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We examine the quasistatic thermocapillary migration of a gas bubble normal to a solidified interface. The
analysis accounts for the deformation of the solid-liquid interface caused by the bubble’s presence. An expres-
sion for the distance between the bubble surface and the crystal-melt interface is derived, and used to quantify
the dependence of the bubble’s migration velocity on the processing variables and material properties of the
directional solidification process.
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I. INTRODUCTION

A gas bubble will migrate in the direction of decreasing
interfacial tension, which is usually in the direction of in-
creasing temperature, when it is immersed in an unbounded
fluid medium that is subjected to a temperature gradient G
= �dT /dz�. This thermocapillary phenomenon was put forth
by Young et al. �1� and tested experimentally in a micrograv-
ity environment by Thompson et al. �2�. For a nondeform-
able gas bubble, the thermal conductance and viscosity coef-
ficients of which are assumed nil, the expression for the
migration velocity in a weightless setting is given by

u� =
aG�T

2�
, �1�

where a is the bubble’s radius, � is the fluid’s dynamic vis-
cosity, and �T=−�� /�T represents the dependence of the sur-
face tension coefficient, ��0, on the temperature field T.
Meyyappan et al. �3� have conducted a theoretical study of
bubble migration in a semi-infinite fluid domain in order to
isolate the boundary effects. They have demonstrated that if
the bubble, the motion of which is normal to a planar sur-
face, is at three or more bubbles radii from the bounding
wall, then it migrates as if it is isolated. To quantify the role
of the boundary, they introduce an interaction parameter �,
which represents the ratio of the migration velocity of an
isolated bubble, u�, to that of the same bubble migrating
normal to the planar surface. They isolate the dependence of
� on the bubble-wall separation. They find that the wall
effect becomes significant only when the bubble is in close
contact with the bounding wall, with the migration velocity
decreasing as the bubble-wall separation diminishes.

A frequently encountered problem in materials processing
from the melt is the formation of air bubbles and their sub-
sequent interaction with an advancing crystal-melt interface.
These bubbles form due to the presence of dissolved air in
the melt. The difference in the air solubility in the liquid and
solid phases causes the bubbles to be rejected by the solidi-
fied interface. The bubbles then detach and recede from the
interface. It is well known that the presence of a bubble in
the melt ahead of a solidifying interface leads to the onset of
local interfacial deformations �4–7�. The interfacial deflec-

tion is due to the modification of the thermal gradient in the
melt between the solid front and the bubble. Owing to the
insulating character of the bubble, the thermal gradient in the
gap region is increased. If we assume that the crystal-melt
interface has zero thickness and that its profile coincides with
the liquid’s melting point isotherm Tm, then the increase in
the thermal gradient is associated with the bulging out of that
part of the crystal-melt interface that is behind the bubble
�7�. Therefore, the analysis of the thermocapillary migration
of a bubble in a melt that is undergoing directional solidifi-
cation becomes difficult due to both the movement and de-
formation of the crystal-melt interface, the profile of which is
also an unknown to be determined. The techniques of bi-
spherical coordinates or the method of images, which have
been successful in tackling analytically the problems involv-
ing planar walls, seem to be of little help in this situation.

In this Brief Report, we follow closely the studies by
Young et al. �1� and Meyyappan et al. �3� to quantify the
effect of solidification and crystal surface deformation on the
bubble’s thermocapillary migration velocity. These studies
consider the limits of vanishing Marangoni and Reynolds
numbers, so that only heat transfer by conduction is ac-
counted for both in the liquid phase and in the gas inside the
bubble. The velocity field satisfies the creeping flow equa-
tions. The only coupling between the temperature and veloc-
ity fields takes place through the balance of the shear stresses
at the bubble’s surface. This balance equates the shear stress
to the change of surface tension caused by variations of the
temperature at the bubble’s surface. The surface tension is
assumed to vary linearly with temperature. Furthermore, we
assume that the time scale due to the interface growth rate
a /V, where V is the solid front’s velocity, is large in com-
parison to the scale of the melt motion, a /u�. Thus, the mo-
tion of the crystal-melt interface is neglected in comparison
with that of the bubble and, consequently, so is the induced
shrinkage flow.

II. GAP THICKNESS

Suppose that an axisymmetric bubble of radius a is lo-
cated in front of a crystal-melt interface that has emerged
from the directional solidification of a pure substance. The
bubble is assumed to be nondeformable and of noncolloidal
size. We suppose that the bubble’s center is at some distance
H0= �a+h�� from the planar portion of the crystal-melt inter-*Electronic address: Lhadji@bama.ua.edu
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face, with h� being the distance from the bubble’s lowest
point to the planar crystal interface; 0	h�	a but not small
enough that the intermolecular forces become active. Then
the position of the bubble’s surface is described by

�z − H0�2 + r2 = a2, �2�

where r and z are the radial and vertical coordinates, respec-
tively. The physical situation is depicted schematically in
Fig. 1. The crystal-melt interface is assumed to be moving in
the positive vertical direction with velocity V, while the
bubble will migrate with velocity Vm upon its detachment
from the interface. On assuming that V�Vm, and that the
resulting Marangoni number aVm /D�1, with D being the
melt’s thermal diffusion coefficient, the convective effects in
the conservation of energy equations can be neglected, and,
to leading order in the Marangoni number, the thermal fields
are described solely by the heat diffusion equations for the
temperatures T�r ,z�, Ts�r ,z�, and Tb�r ,z� in the melt, crystal,
and bubble, respectively. These equations are then solved
subject to boundary and far field conditions. They consist of
the continuity of temperatures and of the heat flux at the
bubble’s surface, namely,

T = Tb and
�T

�r
= 0. �3�

Far away from the solid front, the thermal gradient satisfies
�T /�z→G as z→�. Following Ref. �8�, if we suppose that
the pure substance solidifies with a sharp interface, i.e., an
interface of zero thickness, then the profile of the crystal-
melt interface conforms to the isotherm corresponding to the
thermodynamic melting point Tm, or in case of a deformed
isotherm to the equilibrium interface temperature Teq, and
separates the solid phase �T	Teq� from the liquid phase �T
�Teq�. Far away from the particle, �r2+z2�→�, the iso-
therms are not disturbed by the bubble and remain horizon-
tal. �Note that the profile of the crystal’s surface is also pla-
nar in the absence of bubble.� For mathematical
convenience, we suppose that the Tm isotherm coincides with
the r axis, i.e., z=0 as r→�,

lim
r→�

T�r,0� = Tm. �4�

The temperature field in the liquid phase is then given by �9�

T�r,z� = Tm + Gz +
Ga3�z − H0�

2��z − H0�2 + r2�3/2 . �5�

Upon evaluating Eq. �5� at z=0 we find

Tm = T�r,0� + 
TB, �6�

where


TB =
Ga3H0

2�H0
2 + r2�3/2 . �7�

Equations �6� and �7� reveal the following. If the bubble
were absent then the crystal-melt interface, the shape of
which conforms to the planar Tm isotherm, coincides with the
r axis. With the presence of the bubble in front of the crystal-
melt interface, however, Eq. �6� can be interpreted as an
equation for the crystal-melt interface temperature, T�r ,0�,
that has been modified by the amount 
TB. Therefore, the
bubble’s effect is akin to a bubble-induced undercooling. The
interface temperature is reduced by an amount 
TB from the
melting point and consequently the interface deforms by
bulging out. The modification of the interfacial temperature
and associated interface distortions from the planar morphol-
ogy are related. Indeed, in the absence of kinetic undercool-
ing, the change of the interface temperature from the melting
point that invariably accompanies a curved interface is given
by the Gibbs-Thomson equation �10�,

T�r,0� = Tm −
Tm�sl

L
K , �8�

where �sl is the solid-liquid surface energy, L is the latent
heat of fusion per unit volume, and K is the interface mean
curvature taken here to be positive when the center of cur-
vature lies in the solid side of the crystal-melt interface.
Equations �5�–�8� then yield an expression for the interface
curvature, namely,

K =
Ga3LH0

2Tm�sl�H0
2 + r2�3/2 . �9�

Note that Eq. �8� neglects the undercooling term due to the
hydrodynamic pressure in the gap g�r�, namely, 
THP

=−�6�VmTm /L��0
ag−3�r�r dr�
TB, and we also neglect the

change in the thermal conductivity of the melt upon solidifi-
cation. By considering small interfacial distortions, i.e.,
�d� /dr � �1, the shape of the crystal-melt interface profile
��r� is described by the differential equation

− K �
d2�

dr2 = −
LGa3H0

2Tm�sl�H0
2 + r2�3/2 . �10�

The integration of Eq. �10� subject to the requirement that
the profile is symmetric, i.e., d� /dr�0�=0, yields

Bubble

2a

h∞

H
0

Melt

CrystalInterface r

z

FIG. 1. Sketch of an axisymmetric bubble of radius a in front of
a deformable crystal-melt interface �solid line�. The portion of the
solidified interface behind the bubble has bulged out into the melt.
The distance from the bubble’s lowest point to the planar part of the
crystal surface is denoted by h�, i.e., the bubble-crystal front sepa-
ration is equal to h� if the crystal-melt interface is a nondeformable
rigid wall.
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��r� = −
LGa3

2Tm�slH0

�H0
2 + r2 + C . �11�

The constant of integration, C, is determined by using the
fact that the crystal-melt interface decays to the planar posi-
tion, �=0, outside the lubrication region. For instance, if we
impose that �→0 as r→a then we have

��r� = −
LGa3

2Tm�slH0
��H0

2 + r2 − �H0
2 + a2� , �12�

and it follows that the interface deformation modifies the
width of the gap region at the origin from h� to

g0 = h� − ��0� = h� −
LGa3���a + h��2 + a2 − �a + h���

2Tm�sl�a + h��
,

�13�

with the understanding that the validity of Eq. �13� is limited
to those parameters for which g0 is a positive quantity and
g0�100 Å so that the intermolecular forces are not active
�4�.

III. MIGRATION VELOCITY

The results reported in �3� are utilized to evaluate the
influence of the solidification process on the quasistatic ther-
mocapillary migration of a gas bubble normal to a deform-
able crystal-melt interface. As shown in the previous section,
the interaction between the solidified interface and the gas
bubble leads to a decrease in the width of the gap that sepa-
rates them. The calculations carried out in �3� are repeated
here with their bubble-wall separation H replaced by the
separation distance between the bubble and the crystal-melt
interface, S= �a+g0� /a. Thus, as the bubble approaches the
crystal-melt interface, instead of interacting with a planar

wall at a distance h�, it interacts with a solidified interface
whose distance from the bubble is g0 given by Eq. �13�.
Thus, when g0=h� the solidification effect is assumed absent
and we retrieve the case of bubble-wall interaction, i.e., H
=S. Following the calculations in �3� the interaction param-
eter

��g0� =
u

u�

, �14�

where u is the thermocapillary migration velocity of the
bubble, is evaluated numerically using Eqs. �26�–�28� from
Ref. �3�. We refer the reader to Ref. �3� for more details as
these equations are too lengthy to reproduce here. These
equations describe the approach of a nondeformable bubble
normal to a rigid and planar wall in the limit of vanishing
Reynolds and Marangoni numbers. The thermal field satisfies
the heat conduction equation with continuity of temperature
and heat flux at the bubble’s boundary. The convective ef-
fects are negligible. The velocity field satisfies the creeping
flow equations with impenetrability condition at the bubble’s
surface and vanishing velocity at the wall. The balance of
tangential stresses at the bubble’s surface yields one of the
conditions for the velocity. This condition relates the velocity
to the temperature via the dependence of the surface tension
on temperature. Therefore, the thermal problem is solved in-
dependently of the hydrodynamic problem. The velocity
field, however, is coupled to the thermal field through the
balance of tangential stresses at the bubble’s surface. Conse-
quently, the assumptions made here in the setting up of the
solidification problem are consistent with those made by
Meyyappan et al. �3�.

Using typical experimental parameters from experiments
�11�, we have plotted in Fig. 2 the interaction parameter �
versus the bubble-crystal-melt interface separation S for a
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FIG. 2. Plot of the dimensionless interaction parameter � �Eq.
�14�� versus the dimensionless bubble-crystal surface separation S
for the two cases �a� without solidification, i.e., planar rigid wall
�solid line� and �b� with solidification, i.e., deformable and rigid
crystal-melt interface �dashed line�.
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FIG. 3. Plot of the dimensionless interaction parameter � �Eq.
�14�� as a function of the dimensionless bubble-crystal surface sepa-
ration S for three distinct values for the imposed thermal gradient
G=5 �thin solid line�, G=500 �thick solid line�, and 1000 K/m
�dash-dotted line� for a bubbles radius a=10 �m.

BRIEF REPORTS PHYSICAL REVIEW E 75, 042602 �2007�

042602-3



bubble of radius a=10 �m, an imposed thermal gradient G
=500 K/m, solid-liquid surface energy �sl=0.03 N/m, and
latent heat of fusion per unit volume L=4.6�107 J /m3. Fig-
ure 2 shows that the solidification process and corresponding
crystal-melt interface deflection act to decrease the value of
the migration velocity; with the largest decrease occurring at
the small values of S. For S
2 �g0
a�, however, the effect
of the solidified interface is similar to that of a rigid wall.
The influence of the processing variables, such as the ther-
mal gradient G and bubble’s radius a, is depicted in Fig. 3.

As expected, the decrease of g0 with G implies a decrease in
the value of the migration velocity at higher thermal gradi-
ents.

In summary, then, the thermocapillary migration velocity
of a nondeformable gas bubble normal to a deformable
crystal-melt interface is lower than that of the same bubble
approaching a rigid planar wall. The lowering of the bubble’s
velocity is attributed to the bulging out of the portion of the
crystal-melt interface behind the bubble and the subsequent
decrease in the bubble-crystal-melt interface separation.
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