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Based on cluster desynchronization properties of phase oscillators, we introduce an efficient method for the
detection and identification of modules in complex networks. The performance of the algorithm is tested on
computer generated and real-world networks whose modular structure is already known or has been studied by
means of other methods. The algorithm attains a high level of precision, especially when the modular units are
very mixed and hardly detectable by the other methods, with a computational effort O�KN� on a generic graph
with N nodes and K links.
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Hierarchical modular structures constitute one of the most
important properties of real-world networked systems �1�.
For instance, tightly connected groups of nodes in a social
network represent individuals belonging to social communi-
ties, while modules in cellular and genetic networks are
somehow related to functional modules. Consequently, iden-
tifying the modular structure of a complex network is a cru-
cial issue in the analysis and understanding of the growth
mechanisms and the processes running on top of such net-
works. Modules �called sometimes community structures in
social science� are tightly connected subgraphs of a network,
i.e., subsets of nodes within which the network connections
are dense, and between which connections are sparser.
Nodes, indeed, belonging to such tight-knit modules, consti-
tute units that separately contribute to the collective func-
tioning of the network. For instance, subgroups in social net-
works often have their own norms, orientations and
subcultures, sometimes running counter to the official cul-
ture, and are the most important source of a person’s identity.
Analogously, the presence of subgroups in biological and
technological networks is at the basis of their functioning.

The detection of the modular structure of a network is
formally equivalent to the classical graph partitioning prob-
lem in computer science, which finds many practical appli-
cations such as load balancing in parallel computation, cir-
cuit partitioning, and telephone network design, and is
known to be a NP-complete problem �2�. Therefore, although
modules detection in large graphs is potentially very relevant
and useful, so far this trial has been seriously hampered by
the large associated computational demand. To overcome
this limitation, a series of efficient heuristic methods has
been proposed over the years. Examples include methods
based on spectral analysis �3�, the hierarchical clustering
methods developed in the context of social networks analysis
�4�, or methods allowing for multicommunity membership
�5�. More recently, Girvan and Newman �GN� have proposed
an algorithm that works quite well for general cases �6�. The
GN is an iterative divisive method based in finding and re-
moving progressively the edges with the largest between-
ness, until the network breaks up into components. The be-
tweenness bij of an edge connecting nodes i and j is defined
as the number of shortest paths between pairs of nodes that

run through that edge �6�. As the few edges lying between
modules are expected to be those with the highest between-
ness, by removing them recursively a separation of the net-
work into its communities can be found. Therefore, the GN
algorithm produces a hierarchy of subdivisions of a network
of N nodes, from a single component to N isolated nodes. In
order to know which of the divisions is the best one, Girvan
and Newman have proposed to look at the maximum of the
modularity Q, a quantity measuring the degree of correlation
between the probability of having an edge joining two sites
and the fact that the sites belong to the same modular unit
�see Ref. �6� for the mathematical definition of Q�. The GN
algorithm runs in O�K2N� time on an arbitrary graph with K
edges and N vertices, or O�N3� time on a sparse graph. In
fact, calculating the betweenness for all edges requires a time
of the order of KN �7�, since it corresponds to the evaluation
of all-shortest-paths �ASP� problem. And the betweenness
for all edges needs to be recalculated every time after an
edge has been removed �the betweenness recalculation is a
fundamental aspect of the GN algorithm� �6�. This restricts
the applications to networks of at most a few thousands of
vertices with current hardware facilities. Successively, a se-
ries of faster methods directly based on the optimization of Q
have been proposed �8,9�, which allow up to a O�N ln2 N�
running time for finding modules in sparse graphs.

All the abovementioned methods are based on the struc-
ture of a network, meaning that they use solely the informa-
tion contained in the adjacency matrix A= �aij� �or any
equivalent representation of the topology� of the graph. As
complementary to such approaches, the authors of Ref. �10�
have proposed a method to find modules based on the statis-
tical properties of a system of spins �namely, q-state Potts
spins� associated to the nodes of the graphs. In this paper we
propose a dynamical clustering �DC� method based on the
properties of a dynamical system associated to the graph. DC
techniques were initiated by the relevant observation that
topological hierarchies can be associated to dynamical time
scales in the transient of a synchronization process of
coupled oscillators �11�. Although being fast, so far DC
methods do not provide in general the same accuracy in the
identification of the communities.
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Here, we show how to combine topological and dynami-
cal information in order to devise a DC algorithm that is able
to identify the modular structure of a graph with a precision
competitive with the best techniques based solely on the to-
pology. The method we present is based upon the well-
known phenomenon of synchronization clusters of noniden-
tical phase oscillators �12�, each one associated to a node,
and interacting through the edges of the graph. Clusters of
synchronized oscillators represent an intermediate regime be-
tween global phase locking and full absence of synchroniza-
tion, thus implying a division of the whole graphs into
groups of elements that oscillate at the same �average� fre-
quency. The key idea is that, starting from a fully synchro-
nized state of the network, a dynamical change in the
weights of the interactions, which retain information on the
original betweenness distribution, yields a progressive hier-
archical clustering that fully detects modular structures.

For the sake of illustration and without lack of generality,
we specify our technique with reference to the so-called
opinion changing rate �OCR� model, a continuous-time sys-
tem of coupled phase oscillators introduced for the modeling
of opinion consensus in social networks �13�, and represent-
ing a variation of the Kuramoto model �14�. Other
continuous-time �Kuramoto and Rössler dynamics�, and also
discrete-time �coupled circle maps� dynamical systems
have been investigated and will be reported elsewhere.
Given a undirected, unweighted graph with N nodes and K
edges, described by the adjacency matrix A= �aij�, we
associate to each node i �i=1, . . . ,N� a dynamical variable
xi�t�� �−� , +��. The dynamics of each node is governed by

ẋi�t� = �i +
�

�
j�Ni

bij
��t� �

j�Ni

bij
��t� sin�xj − xi��e−��xj−xi�, �1�

where �i is the natural frequency of node i �in the numerical
simulations the �i’s are randomly sorted from a uniform dis-
tribution between �min=0 and �max=1�, � is the coupling
strength, and Ni is the set of nodes adjacent to i, i.e., all
nodes j for which aij =aji=1. The constant parameter �, tun-
ing the exponential factor in the coupling term of Eqs. �1�,
switches off the interaction when the phase distance between
two oscillators exceeds a certain threshold �as usual �13� we
fix �=3�. Notice that the interaction between two adjacent
nodes i and j is weighted by the term bij

��t� /� j�Ni
bij

��t�, where
bij is the betweenness of the edge i, j, and ��t� is a time-
dependent exponent, such that ��0�=0. In Ref. �15� it has
been shown that the ability of a dynamical network, as the
one in Eqs. �1�, to maintain a synchronization state crucially
depends on the value of the parameter �. For such a reason,
in the DC algorithm to find modular structures, we fix the
coupling strength � equal to an arbitrary value such that the
unweighted ��=0� network is fully synchronized, and we
solve Eqs. �1� with a progressively �stepwise� decreasing
value of ��t�. Namely, while keeping fixed �, we consider
��tl+1���tl�−�� for tl+1� t� tl, where tl+1− tl=T ∀l �in the
following T=2�, and �� is a parameter that will be specified
below. As the edges connecting nodes belonging to the same
module �to two different modules� have in general small

�large� betweenness, when � decreases from zero, the corre-
sponding interaction strengths on those edges become in-
creasingly enhanced �weakened�. Since the network is pre-
pared to be fully synchronized, it has to be expected that, as
� decreases, the original synchronization state hierarchically
splits into clusters of synchronized elements, according to
the hierarchy of modules present in the graph. The individu-
ation of synchronization clusters is made in terms of groups
of nodes with the same instantaneous frequency ẋ�t�. The
procedure consists then in monitoring the emerging set of
synchronization clusters at each value of ��t�. The best divi-
sion in communities of the graph �the best � value� is indi-
viduated by looking at the maximum �as a function of �� of
the modularity Q �6�.

In order to comparatively evaluate the performance of the
algorithm, we have considered, as in Ref. �6�, a set of com-
puter generated random graphs constructed in such a way to
have a well defined modular structure. All graphs are gener-
ated with N=128 nodes and K=1024 edges. The nodes are
divided into four communities, containing 32 nodes each.
Pairs of nodes belonging to the same module �to different
modules� are linked with probability pin �pout�. pout is taken
so that the average number zout of edges a node forms with
members of other communities can be controlled. While zout
can be then varied, pin is chosen so as to maintain a constant
total average node degree 	k
=16. As zout increases, the
modular structure of the network becomes therefore weaker
and harder to identify. As the real modular structure is here
directly imposed by the generation process, the accuracy of
the identification method can be assessed by monitoring the
fraction p of correctly classified nodes vs zout. In Fig. 1 we
report the value of p �averaged over twenty different realiza-
tions of the computer generated graphs and of the initial
conditions� as a function of zout, for the DC algorithm based
on the OCR model of Eqs. �1�, with �=5.0 and ��=0.1. The
resulting performance �open circles� is comparable to that of
the best methods based solely on the topology, such as the
GN �full triangles� �6� and the Newman Q-optimization fast
algorithm �full squares� �8�.

The performance of the DC algorithm considered can be
made better by adding a simple modification to the OCR
model which further stabilizes the system. Such modification
consists in changing in time the natural frequencies �’s ac-
cording to the idea of confidence bound introduced by Heg-
selmann and Krause �HK�, in the context of models for opin-
ion formation �16�. Therefore, we will refer to the improved
method as the OCR-HK dynamical clustering. The confi-
dence bound is a parameter � which fixes the range of com-
patibility of the nodes. At each time step, the generic node i,
having a dynamical variable xi�t� and a natural frequency
�i�t�, checks how many of its neighbors j are compatible,
i.e., have a value of the variable xj�t� falling inside the con-
fidence range �xi−� ,xi+��. Then, at the following step in the
numerical integration, we set �i�t+	t�, i.e., the node takes
the average value of the �’s of its compatible neighbors at
time t. In the OCR-HK, the changes of the ��t�’s is super-
imposed to the main dynamical evolution of Eq. �1� and
noticeably contributes to stabilize the frequencies of the os-
cillators according to the correct modular structure of the
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network, also reducing the dependence of the algorithm on
the initial conditions. The results with computer generated
graphs ���=0.1� are reported in Fig. 1 as full circles. The
improvement in the performance of the OCR-HK method
with respect to both the standard OCR and the two topologi-
cal methods �GN and Q optimization�, is evident for
zout�5, and it can be made even larger using for smaller
values of ��. For completeness, we also report the results of
an optimization procedure based on a simulated annealing
�SA� �17�, which is presently the most accurate method
available on the market, though very CPU time consuming.
As for the computational cost, our algorithm provides an
improvement with respect to the majority of other methods
�see Table 1 in Ref. �17��. For instance, while iterative topo-
logical algorithms �6,9� need to recalculate the betweenness
distribution all the times a given edge is removed, in our case
that distribution has to be evaluated only for the initial graph,
as the cluster de-synchronization process itself gives a pro-
gressive weakening of the edges with highest betweenness.
We have analyzed sparse graphs of size up to N=16 384 and
found a scaling law of O�N1.76� for the dynamical evolution
of the OCR-HK system. However, since the initial calcula-
tion of betweenness takes O�N2� operations, the total CPU
time scales as O�N2� too. Considering that the fastest algo-
rithm on the market �O�N ln2 N�� is the Q-optimization one
�8�, which on the other hand is less accurate than the
OCR-HK �as shown in Fig. 1�, we can conclude that our DC
method provides an excellent compromise between accuracy
and computational demand �17�.

It should be noticed that the proposed method conceptu-
ally differs from the dynamical clustering technique intro-

duced in Ref. �11�. Indeed, while in Ref. �11� the modular
hierarchy of a network was associated to different time
scales in the transient dynamics toward a fully synchronized
dynamics, here it corresponds to a hierarchical sequence
of asymptotically synchronized states, from the initial
���0�=0� full network synchronization, to progressive clus-
ter synchronization as ��t� decreases. A relevant conse-
quence is that our technique is almost fully insensitive to
differences in the initial conditions for the phases of the
coupled oscillators, as far as the local dynamics is selected to
have a unique attractor.

Finally, we tested how the method works on two typical
real-world networks: the Zachary karate club network
�N=34, K=78� �18� and the food web of marine organisms
living in the Chesapeake Bay �N=33, K=71� �19,20�. In both
cases we have some a priori knowledge of the existing mod-
ules. In fact, the karate club network is known to split into
two smaller communities, whose detailed composition was
reported by Zachary �18�. Analogously, the food web organ-
isms contain a main separation in two large communities,
according to the distinction between pelagic organisms �liv-
ing near the surface or at middle depths� and benthic organ-
isms �living near the bottom�. As in the previous simulations,
we first calculate the set of edge betweenness �bij� and then
we integrate numerically Eqs. �1� with the HK modification
on the �’s, with ��=0.1 and �=5.0 �the latter ensures again
an initial fully synchronized state at �=0�.

In Fig. 2 the N instantaneous frequencies ẋi, and the
modularity Q, are plotted as a function of � �i.e., as a func-
tion of time� for both the karate club, panel �a�, and the food
web network, panel �b�. In panel �a� the best configuration,
with Q�0.40, is reached around −1.0
�
−2.5 and yields
a partition of the karate club network into three stable com-
munities that very well describe the real situation. The
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FIG. 1. �Color online� Fraction p of correctly identified nodes as
a function of zout �average number of inter-modular edges per node�
for computer generated graphs with N=128 nodes, four communi-
ties and an average degree 	k
=16. The results of DC methods
based, respectively, on the OCR �open circles� and the OCR-HK
�full circles� models, are compared with three standard methods,
two based solely on the topology, such as the GN algorithm �full
triangles� �6� and the Newman Q-optimization fast algorithm �full
squares� �8�, and one based on an evolutionary method, the simu-
lated annealing algorithm �17� �open squares�.
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FIG. 2. �Color online� The distribution of instantaneous frequen-
cies and the correspondent modularity Q are reported as a function
of � for the OCR-HK model. The application to the karate club
network and to the Chesapeake Bay food web are shown in panels
�a� and �b�, respectively. In both the simulations �=5.0, ��=0.1,
and �=0.0005.
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largest one, labeled with n.1 in the figure �nodes 9, 10, 29,
31, 15, 16, 19, 21, 23, 32, 33, 34, 24, 25, 26, 27, 28, 30�,
fully corresponds to one of the two communities reported by
Zachary, while the sum of the remaining two communities,
labeled as n.2 �nodes 1, 2, 3, 4, 8, 12, 13, 14, 18, 20, 22� and
n.3 �nodes 5, 6, 7, 11, 17�, corresponds to the second Za-
chary’s module of 16 elements. Notice that cluster n.3 rep-
resents a very well connected subset that is frequently rec-
ognized as a separated module also by other methods �6�.
Moreover, the value of the best modularity found is larger
than that of the Zachary partition into two communities
�Q�0.37�. Analogously good performance is obtained for
the food web. In panel �b� the highest value of Q, namely,
Q�0.42, is reached for −2.8
�
−3.8, yielding a division
of the food web into five communities �n.1: nodes 3, 14, 15,
16, 18, 19, 25, 26, 27, 28, 29; n.2: nodes 22, 30, 31, 32; n.3:
nodes 5, 6; n.4: nodes 4, 17; n.5: nodes 8, 9, 10, 20, 24, 1, 2,
7, 11, 12, 13, 21, 23, 33� in which, with respect to Refs.

�6,20�, the distinction between pelagic and benthic organisms
is not only preserved but also improved.

In conclusion, we have introduced an efficient algorithm
for the detection and identification of modular structures that
attains a very high precision, with a small associated compu-
tational effort that scales as O�N2�. Our method, therefore,
could be of use for a reliable modules detection in sizable
networks �e.g., biological, neural networks�, and can contrib-
ute to a better understanding of the hierarchical functioning
of networked systems in many physical, biological, and tech-
nological cases.
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