquaintance immunization leads to consider-
ably higher values of fc. Again, the EAI with an estimation
of a better connected friend yields a result between these two
extremes. However, during the removal process the targeted
immunization yields the faster decomposition of the span-
ning cluster, since it first removes the most connected nodes
in the system. The results for all the acquaintance immuni-
zation methods depend on when these largest hubs will be
selected and the averaging conceals the fact that during one
realization the size of the largest cluster drops abruptly when
the largest hubs are selected. Despite this, the proposed
methods follow closely the results of targeted immunization,
while retaining the advantage of being local.

In the insets of Fig. 3, we can see that compared to the
acquaintance immunization method �which is the EAI

method with kcut=1� in general we need to survey more
nodes for their acquaintances as kcut increases, but this is a
small change compared to the improvement in the number of
required immunizations presented in the same plots.

A work with similar scope was performed by Holme �18�.
Among other methods, an immunization scheme was intro-
duced where a random node points to one of its highest
degree neighbors or to its most connected neighbor. This
corresponds to strategy III of the current work with �→�
�where we encounter the problem of selecting always the
same nodes as described above� and the first variation of
strategy IV. The results in that paper are consistent with the
ones presented above for these limiting cases.

In summary, we introduced and compared various immu-
nization strategies on real and model networks. We have
shown that the fraction of immunized nodes can be signifi-
cantly reduced to the almost optimum level of intentional
immunization using a completely local information strategy.
This simple process is enough to ensure that the immuniza-
tion threshold is significantly lowered, as compared to other
local methods.
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