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In a previous paper �Bag and Hu, Phys. Rev. E 73, 061107 �2006��, we studied the mean lifetime �MLT� for
the escape of a Brownian particle through an unstable limit cycle driven by multiplicative colored Gaussian
and additive Gaussian white noises and found resonant activation �RA� behavior. In the present paper we
switch from Gaussian to non-Gaussian multiplicative colored noise. We find that in the RA phenomenon, the
minimum appears at a smaller noise correlation time ��� for non-Gaussian noises compared to Gaussian noises
in the plot of MLT vs � for a fixed noise variance; the same plot for a given noise strength increases linearly
and the increasing rate is smaller for non-Gaussian noises than for the Gaussian noises; the plot of logarithm
of inverse of MLT vs inverse of the strength of additive noise is Arrhenius-like for Gaussian colored noise and
it becomes similar to the quantum-Kramers rate if the multiplicative noise is non-Gaussian.
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In recent decades, there have been many studies on the
enhancement of small periodic signals by noises in nonlinear
systems �1–9�. A prototypical effect of this kind, called reso-
nant activation �RA� �2�, concerns the resonance effect in the
escape rate of a particle over a fluctuating barrier in a
bistable potential. The phenomenon has triggered a lot of
studies �3–9�, including theoretical works on kinetic models
for chemical reactions �3,5� and related experiments �9�. In
�10�, we studied the mean lifetime �MLT� �11� for the escape
of a Brownian particle through an unstable limit cycle �in-
stead of the saddle point considered in papers mentioned
above� driven by multiplicative colored Gaussian and addi-
tive Gaussian white noises and found resonant activation
�RA� behavior. Traditionally RA appears due to fluctuations
in a nonlinear potential, our paper �10� shows that the RA
phenomenon appears even in the linear potential.

Experimental data indicate that noises in biological pro-
cesses have a non-Gaussian character. Examples include cur-
rent through voltage-sensitive ion channels in a cell mem-
brane, signals from the sensory systems of rat skin �12�, and
noise sources in different biology systems �13,14�. It is ob-
served that biological transport works in the presence of cor-
related random noise of biological origin, such as the hy-
drolysis mechanism of adenosine 5-triphosphate �ATP� �15�.
Recently, Fuentes et al. �16� have shown that the stochastic
resonance can be enhanced when the subsystem departs from
Gaussian behavior and the system shows marked ‘robust-
ness’ against noise tuning, i.e., the signal-to-noise ratio curve
can flatten when departing from Gaussian behavior, implying
that the system does not require fine tuning of the noise
intensity in order to maximize its response to a weak external
signal. This theoretical finding was verified experimentally
by Castro et al. �17�. Furthermore, non-Gaussian noise of
third order has been shown to be useful in some autocatalytic
reactions �18�.

Considering the importance of non-Gaussian noise, here
we examine how the RA behavior changes if one switches
from Gaussian to non-Gaussian colored multiplicative noise.
We show that the plot of ln�1/ �T�� vs inverse of strength of
additive noise is nonlinear if the multiplicative noise is non-
Gaussian, but it becomes linear for the Gaussian multiplica-
tive noise. The latter is similar to the well known plot of
Arrhenius law and the former resembles that of the quantum
escape kinetics �19�.

Model and acting noises. We consider the following
Langevin equation of motion �10�:

v̇ = − aq + b�v2 − 1�v + q��t� + ��t� , �1�

where q and v� q̇ represent, respectively, the coordinate and
the velocity of the Brownian particle. On the right hand side,
the first term is due to the force derived from harmonic po-
tential, the second term captures essential features of nega-
tive and positive feedback of biological systems, ��t� is a
colored noise and may be either Gaussian or non-Gaussian;
��t� is a Gaussian white noise and is characterized by
���t��=0 and ���t���t���=2D���t− t�� with D� �11� being the
noise strength.

It is very relevant to understand the transition between
attractors through an unstable limit cycle. The transition
through an unstable limit cycle occurs in the presence of
noise in the context of the autocatalytic biochemical system
�20�, the biological oscillations �21�, and the chemical reac-
tions constrained to happen far from equilibrium �22�. Un-
stable limit cycles often appear �23� in a multidimensional
biological system to separate �i� a stable fixed point and limit
cycle, �ii� two stable limit cycles, �iii� two stable fixed points,
etc. To consider the effect of biological environments, we
include multiplicative non-Gaussian noise in the model,
which can make the system far from equilibrium. We also
include additive noise to take care of thermal fluctuations.

The colored noise � can be generated as the solution of
the following stochastic differential equation �24�:
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Here D �11� and � are, respectively, the noise intensity and
the correlation time, �1�t� is a standard Gaussian noise of
zero mean and its two-time correlation is given by
��1�t��1�t���=2��t− t�� and Up���= �D /��p−1��ln�1+��p
−1��2 /2�, where �=� /D. The form for noise ��t� allows us
to control the departure from the Gaussian behavior easily by
changing a single parameter p. For p=1, Eq. �2� becomes
�̇=− �

� +
�D
� �1�t�, which is a well known time evolution equa-

tion of the Ornstein-Uhlenbeck noise process for which the
correlation function ���t���0�� decays exponentially,
���t���0��	 D

� e−t/�. Thus � is the correlation time of the
Ornstein-Uhlenbeck noise. To have an idea about the corre-
lation time for non-Gaussian noise we have plotted the two-
time correlation function vs time in Fig. 1 based on numeri-
cal simulation. The curve for non-Gaussian noise �dotted
curve� is fitted well by the bi-exponential decaying function
�solid curve� with correlation times 31 and 1, respectively,
for p=1.5. Figure 1 shows that the effective correlation time
and the noise strength for p�1 is larger than those for p
=1.0.

The stationary probability distribution of � is �25�

P��� =
1

Zp

1 + ��p − 1�

�2

2
�−1/�p−1�

, �3�

where Zp=� �

��p−1�

	�1/�p−1�−1/2�

	�1/�p−1�� is the normalization factor

with 	 being the Gamma function. This distribution can be
normalized only for p
3. Since P��� is an even function of
�, the first moment ��� is zero, and the second moment
�noise variance�, given by

��p
2� =

2D

��5 − 3p�
, �4�

is finite only for p
5/3. Furthermore, for p
1, the distri-
bution has a cutoff and it is defined only for ���
�c

�� 2D
��1−p� .

When p→1, the term in the square brackets of Eq. �3�
becomes exp���p−1��2 /2�, Eq. �3� becomes P���
= 1

Z1
exp�−��2 /2� with Z1=�� /�, and � becomes a Gauss-

ian colored noise. Equation �4� shows that for a given D and
� the variance of the non-Gaussian is higher than that of the
Gaussian noise for p�1, i.e., ��p

2�� ��2�.
Method and results. It is difficult to deal with the problem

analytically because of the finite correlation time of the mul-
tiplicative noise and the nonlinearity in velocity and � in
Eqs. �1� and �2�, respectively. Therefore we have solved the
differential equations �1� and �2� simultaneously using He-
un’s method, stochastic variant of the Euler method which
reduces to the second order Runge-Kutta method in the ab-
sence of noise �26�. We define the lifetime or exit time �T� as
the time required for the particle to go from the origin of
phase space �0,0� to the point where v=2 or v=−2 for the
first time. The average T over many realizations �say, 5000�
gives the mean lifetime �MLT� or exit time ��T�� �10,11�. We
define the lifetime using this boundary value of v because at
this value the phase point is definitely out of the basin of
attraction. When the parameter b in Eq. �1� increases, the
boundary value of velocity decreases since even at low value
of v positive feedback becomes sufficient to escape the basin
of attraction. Similarly, the boundary value of v decreases
with increase of its nonlinearity in the positive feedback
term.

Similarly, one can define MLT using the boundary value
of coordinate q. The boundary value for q decreases with
increase of system parameter a: when a increases, the fre-
quency of the harmonic oscillator increases and the phase
point is strongly localized near the origin. When a tends to 0,
the particle can easily escape to large v and q when �v��1.

To investigate how the RA phenomenon is affected when
one switches from Gaussian to non-Gaussian multiplicative
color noise, we have calculated MLT at different noise cor-
relation time � and plotted the results in Fig. 2. In this figure
the noise variance C is kept fixed and the noise strength D
increases linearly with � as D=C�, which is obtained from
the intuition that the nonequilibrium potential �27� in the
present model might have a similar role as that of the non-
linear potential �7� in the ordinary barrier crossing dynamics.
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FIG. 1. Two-time correlation function vs t of both Gaussian and
non-Gaussian noises for parameters �=1.0 and D=0.5.
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FIG. 2. Mean lifetime �T� vs the noise correlation time � of the
multiplicative colored noise with fixed noise variance for the same
parameter set a=b=1.0, C=0.5, and D�=0.05. The inset shows �T�
vs � with fixed noise strength for a=b=1.0, D=0.1, and D�=0.05.
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It has been used by several authors �6,10,28,29� for the study
of resonant activation. Substituting D=C� in Eq. �4� one can
easily check that for a given value of C and � the variance of
the non-Gaussian noise is greater than that of the Gaussian
noise for p�1 and does not change with increase of �. Fig-
ure 1 shows that �T� first decreases, followed by an increase
after passing through a minimum; the dotted and the solid
curves are for non-Gaussian and Gaussian noises, respec-
tively. This convention will be followed for other figures.

The decrease of �T� for the increase of noise correlation
time might be due to the decrease of effective barrier height
with the increase of the multiplicative noise strength by the
relation D=C� analogous to the escape through the saddle
point �7�. If the noise correlation time is sufficiently large
then the frequency factor of the escape rate rapidly decreases
for rising � �7�. As a result of the interplay of these two
factors the mean lifetime first decreases and then increases
after passing through a minimum for the increase of noise
correlation time and strength by the relation D=C�. Figure 2
shows that the minimum appears for the non-Gaussian noise
at a smaller correlation time compared to the Gaussian noise.
Because of higher effective noise strength for the former
than the latter for a given D �see Eq. �4�, also see Fig. 1
where we plot numerical results on two-time correlation of
Gaussian and non-Gaussian noises, respectively� the effec-
tive barrier height decreases at faster rate with increase of �
for the non-Gaussian noise than the Gaussian noise and
therefore the minimum first appears for the former. Due to
greater effective noise correlation time for the p�1 case �see
Fig. 1� the rate of increase of the MLT is higher for p�1
than the case p=1.

Now we investigate how �T� changes with � when noise
strength is kept fixed. In the inset of Fig. 2, we plot �T� vs �
for a given value of D for both the Gaussian and non-
Gaussian noises. Although the MLT first increases nonlin-
early then reaches a limiting value �29� for nonlinear poten-
tial, in the present model it rises linearly with � in both cases.
The rate of increase of �T� for the non-Gaussian noise is
slower compared to the Gaussian one because of greater ef-
fective noise strength for the former than for the latter.

In the next step we plot the logarithm of 1/ �T� vs 1/D� in
Fig. 3 which shows that the plot is linear for multiplicative
Gaussian noise �it is well known for the escape of a particle
through a saddle point� and the plot for non-Gaussian noise
is similar to what was observed in the case of the quantum-
Kramers rate �19�. Because of the higher effective noise
strength of non-Gaussian noise than Gaussian noise we find a
finite barrier crossing rate even at very low noise strength of
the additive white noise. Now we study the behavior of this
plot for the variation of strength of multiplicative noise D
keeping fixed the strength of additive noise D�. In the inset
of Fig. 3, we have plotted logarithm of 1/ �T� vs 1/D. It
exhibits that the plot is exponentially decaying at a large
value of the multiplicative noise strength D and becomes
linear at low noise strength. Thus the multiplicative noise
strength affects both the frequency and exponential factors of
barrier crossing rate expression when the strength is large
and the frequency factor becomes independent of it in the
weak noise limit. The decay rate at large D is faster for the
Gaussian noise than the non-Gaussian one due to greater
effective noise strength of the latter than the former.

Finally, we plot the mean lifetime �T� as a function of
non-Gaussian parameter p in Fig. 4, which shows that �T�
decreases as p increases and at large p it trends to a limiting
value. This is due to the following fact. Both the effective
noise strength �4� and correlation time become larger as p
increases. The former enhances the rate but the latter de-
creases it �the barrier height increases and the frequency fac-
tor decreases with increases of noise correlation time�. At p
→1 the noise strength dominates over the noise correlation
and at large p they balance each other.

We have applied the color noise generated by Eq. �2� to
the Langevin equation for a particle in the overdamped limit
and found that the particle has anomalous diffusion �30�. It is
of interest to find other applications of Eq. �1� and the noise
generated by Eq. �2�.
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FIG. 3. ln�1/ �T�� vs 1/D�, inverse of the strength of additive
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FIG. 4. Mean lifetime �T� vs the non-Gaussian parameter p for
a=b=1.0, �=0.5, D=0.1, and D�=0.05.
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