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Diffusion-trapping model of receptor trafficking in dendrites

P. C. Bressloff and B. A. Earnshaw
Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
(Received 13 November 2006; revised manuscript received 1 February 2007; published 26 April 2007)

We present a model for the diffusive trafficking of protein receptors along the surface of a neuron’s dendrite.
Distributed along the dendrite are spatially localized trapping regions that represent submicrometer mushroom-
like protrusions known as dendritic spines. Within these trapping regions receptors can be internalized via
endocytosis and either reinserted into the surface via exocytosis or degraded. We calculate the steady-state
distribution of receptors along the dendrite assuming a constant flux of receptors inserted at one end, adjacent
to the soma where receptors are synthesized, and use this to investigate the effectiveness of membrane diffu-
sion as a transport mechanism. We also calculate the mean first passage time of a receptor to travel a certain
distance along the cable and use this to derive an effective surface diffusivity.
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I. INTRODUCTION

The efficient delivery of proteins and other molecular
products to their correct location within a cell is of funda-
mental importance to normal cellular function and develop-
ment. Protein trafficking is of particular interest to neurobi-
ologists due to the unique morphology and complex structure
of neurons [1]. Neurons are highly polarized cells, consisting
of an axon that contains ion channels for action potential
propagation and protein rich presynaptic active zones for
neurotransmitter release, and several dendrites containing re-
ceptors that respond to neurotransmitters. At most excitatory
synapses in the brain, receptors are highly clustered at the
postsynaptic density, which is the protein-rich domain in the
postsynaptic membrane of a dendritic spine that is directly
apposed to the presynaptic active zone. The dendritic spine is
a small (submicrometer) membranous extrusion that pro-
trudes from a dendrite. Typically spines have a bulbous head
which is connected to the parent dendrite through a thin
spine neck. Given that hundreds or thousands of synapses
and their associated spines are distributed along the entire
length of a dendrite, it follows that neurons must traffic re-
ceptors and other postsynaptic proteins over long distances
(several 100 uwm) from the soma or cell body (where they are
synthesized) to distal regions of a dendrite. This can occur by
two distinct mechanisms: either by lateral diffusion in the
plasma membrane [2-4] or by motor-driven intracellular
transport along microtubules followed by local insertion into
the surface membrane (exocytosis) [5-7]. It is likely that
both forms of transport occur in dendrites, depending on the
type of receptor and the developmental stage of the organ-
ism.

In this paper we construct and analyze a model for the
surface transport of AMPA (a-amino-3-hydroxy-5-methyl-
4-isoxazole-propionic acid) receptors along a dendrite. These
receptors respond to the neurotransmitter glutamate and me-
diate the majority of fast excitatory synaptic transmission in
the central nervous system. [See Ref. [8] for a corresponding
model of motor-driven transport, involving another class
of glutamate receptor, namely, N-methyl-D-aspartate
(NMDA).] We assume that surface receptors diffuse freely
until they encounter a spine; if a receptor flows into a spine
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then it is temporarily confined by the geometry of the spine
and through interactions with scaffolding proteins and cy-
toskeletal elements. This is consistent with single-particle
tracking experiments, which show surface receptors under-
going periods of free diffusion interspersed with periods of
restricted motion in confinement domains that coincide with
synapses [3,9]. A surface receptor may also be internalized
via endocytosis and stored within an intracellular pool,
where it is either recycled to the surface via exocytosis or
degraded [10]. Thus one can view the surface transport of
receptors along a dendrite as a process of diffusion in the
presence of spatially localized, partially absorbing traps, see
Fig. 1. Studying the effects of diffusive transport within a
quantitative model is important, since there is currently some
experimental controversy regarding the rate of constitutive
recycling via intracellular pools and the role of surface dif-
fusion as a mechanism for delivering receptors to synapses
[4,11].

In order to develop an analytically tractable model of such
a process we make a number of simplifications. First, we
ignore the spatial extent of each spine so that the domain
over which free diffusion occurs is the whole cylindrical sur-
face of the dendrite without excluded trapping regions. This
is motivated by the observation that the spine neck, which
forms the junction between a synapse and its parent dendrite,
varies in radius from ~0.02 to 0.2 wm [12]. This is typically
an order of magnitude smaller than the spacing between syn-
apses (~0.1—-1 wum) and the circumference of the dendritic
cable (~1 um). In other words, the disklike region forming
the junction between a spine and the dendritic cable (see
inset of Fig. 1) is relatively small, and is therefore ignored.
For simplicity, we also ignore any details of surface traffick-
ing within a spine by treating the spine as a homogeneous
domain. (For a more detailed model of receptor trafficking
within a spine see Refs. [13,14].) Finally, we neglect varia-
tions in receptor concentration around the circumference of
the cable relative to those along the cable by considering a
reduced one-dimensional diffusion-trapping model. Under
these simplifications, we obtain explicit solutions for the
steady-state distribution of receptors along the dendrite and
the mean first passage time for a receptor to travel a fixed
distance from the soma. This allows us to determine how the
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FIG. 1. Diffusion-trapping model of receptor trafficking along a
dendritic cable (diagrams not to scale). (A) A population of den-
dritic spines are distributed on the surface of a dendritic cable of
length L. Each receptor diffuses freely until it encounters a spine
where it may become trapped. Within a spine receptors may be
internalized via endocytosis (END) and then either recycled to the
surface via exocytosis (EXO) or degraded (DEG), see inset. Syn-
thesis of new receptors at the soma and insertion into the plasma
membrane generates a surface flux o at one end of the cable. (B)
Reduced one-dimensional model showing a set of discrete trapping
sites (spines) and their associated state transition diagrams. Here R g
denotes the concentration of surface receptors inside the jth spine,
and §; denotes the number of receptors within the corresponding
intracellular pool. Freely diffusing surface receptors can enter/exit
the spine at a hopping rate ;, be endocytosed at a rate k;, exocy-
tosed at a rate 0}, and degraded at a rate 0';.1"‘5'. The spatial extent of
each trapping region is neglected so that free diffusion occurs over
the whole length of the cable.

efficacy of diffusive transport depends on various biophysi-
cal parameters such as the surface diffusivity and the rates of
exo- and endocytosis within a spine.

It should be noted that diffusion-trapping problems arise
in many areas of physics, chemistry, and biology, and a va-
riety of different modeling techniques have been developed
to study them. For example, in random porous media a par-
ticle diffuses freely in a pore region until it encounters the
boundary of a partially absorbing trap region (pore-trap in-
terface) where it is absorbed with some probability. Here the
spatial extent of the trap regions are not negligible so that
one has to solve the diffusion equation in a heterogeneous
medium using techniques such as homogenization theory
[15,16]. Another important class of model is that of continu-
ous time random walks [17,18], which have been used to
study anomalous transport in a wide range of systems includ-
ing motor proteins [19]. In these spatially discrete models the
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effect of a trap is to generate a nonexponential waiting time
distribution. In terms of a spatially discrete version of our
receptor trafficking model, only a fraction of sites (corre-
sponding to spines) would have waiting time distributions
that differ from a simple exponential—these sites do not gen-
erate anomalous diffusion but modify the diffusivity of the
system on large time scales.

I1. DIFFUSION-TRAPPING MODEL

Consider a population of N spines distributed along a uni-
form dendritic cable of length L, with Xj, j=1,...,N, the
position (axial coordinate) of the jth spine. Let U(x, ) denote
the concentration (per unit length) of surface receptors within
the dendritic membrane at position x at time ¢ and let R;(¢)
denote the concentration (per unit area) of surface receptors
trapped at the jth spine. The dendritic surface receptor con-
centration evolves according to the diffusion equation

N
awu FU
—=D— -2 QJU;-R]8(x-x)), 1
(% (9)62 z ][U} ]] (-x -xj) ( )

where D is the surface diffusivity, U;(1)=U(x;,1)/l, and [ is
the circumference of the cable (with [<<L). The first term on
the right-hand side of Eq. (1) represents the Brownian diffu-
sion of receptors along the surface of the cable. The second
term on the right-hand side represents the total number of
receptors per unit time that flow into or out of the spines. The
contribution from the jth spine is taken to depend on the
difference in concentrations (per unit area) across the junc-
tion between the spine and dendritic cable with (}; an effec-
tive hopping rate. (This rate depends on the detailed geom-
etry of the dendritic spine [20].) Equation (1) is supple-
mented by the following boundary conditions at the ends of
the cable x=0,L:

au

oUu
=-o0, —
ox

=0. 2
x=0 ax ( )

x=L

Here o is the number of receptors per unit time entering the
cable from the soma at x=0. The distal end of the cable is
assumed to be closed.

Surface receptors within the jth spine can be endocytosed
at a rate k; and stored in an intracellular pool. Intracellular
receptors are either reinserted into the surface via exocytosis
at a rate 0, or degraded at a rate ofeg . Denoting the number
of receptors in the jth intracellular pool by S;(7), we have the
pair of equations

drR. O, a’’‘S.

—L= U -R]- kR + 1, (3)
dt  A; A;

dS ec e,

The first term on the right-hand side of Eq. (3) represents the
exchange of surface receptors between the spine and parent
dendrite. Since {U;~R;] is the number of receptors per
unit time flowing across the junction between the dendritic
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cable and the spine, it is necessary to divide through by the
surface area A; of the spine in order to properly conserve
receptor numbers. The various processes described by Egs.
(3) and (4) are summarized in Fig. 1(B).

III. STEADY-STATE SOLUTION

Equations (3) and (4) show that in steady state,

R.= OU; g o _AKR; (5)
Qi AK (=N T o ot
with
O_[:'EC
= _.;d (6)
rec eg
o +0j

and U; determined from the steady-state version of Eq. (1):
N
U

where

p o SWAK(L=N) 8)

Integrating Eq. (7) over the interval 0<x<1L leads to the
self-consistency condition

U:EbjUj. 9)

This ensures the conservation of receptors entering and leav-
ing the dendrite. Equation (7) can be solved in terms of the
generalized one-dimensional Green’s function G(x,x’),
which satisfies the equation

d*G(x,x")

12 =—8x—-x")+L7", (10)
X

with reflecting boundary conditions at the ends x=0,L. A
standard calculation shows that

G(x,x'):%{h([x+x’]/L)+h(|x—x’|/L)}, (11)

where h(x)=3x>—6|x|+2. Given the Green’s function G, the
dendritic surface receptor concentration has an implicit solu-
tion of the form

N b.U; o
Ux)=x-> #G(x,xj) +5G(0), (12)

J=1

where the constant y is determined from the self-consistency
condition (9).

We can now generate a matrix equation for the concentra-
tion of dendritic receptors U, at the ith spine, i=1,...,N, by
setting x=x; in Eq. (12) and dividing through by the circum-
ference I:
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N
X
Ui=7—21g[jUj+a'gi, (13)
J=
where
G, = 2LG(x.x) L 6(x,.0) (14)
P x.’x.’ i=_ xi’ .
i p e 8T

If the matrix g=(g,-j) does not have —1 as an eigenvalue
(which is the generic case), then the matrix Z+§, where 7 is
the N X N identity matrix, is invertible and we can solve the
system (13). That is, setting M =(Z+G)~!, we have

J
The self-consistency condition (9) then determines y accord-
ing to
1= 2 Mg
k1

=g —/—|. (16)
> bMy,
ol

~ I

Equations (15) and (16) determine the dendritic receptor
concentration U; at the discrete site x; of the jth dendritic
spine. Substituting this solution into Eq. (12) then generates
the full receptor concentration profile U(x). Similarly, substi-
tuting Egs. (15) and (16) into Eq. (5) determines the number
of receptors at the surface of each spine, A;R;, and the num-

J

ber of receptors in each intracellular pool, S;. We note that U;
and, hence, U(x), R;, S; all scale multiplicatively with the

somatic flux o.

A. Uniform spines

The matrix solution for U; given by Egs. (15) and (16) is
very useful for numerically determining the distribution of
receptors in the general heterogeneous case. However, in the
case of identical spines distributed uniformly along the cable,
we can use a continuum approximation to derive a more
analytically convenient expression for U(x). Therefore con-
sider a set of N identical spines with uniform spacing d
=L/N such that x;=jd, j=1,...,N. We then rewrite Eq. (7)
in the form

0=D— — —pU, (17)

where p:Ej-V:l&(x—jd) and b;=b for all j=1,...,N. In the
case of large N, we can approximate p by the uniform dis-
tribution p=N/L=1/d and then solve the resulting differen-
tial equation. Imposing the boundary conditions (2) yields
the solution

_a cosh(Ay[L —x])
U(X) - DAO Slnh(AoL)

; (18)

where
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FIG. 2. Dendritic receptor concentration plot-
ted as a function of distance from the soma for a
uniform distribution of identical spines. The den-
dritic cable has length L=200 um and circumfer-
ence /=1 um. We consider N=200 spines having

0

spacing d=1 um and surface area A=1 um?.
(A)—(D) The black curve is the receptor profile

distance from soma (um)
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i.e., b is given by the j-independent version of Eq. (8). The
continuum approximation thus implies that the dendritic re-
ceptor concentration U(x) is an exponentially decaying func-
tion of the distance x from the soma with an effective space
constant A. It follows that for a given L, an approximately
flat distribution can be obtained provided that AjL<<1; the
magnitude of the receptor concentration will then depend on
the somatic flux o.

In Fig. 2 we plot the steady-state receptor concentration in
the dendritic membrane as a function of distance from the
soma, based on Egs. (12), (15), and (16). We consider N
=200 identical spines of surface area A=1 um? distributed
uniformly along a cable of length L=200 pm and circumfer-
ence /=1 um. In Figs. 2(A)-2(D) the black curve shows the
receptor profile for the following baseline parameter values,
which are consistent with typical values reported experimen-
tally: diffusivity D=0.1 um? s~!' [9,20], rate of endocytosis
k=1073 s7! [10,21], hopping rate Q=107 um?s~' [13,20],
and rate of exocytosis 0”*“=107% s7! [10]. (However, see Ref.
[4] which suggests that the local rates of exocytosis/
endocytosis could be at least an order of magnitude slower.)
We choose a rate of degradation 0?$=10"*s~! (so that \
=0.909) and a somatic flux o=1s"' (so that the receptor
concentrations close to the soma are physiologically reason-
able). The gray curves then show how the profile changes
when one or more parameters are changed from baseline. In
Figs. 2(A)-2(C) we plot receptor profiles for different values
of the diffusivity D, endocytic rate k, and recycling rate .
As expected, larger (smaller) values of D lead to more (less)
diffuse receptor profiles. Increasing k causes there to be less
receptors on the dendritic membrane (and in spines), but
more in intracellular pools, while decreasing k has the oppo-
site effect. Increasing 0”*, and hence A, forces more recep-
tors into the dendritic membrane (and spines) at the expense

QAK(1 = \)

T Q+AK(I-N) (19)

500
& (D) for the following baseline parameter values: D
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of the number of receptors in intracellular pools, while de-
creasing 0’ has the opposite effect. These results can also
be understood from the continuum approximation, which
shows that the correlation length A(_)1 and maximum concen-
tration U(0) increase as 0" increases or k decreases. On the
other hand, A{)' increases with D whereas U(0) decreases
with D. In Fig. 2(D) we show an example of an approxi-
mately flat receptor distribution (over the given cable length
L), obtained by taking rates of exo/endocytosis more consis-
tent with Ref. [4] and by reducing the somatic flux o and rate
of degradation ¢“°¢ accordingly.

The above analysis provides a quantitative measure of the
rate of decay of the dendritic receptor concentration U(x)
with distance from the soma and its dependence on various
biophysical parameters. The corresponding number of recep-
tors in each spine can then be determined from Eq. (5). For
the physiologically based parameter values used in Fig. 2 we
find that numerically R;~ U;. Our results thus suggest that it
is not possible to maintain receptor numbers in spines lo-
cated beyond a few hundred wm unless the rate of degrada-
tion is sufficiently slow, as suggested by Ref. [4]. However,
on longer length scales one confronts another well-known
limitation regarding diffusion-based transport, namely, that
the characteristic time 7 to travel a distance X varies as 7
=X?/2D. Taking typical measured values of the diffusivity
(D=0.1 um?s7") [9,20], the time to travel 100 um from the
soma is then T=5X 10* s= 15 h. Given that the lifetime of
an AMPA receptor is approximately one day [22], this sug-
gests that receptors will not be able to diffuse beyond around
150 wm (unless constitutive recycling provides a way to ex-
tend the effective lifetime of a receptor). We show in Sec. IV
that taking 7=X?/2D is an underestimate of the characteristic
time 7, since it does not take into account the effects of
trapping by spines.

B. Nonuniform spines

There is a considerable amount of heterogeneity in the
properties and spatial distribution of spines in a single neu-
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FIG. 3. (Color online) Inhomogeneities in spine density and surface area. (A) Dendritic receptor concentration plotted as a function of
distance from the soma for various distributions of identical spines: spines are spaced 2 um apart for the first 134 um of the cable, then
0.5 um thereafter (solid gray line), or spaced 4.88 wum for the first 166 wm of the cable, then 0.205 wm thereafter (dashed gray line); all
other parameters are taken at baseline as defined in Fig. 2. Note that for both distributions the total number of spines is still N=200. In both
cases there are more receptors at each location of the cable than in the uniform distribution (black). (B) Same as (A), except parameters are
chosen as in Fig. 2(D). Again, there are more receptors everywhere. (C) Dendritic receptor concentration (solid gray line) and receptor
numbers in spines (dashed blue line) plotted as functions of distance from the soma for a uniform distribution of nonidentical spines. (The
numerical range of both quantities are taken to be the same.) Spine surface area is 1 wum? for the first 100 wm of the cable, then 2 um?
thereafter; all other parameters are taken at baseline as defined in Fig. 2. There is relatively little change from baseline (black). (D) Same as
(C), except parameters are chosen as in Fig. 2(D). Receptor numbers at spines increase dramatically beginning 100 um from the soma.

ron (reviewed in Ref. [23]). For example, spine densities
typically increase with distance from the soma, peak at some
distance between the soma and the distal end of the dendrite,
then decrease thereafter [24]. Spine morphology ranges from
small filopodial protrusions to large mushroomlike bulbs,
and properties such as the surface area A also vary system-
atically along the dendrite [25]. These heterogeneities can be
taken into account using our general solution for the steady-
state receptor concentration, Egs. (12), (15), and (16). We
illustrate this in Fig. 3, where we present plots similar to
those in Fig. 2 except that now we allow the density and
surface area of spines to vary. In Figs. 3(A) and 3(B) the
dendritic receptor concentration is plotted for two inhomoge-
neous distributions of identical spines: one in which spines
are spaced 2 um apart for the first 134 um of the cable, then
0.5 pum thereafter, and another wherein spines are spaced
4.88 um for the first 166 wm of the cable, then 0.205 wm
thereafter. These spacings were chosen so that the total num-
ber of spines remains N=200. In both cases there are more
receptors at each location along the length of the dendritic
cable than there are for a uniform distribution of spines, due
to the fact that there are less spines near the soma, allowing
receptor concentrations to build up along the length of the
cable. In Figs. 3(C) and 3(D) we plot the dendritic receptor
concentration and receptor spine numbers as functions of
distance from the soma for a uniform distribution of non-
identical spines: spine surface area is taken to be 1 um? for
the first 100 wm of the cable, then 2 ,um2 thereafter. There is

relatively little change from baseline when parameter values
are taken as in Fig. 2(A). However, when parameter values
are taken as in Fig. 2(D), receptor numbers at spines increase
markedly from baseline beginning 100 um from the soma,
although dendritic receptor concentrations are everywhere
less than baseline.

IV. MEAN FIRST PASSAGE TIME (MFPT)

In this section we calculate the MFPT for a single tagged
particle to travel a distance X from the soma and use this to
determine an effective diffusivity, which takes into account
the effects of trapping at spines. Since we are assuming that
the tagged particle has not been degraded over the time in-
terval of interest we set a‘jkg =0 for all j. Let 7#(X) denote the
time it takes for a particle starting at the soma to first reach a
distance X along the cable. Since the movement of a single
receptor within the surface of the dendritic cable is driven by
diffusion, 7 is a random variable and we are therefore inter-
ested in calculating the mean of 7, which we denote by 7.
Hence we wish to solve a MFPT problem for the Fokker-
Planck equations

N
du Fu
ﬂi ec
= O lu; - rilA] - kir;+ o’ s;, 21
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d
;Sti—— s+ k. (22)

Here the lower case variable u(x,) represents the probability
density (per unit length) that at time =0 the receptor is not
trapped at a spine and is located at a distance x along the
cable. Similarly, r,(r) and s;(1) represent the probabilities,
respectively, that at time =0 the receptor is either at the
surface of the jth spine or is in the corresponding intracellu-
lar pool. The initial conditions are u(x,0)=4d(x) and r;(0)
=5,(0)=0 for all j.

We calculate the MFPT by solving Eq. (20) on the inter-
val [0,X) supplemented by a reflecting boundary condition at
x=0 and an absorbing boundary condition at x=X. The ab-
sorbing boundary condition removes the receptor once it
reaches a distance X from the soma and represents the fact
that we are only interested in the time it takes for a receptor
to first reach this distance given that it started at the origin.
The function

X Nx
F(X,t) = f u(x,0)dx + 2, [r,(1) +5,(1)] (23)
0 j=1

is the probability that t<<7(X); i.e., the probability that a
receptor which was initially at the origin has not yet reached
the point x=X in a time ¢. Here Ny is the number of spines in
the interval [0, X). Notice that 1 —F is the cumulative density
function for 7, hence

Il -F) oF

== 24
o ot @4

is its probability density function. Thus the MFPT T is

T:—J t-dt:J Fdt. (25)
o Ot 0

The last equality in Eq. (25) follows by integrating the first
integral by parts and recalling that F, being an L' function in
time, decays more rapidly to zero than ™! as ¢ becomes large.
Therefore integrating Eq. (23) over time gives us the follow-
ing expression for T(x):

X Nx
T(X) = f i(x,0)dx + 2 [#(0) +5,(0)], (26)
0 j=1

where - denotes the Laplace transform with respect to time,

flz) = J eI f(r)d. (27)
0

Laplace transforming Egs. (20)—(22) and using the initial
conditions, we find

. N
Pl <

~zi+ D" 5= 21 Qi - #1A;]18(x - x;) - 8(x), (28)
=

ijzﬂj[ﬁ]_f]/A]]—kaj+U;ec§j, (29)
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ijZ—U;ecfj"'kjfj, (30)
where #;(z)=i(x;,z)/1. In the limit z— 0, Eqgs. (29) and (30)
show that
A;ii;(0) =7;(0) = —Ls 4(0) (31)
kj
and Eq. (28) becomes
Pi(x,0
pTHe0_ . (32)
ox

Imposing the boundary conditions at x=0,X leads to the so-
lution

a(x,0)=Xl;x (33)
From Egs. (26), (31), and (33) we then calculate 7(X):
X2
T(X)=——+ —E (X - x)), (34)

2D DZ

where 7;=A[1+k;/0’*]/1. The first term on the right-hand
side of this equation is the MFPT in the absence of any
spines, whereas the remaining terms take into account the
effects of being temporarily trapped at a spine.

In order to calculate an effective diffusivity, let us con-
sider the simple example of identical spines distributed uni-
formly along the cable with spacing d. That is, we take the
site of the jth spine to be x;=jd, j=1,...,N such that Nd
=L. We also set Ny=X/d. Equation (34) then becomes (for
Ny>1)

N
X2 X X2 ( (NX+1)NXd>
TX)=—+ — X—jd)=—+ Ny X——"
()ZDDE( ])2DDX >
X2 QX_2_ X?
“ 20" D220,
where
D
Deff:A—k. (35)
1+—( o"")

As one would expect, the presence of traps reduces the ef-
fective diffusivity of a receptor. In particular, the diffusivity
is reduced by increasing the ratio k/c”*“ of the rates of en-
docytosis and exocytosis or by increasing the surface area A
of a spine relative to the product of the spine spacing d and
circumference of the cable /. Interestingly, D,z does not de-
pend on the hopping rate (). At first sight this might seem
counterintuitive, since a smaller () implies that a receptor
finds it more difficult to exit a spine so the effective resi-
dence time within the spine increases. However, this is com-
pensated by the fact that it is also more difficult for a recep-
tor to enter a spine in the first place. (For a more detailed
analysis of entry/exit times of receptors with respect to
spines see Ref. [26].)
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For the sake of illustration, suppose that the rates of exo/
endocytosis are equal (k=¢"*). Taking typical measured val-
ues of the diffusivity (D=0.1 wm?s~!) [9,20], the area of a
spine (A=1 um?), the spacing between spines (d=1 um),
and the circumference of a dendrite (/=1 um) [12], we find
D,=0.5D. The corresponding MFTP to travel 100 wm from
the soma is then T=10° s =30 h. The distance that a receptor
can diffuse would be further reduced if k> 0" such that
D <D. As we have previously indicated, there is currently
some controversy regarding the absolute rates of exo/
endocytosis for AMPA receptors [4,21], although there is
growing evidence that their values are activity dependent
[10] so that the ratio k/0” and, hence D, , may be modifi-
able by experience.

V. DISCUSSION

In this paper we presented a diffusion-trapping model for
the surface transport of receptors along a dendritic cable.
Within each spatially localized trapping region (dendritic
spine) a receptor could be internalized via endocytosis and
then either recycled to the surface via exocytosis or de-
graded. The effects of the spines were twofold. First, they
reduced the effective surface diffusivity of receptors. Second,
they resulted in a spatially decaying profile for the steady-
state receptor concentration along the cable, assuming that
new receptors are synthesized at the soma and then inserted
into the plasma membrane at the proximal end of the den-
drite. Using physiologically reasonable parameter values we
found that it was not possible for surface diffusion to supply
spines with receptors beyond a few hundred um from the
soma. This suggests that an additional mechanism is needed
in order to transport receptors to more distal spines. One
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possibility is that newly synthesized receptors are stored lo-
cally within intracellular pools: these receptors are either
synthesized locally or they are synthesized at the soma and
then transported intracellularly along microtubules from the
soma to local pools [1,8]. Our model could be modified ac-
cordingly by introducing a source term into the kinetic equa-
tion for the number of intracellular receptors, see Eq. (4).
Newly synthesized receptors would then be transported from
the intracellular pool to the surface membrane via exocyto-
sis, being inserted directly into a synapse or into neighboring
regions of the spine and dendrite [21]; in the latter case local
surface diffusion would provide the final step in delivering
receptors to the synapse.

Although we have established that surface diffusion can-
not be the sole mechanism for delivering receptors from the
soma to synapses, it still plays an important role in receptor
trafficking. In particular, the concentration of receptors
within a spine depends on the local dendritic receptor con-
centration which, in turn, depends on the distribution of re-
ceptors across all spines; this nonlocal interaction is medi-
ated by surface diffusion [see Egs. (1) and (3)]. There is a
growing body of experimental evidence suggesting that the
trafficking of AMPA receptors into and out of spines contrib-
utes to activity-dependent, long-lasting changes in synaptic
strength [27,28]. Therefore understanding the nonlocal ef-
fects of surface receptor diffusion along a dendrite could
have important implications for synaptic plasticity. We hope
to explore this issue further elsewhere.
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