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Uniaxial rebound at the nematic biaxial transition
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Over the last few years, renewed interest has been raised by the simplified general interaction models
proposed by Straley for mesogenic molecules possessing the D,;, symmetry and capable of producing biaxial
nematic order. It has already been shown that, in the presence of certain special symmetries, just two out of the
four order parameters that are in general necessary, suffice for the description of a biaxial phase. For some
other range of parameters, these reducing symmetries do not hold, and, moreover, a mean-field treatment has
to be suitably changed into a minimax strategy, still producing a transition to a low-temperature biaxial phase.
Upon studying the general parameter range, we identify as a common feature the behavior of a uniaxial order
parameter, attaining a local minimum at the biaxial-to-uniaxial transition temperature, and recognizably in-
creasing away from it. This finding is confirmed by a Monte Carlo simulation.
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I. INTRODUCTION

Nematic biaxial phases, predicted theoretically by Freiser
[1,2], in thermotropic liquid crystals, have proved far more
elusive than anticipated. Since Yu and Saupe’s [3] first ex-
perimental proof of their existence in lyotropic liquid crys-
tals, the meandering history of their search in thermotropics
has experienced many rough turns and more than one delu-
sion [4]. Though the recent announcement of a series of in-
dependent observations of these phases [5-10] has raised
considerable interest among liquid crystal experts [11], these
experimental results have not yet met with unanimous con-
sensus [12-14].

Theoretically, the existence of thermotropic biaxial phases
is supported by many predictions, based on both analytical
and computational methods. A detailed bibliography can be
found, for example, in [15], and here only a few among the
relevant papers will be quoted. We record, for later reference,
the mean-field model originally put forward by Straley
[16,17] and the detailed Monte Carlo simulation performed
by Biscarini et al. [18] for a particular—though largely
employed—instance of Straley’s pair-potential, related to the
London dispersion forces approximation [19]. Hard-core
(excluded-volume) models have been investigated as well,
both by analytical theories (usually Onsager-type treatments)
and simulation, and have been found capable of predicting a
biaxial phase for appropriate choices of potentials [20-24].
Another mean-field model was also built upon a different
realization of Straley’s pair-potential [25,26]; it revealed,
among other aspects, the possibility for the direct isotropic-
to-biaxial transition to take place over a full range of model
parameters, instead of a single one, as within the dispersion
forces approximation. Moreover, according to this model the
transition to the biaxial phase from both isotropic and
uniaxial phases can be either first- or second-order, depend-
ing on the choice of a model parameter [27,28]. Such a va-
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riety of behaviors resulted from varying a single parameter
of the two allowed by the general form of Straley’s pair
potential. The dispersion forces approximation represents a
similar reduction of Straley’s pair potential, but this and the
one put forward by Sonnet et al. [25] are accompanied by
different features of the phase diagram. Straley’s general pair
potential was recently studied [29] for all inequivalent
choices of the model parameters [30].

In the dispersion forces approximation, the pair potential
takes the form of the inner product between two molecular
biaxial tensors, one pertaining to each of the interacting mol-
ecules [54]. Such a form, which we also call a London at-
tractor, embodies the tendency of two adjacent molecules to
lie one parallel to the other, side-by-side, as it were. This
special form of Straley’s interaction is characteristic of dis-
persion forces approximation. When this approximation is
abandoned, however, Straley’s interaction Hamiltonian H
can still be decomposed as the sum of two London interac-
tions, but they need not be both attractors [29]. The region of
admissible Straley’s parameters is divided in two subregions
by the curve—a parabola, in our parametrization—
corresponding to the dispersion forces approximation: in one
region, H is the sum of two London attractors, in the other
region, H is the sum of a London attractor and a London
repulsor, that is, a London interaction promoting skew rela-
tive orientations between adjacent molecules. We call fully
attractive a Hamiltonian in the former region and partly re-
pulsive a Hamiltonian in the latter region. In particular, the
quadrupolar projection of the exact excluded-volume inter-
action for spherocuboids, a family of hard particles that in-
clude both platelets and spheroplatelets as special cases
[31-34], is partly repulsive [35].

Both fully attractive and partly repulsive Hamiltonians
were found to give rise to the same sequence of condensed
phases [29], with essentially the same phase diagram as the
one derived by Sonnet et al. [25], which was thus recognized
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as universal. Upon lowering the temperature, the isotropic
phase can either suffer a direct transition to the biaxial phase
or this can be preceded by an intermediate uniaxial phase.
While the isotropic-to-uniaxial transition is always first-
order, all other transitions can be either first- or second-order,
depending on the choice of the interaction parameters.

Four scalar order parameters are in general needed to de-
scribe a biaxial phase: in our terminology [25] they were
denoted as (S,T,S',T’), where S is Maier and Saupe’s origi-
nal uniaxial parameter [36]. When both T and T’ vanish, the
phase is uniaxial, when either 7 or 7' grows away from zero,
the phase is biaxial, but the biaxiality has different origins in
the two cases: it arises from the lack of rotational symmetry
in the distribution of the long molecular axis when 7# 0,
while it arises from a tendency toward alignment of the short
molecular axes when 7" # 0. Similarly, S and S” express dif-
ferent measures of uniaxiality, the latter being induced by the
alignment of the short molecular axes. Different authors have
named differently the four scalar order parameters that de-
scribe a biaxial nematic phase: a rather complete account on
the diversity of the notation and an attempt to establish con-
version rules between them were recently presented by
Rosso [37].

The interaction we have most studied so far [25,28] is
characterized by symmetry properties [30] that eventually
result in a reduction of the number of order parameters. It
was shown that two order parameters would then suffice to
describe the whole variety of stable condensed phases for
this class of biaxial nematics [38]. Similar reductions are not
known for a generic interaction.

This paper seeks a generic, unifying feature for the order
parameter profiles. Our outcomes will complement the uni-
versal sequence of stable equilibrium phases [29]. We apply
the mean-field model that has already been employed in pre-
vious studies [25,28-30]. Special attention will be given to
the region in the parameter space where the interaction
Hamiltonian is partly repulsive, as there the mean-field free
energy fails to possess a global minimum in the order param-
eter space, and the search for the stable phases is conducted
through a minimax principle, proposed in a different context
by Bogolubov [39-41].

The class of interaction potentials employed here is out-
lined in Sec. II. Our mean-field model is briefly recalled in
Sec. III, and the desired unifying feature is accordingly iden-
tified in Sec. IV. In Sec. V, we present the outcomes of com-
puter simulations performed for selected partly repulsive
Hamiltonians. Our main conclusions are summarized in the
final Sec. VL.

II. MOLECULAR INTERACTION

A biaxial molecule possesses the same symmetry as a
parallelepiped. Let e, e, and m denote the axes around
which the molecule is invariant under rotations by an angle
7 (see Fig. 1). This is often referred to as the D,;, symmetry.
Conventionally, we say that m is the long molecular axis,
which would play the role of the molecular director, were the
molecule uniaxial around it, in which case one would say
that the molecule enjoys the D.,;, symmetry. It is easily seen
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FIG. 1. (Color online) A biaxial molecule can be pictured as a
brick; e, e |, and m denote the axes around which the molecule is
invariant under rotations by an angle .

[37] that all symmetric, traceless tensors enjoying the D,
symmetry about the molecular axes (e,e | ,m) can be written
as linear combinations of

1
q==m®m—§I andb:=e®e-¢, ®e, (1)

where I is the identity tensor. Thus the anisotropic part of
any molecular susceptibility can be written as a linear super-
position of these tensors.

Assuming within a dispersion model that these compo-
nents interact separately with one another, one can justify the
general form given by Straley [16] to the spatial average [55]
of the interaction Hamiltonian:

H=-Ujéq-q"+¥(q-b"+b-q")+\b-b"}, (2)

where Uy>0 is a scaling energy, and &, 7y, and \ are scalar
parameters, any of which can be chosen with unit modulus,
with no loss of generality. In Eq. (2) the two interacting
molecules are represented by the pairs of tensors (q,b) and
(q".b’).

In [38] we chose |&=1 and we showed that, to within a
permutation of axes and a possible rescaling of U, all dif-
ferent Hamiltonians in Eq. (2) that attain their minimum in
the configuration where the interacting molecules lay parallel
to one another, side by side, are represented by £=1 and
(7v,\) in the essential triangle defined by the inequalities

y=0, N=0, 1-2y-3\=0, 3)

which is depicted in Fig. 2. The vertices O, |, and V have the
following coordinates in the (y,\) plane: O=(0,0), |
=(0,%), and V=(%,0).

For A=92, Eq. (2) reduces to the Hamiltonian H,, put for-
ward by Freiser [1,2], in accordance with the classical Lon-
don dispersion forces approximation:

H() ==—an~a', (4)

where a:=q+yb and a’:=q’+yb’ are the anisotropic parts
of the dielectric susceptibility tensors of the interacting mol-
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FIG. 2. (Color online) The essential triangle in the (y,\) plane;
this region, defined by the inequalities (3), is sufficient to represent
all different Hamiltonians in Eq. (2), to within a permutation of axes
and a possible rescaling of U,. The coordinates of the vertices are
the following: O=(0,0), |=(0,%), and Vz(%,O). C,C; is a tricriti-
cal line: the corresponding phase diagram exhibits a tricritical point
along the uniaxial-to-biaxial transition. C,C5 is a triple line: the
corresponding phase diagram exhibits a single direct isotropic-to-
biaxial transition, where the isotropic, uniaxial, and biaxial phases
are in equilibrium [29]. The coordinates of the limiting points of
these lines are the following: C,;=(0,0.20), C,=(0,0.22), and
C3=(25—9,%). The arc OT is a portion of the dispersion parabola A
=972. PT is the intersection of the essential triangle with the line
tangent to this parabola at T. PT divides the region below the
dispersion parabola, corresponding to partially repulsive Hamilto-
nians, into two sectors; a point was chosen within each sector, as

illustrated in the text. These points are R:(%—%,%—zg—}) and G
=1 1) ’ )
V318’

ecules. For y=0, H reduces to the Hamiltonian studied in
[25,28]. In the essential triangle, this special Hamiltonian is
represented by the segments Ol and IT with T=(%,$),
whereas H,, is represented by the arc OT along the parabola
A=7. Both points O and T are somewhat peculiar: while the
former corresponds to a Hamiltonian H, with a uniaxial, the
latter corresponds to a Hamiltonian H, with a bearing the
largest possible biaxiality, as det a=0. All other points along
the arc OT represent different blends of these pure interac-
tion states.

In Fig. 2, the segment PT with P=(%,0) is tangent to the
dispersion parabola at T. It is shown in [38] that the triangle
PTV is special within the essential triangle, as it is its only
subregion mapped onto the plane £=—1 by a permutation
symmetry. That is, when §=-1, so that the long molecular
axes would repel each other, there is an axis permutation that
transforms the Hamiltonian H into another where the trans-
formed long axes attract each other again; the transformed
Hamiltonian is described by a point within the triangle PTV.

The arc OT divides the essential triangle into two subre-
gions: in both, H can be decomposed in the sum of two terms
resembling H:

H=-Ufa'q"-q"" +a q - q'}, (5)

where * and q~ are linear combinations of q and b depend-
ing on both y and N. While in OTI both a* and a~ are
positive, in OTV they have oppostite sign [29]. Thus in OTI
both diagonal terms in Eq. (5) are attractive, whereas in
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OTV one is attractive and the other is repulsive, though H
remains globally attractive.

This different behavior of H in OTIl and OTV is reflected
in calling H fully attractive in the former region and partly
repulsive in the latter. The difference between these Hamil-
tonians is not just in their names: as shown in [29], when
associated with a fully attractive Hamiltonian, the mean-field
free energy possesses a global minimum, whereas it fails to
do so when associated with a partly repulsive Hamiltonian. A
minimax principle was proposed and justified in [29] to
tackle partly repulsive Hamiltonians within the mean-field
approximation.

III. MEAN-FIELD TREATMENT

All condensed phases that an ensemble of biaxial mol-
ecules can manifest are represented by the order tensors de-
fined by [25]

Q:=(q) and B := (b), (6)

where the ensemble average (---) will here be computed
within the mean-field approximation [25,29]. Both Q and B
are symmetric and traceless by construction. In the absence
of any external distorting cause that would disrupt their D,
symmetry, they share one and the same eigenframe [37], and
so they can be represented as

1
Q=S<e1®e1—gl>+T(ex®ex—ey®ey), (7a)

1
B=S’<ez®ez—51>+T’(ex®ex—ey®ey). (7b)

In this representation of a condensed phase, S and S’ are
uniaxial order parameters, whereas 7 and 7’ are biaxial.
When these latter vanish, while both § and S’ do not, both Q
and B are uniaxial tensors and so is the phase they describe,
even if S and S’ have a different meaning, the latter being
related to the anisotropy in the distribution of the short mo-
lecular axes e and e . Likewise, of the two biaxial param-
eters T and 7", the latter is related to the molecular biaxiality,
while the former characterizes the lack of rotational symme-
try in the distribution of the long molecular axis m [25,28].

The scalar order parameters (S,7,S’,7T’) must obey four
consistency conditions, equivalent to the stationarity condi-
tions for the free energy F defined as

12 2 1 i ’
F=U, §S +T°+2y ESS +1T

Lo ,2>_1 (L)
+)\(3S +T Bln a2 [ (8)

where

b
~

1
S ©)
B

is the reduced temperature, kj is the Boltzmann constant, and
Z is the partition function. In the parametrization of the mo-
lecular orientation adopted in [25],

S
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m = (cos ¢ sin He, + (sin ¢ sin He, + (cos Ve,

e =(cos ¢ cos ¢ cos ¥ — sin i sin @)e, + (cos ¢ sin ¢ cos &

+sin ¢ cos @)e, — (cos ¢sin He,,

e, =— (sin ¢y cos @ cos ¥+ cos sin @)e,
— (sin ¢ sin @ cos ¥ — cos i cos p)e, + (sin ¢ sin Ve,
(10)

Here U, ¢, and ¢ represent the polar angle, the azimuth, and
the angle of proper rotation, respectively. In these variables,

27 27 1
Z= f f f exp(Bg)dudpdi, (11)
o Jo J-1

where u:=cos O and
g=q-Q+y(q-B+b-Q)+\b-B
1
= (uz - g)(S+ YS") + (1 = ud)[(T+ yT")cos 2¢
+ (yS +\S")cos 2] + [(1 + u*)cos 2¢ cos 24

—2u sin 2¢ sin 2 |(yT + \T"). (12)

Moreover,

1 3
§=_(3cos’ 9-1). §'="(sin’ Deos2y), (13a)

1
T= 5<Sin2 Y cos 2¢), (13b)

1
T = 5((1 +c0s” ¥)cos 2¢ cos 2¢/— 2 cos I sin 2¢ sin 2¢).

(13c¢)

The scalar order parameters are constrained within the fol-
lowing bounds [25]:

=§<1, -(1-5<8<1-5), (l4a)

1
2

1 1
_5(1_S)sT$5(1—S), (14b)

1
—gmin{2+S+3T+S’,2+S—3T+S’}

1
sT < 3 min{2+S5-3T+S",2+S5+3T-S"}.

(14¢)

Inequalities (14a) and (14b) are immediate consequences of
Egs. (13a) and (13b), whereas Eq. (14c), which narrows the
admissible range —1 <7’ =<1 predicted as a consequence of
Eq. (13¢), has been derived in [38] from a symmetry prop-
erty.
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Equations (13a) clearly show that even in the presence of
a certain degree of alignment in the long molecular axis,
which makes S>>0, S’ still vanishes if the short molecular
axes are randomly distributed. Conversely, a certain degree
of locking in the short axes distribution would contribute less
to S’ if the long axis is more aligned. Two different mecha-
nisms contribute to build S’: the locking of the short axes
(e,e ) and the widening of the cone described by the long
axis m around the uniaxial director e,, which per se would
decrease S. For this reason, in a uniaxial phase the growth of
S’ as the temperature decreases can be interpreted as a sign
of effectiveness of the short axes locking compared with the
long axis alignment and may also be accompanied by a tem-
porary decrease of S. An alternative, geometric way to visu-
alize this is offered by Eqgs. (10) and (13a). It readily follows
from them that

S'= %[((e €)= (e, -e))]. (15)

An increase in S’, which clearly measures the difference in
the degree of alignment of the short molecular axes along the
uniaxial director, is likely to be associated with a decrease in
S, as this would widen the range of variability of both fluc-
tuating quantities in Eq. (15).

Order parameters are often expressed as ensemble aver-
ages of symmetry-adapted combinations of Wigner rotation
functions R(z)o, R%O, RSZ, and R%z [15,18,32,42-45]. Here, to
ease the comparison with other sources, we heed that these
averages are related to S, 7, S’, and 7" through the following

equations:
2 2 3
<Roo> =S, <R20> = ET,

1 1
Ry =—7S", (Ry)==T'.
(Ri) 6 (Ry)=7

(16a)

(16b)

The essential triangle in Fig. 2 is divided into three dis-
joint regions characterized by a different sequence of equi-
librium phases traversed as the temperature decreases. Sche-
matically, in such a sequence the isotropic, uniaxial, and
biaxial phases are denoted by the symbols I, U, and B, re-
spectively; a first-order transition is denoted by a dash and a
second-order transition by an equal sign. Thus in 1C,C5 the
equilibrium phase sequence is I-B, this meaning that as the
temperature decreases an ensemble of biaxial molecules
traverses both the isotropic and the biaxial phases, undergo-
ing a first-order transition between the two. Similarly, in
C,C;C, the equilibrium phase sequence is I-U-B, and in
C,C;VO it is I-U=B. As shown in [29], C,C; is a triple
line, while C,C; is a tricritical line. Specifically, the points
C,, C,, and C; have the following coordinates C;
=(0,0.20), C,=(0,0.22), and C3=(5,£).

IV. ORDER PARAMETER PROFILES

The phase diagram drawn in [25,28] for the Hamiltonians
along Ol and IT encompasses all the qualitative features of

041705-4



UNIAXIAL REBOUND AT THE NEMATIC BIAXIAL...

the equilibrium phase sequences, and so it acquires a univer-
sal character. These phase sequences were obtained by ap-
plying the traditional minimum principle for the mean-field
free energy to the fully attractive Hamiltonians and an appro-
priate minimax principle to the partly repulsive Hamiltonians
[29]. To subject this minimax principle to further scrutiny,
we studied in detail the order parameter profiles for two
points, G and R, selected so as to explore the two subregions
of OTV that behave differently under the permutation sym-
metry, namely, OTP and PTV (see Fig. 2). G is along the
axis of the triangle PTV, halfway between the vertex T and
the base PV; its coordinates are G = (0.33,0.056). R is along
P1, halfway between P and the intersection of PI with the arc
OT; its coordinates are R=(0.16,0.012).

The order parameter profiles have been obtained from a
numerical bifurcation analysis of the equilibrium equations
for F, performed with the aid of MATCONT [46], a free
software package which integrates into MATLAB [47]. In
the parametrization (10) of the molecular orientation, these
equilibrium equations read as

2 Z

S+ yS’)—ES=0, (17a)
z

2T+ yT’)—ET=0, (17b)

2 Zg

g("yS+)\S’)—7S=O, (17¢)
Zp

2(’yT+)\T’)—7=0. (17d)

In Egs. (17), Zy denotes the partial derivative of the partition
function Z with respect to the corresponding order parameter
X; more precisely,

BV 27 2w (1
ZX = & = f f f hX(u’ b, w)eXP(ﬁg)dUdQDd‘lf,
0 0 -1

(18)
where
hs(u, ¢, ) = (u2 - %) +y(1-u’)cos2¢,  (19a)
hy(u, @, ) = (1 — u*)cos 2¢ + yh(u,@,4),  (19b)
hg(u, @, ) = 7<u2 - %) + N1 —uP)cos 2y,  (19¢)
hy(u, @, ) := Y(1 —u?)cos 2@ + Na(u, @, ),  (19d)
and

h(u, @, ) := (1 + u®)cos 2¢ cos 24— 2u sin 2¢ sin 2.

Numerical evaluation of the integrals in Eq. (18) and of
similar ones intervening in the bifurcation analysis is crucial
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to the success of our numerical strategy; therefore particular
care has been taken in identifying the most appropriate com-
putational method. The algorithm chosen is a combination of
an (m+1) X (m+1)-gridpoint composite trapezoidal rule for
integration in ¢ and ¢, which is the method of choice for
periodic functions integrated over an integer number of full
periods [48], and an n-node Legendre-Gauss quadrature on
the variable u=cos 9 [49].

In detail, for example, we approximate the function in Eq.
(11) by

m m

Zym= 42 E 2 Wil exp[ Bg(u;, <Pja¢k)]A2a (20)

i=1 j=0 k=0
where (u;,w;) are the Gaussian nodes and weights, respec-
tively, for i=1,...,n; @;=7 for j=0,...,m; z/;,;%T for k
=0,...,m; A=, and
if j=0orj=m) and (k=0 or k=m),
if j # 0,m and k # 0,m,

otherwise.

hk‘ =

7

[ T T

21

Similar expressions are given by the numerical approxima-
tion for the functions in Eq. (18).

This algorithm proved to be faster than the MATLAB
built-in quadrature codes in several tests for typical values of
(S,7,8",T',B,7,\); in such cases, n=24 and m=16 turned
out to offer a good balance between speed and computation
accuracy; relative errors in evaluating the integrals for typi-
cal values could be easily pushed to 1071, i.e., close enough
to machine attainable accuracy. However, when a transition
between phases occurs at low temperature, i.e., at large val-
ues of B, n and m need to be increased to improve accuracy
in numerical evaluation of integrals. Other sources of error
can limit the final accuracy of the results, such as tolerances
for functions in MATCONT, computation of the free energy
function, etc. We repeatedly tested the robustness of our
computations against these sources of error.

A good test for the validity of the method is available.
Since any phase state can be described by different sets of
order parameters, these sets are equivalent under symmetry
transformations corresponding to permutations of eigenvec-
tors (e,,e,,e,) of the order tensors in Eq. (6) [28,38]. Once a
bifurcation point is detected on a solution branch, it may be
continued on distinct branches, and yet equivalent through
these symmetry transformations; different branches can then
appropriately be recast, and so sent onto one and the same
branch. As long as all branches match to one another in this
transformation, at least in a fairly large neighborhood of the
bifurcation point, no suspicion that numerical approximation
is breaking the symmetry of the interaction should arise. In
typical conditions, equivalent solutions were matched with
accuracy less than 1% in the worst cases.

Nevertheless, even with poor numerical approximation of
integrals, when spurious solutions may be found, the transi-
tion reduced temperatures as well as the order parameter val-
ues in their neighborhood are in agreement with the corre-

041705-5



BISI, ROMANO, AND VIRGA

0.4f o Monte Carlo, [ =10
o Monte Carlo, [ =20
A Monte Carlo, [ = 30
0.2+ isotropic phase

== uniaxial phase
—biaxial phase

0 0.2 0.4 0.6 0.8

1 1.2
t/tNI

FIG. 3. (Color online) The ensemble average <R§0)=S of the
Wigner function R(Z,O, obtained by a mean-field analysis of the
Hamiltonian represented by G (see Fig. 2), is plotted as a function
of the ratio #/ty;, where ¢ is the absolute temperature and 7; is the
value of ¢ that marks the nematic-to-isotropic transition. The corre-
sponding Monte Carlo simulation results reported here and in the
following figures were obtained with three sample sizes, N=13, with
1=10, 20, and 30, correspondingly represented by circles O, squares
0, and triangles A. Temperatures were scaled to the nematic-
isotropic transition temperature corresponding to the method em-
ployed. For all three Monte Carlo simulations, #y; is the transition
temperature computed for /=30 (see also Table I).

sponding values found with improved numerical
computations to within a fairly good accuracy (less than
0.5%).

For the Hamiltonian represented by G, Figs. 3—6 show the
order parameters (R(Z)O), <R§O>, <R%2>, and <R§2> defined in Egs.
(16) as functions of the ratio t/t;, where t is the absolute
temperature and fy; is the value of ¢ that marks the nematic-
to-isotropic transition. Superimposed to these graphs are the
points, here shown as circles, squares, and triangles, obtained

0.041
, © Monte Carlo, [ =10
( R20> o Monte Carlo, [ =20
4 Monte Carlo, /=30 | &
0.03r o isotropic phase § °
== uniaxial phase § °
. | — biaxial phase 8
o]
0.02r ©
0.01r
0 - : ,
0 0.2 0.4 0.6 0.8 Uy 12

FIG. 4. (Color online) The ensemble average (R%O)z \E T of the
Wigner function R%O, obtained by a mean-field analysis of the
Hamiltonian represented by G (see Fig. 2), is plotted as a function
of the ratio #/ty;; superimposed to the plot are the corresponding
points obtained from a Monte Carlo simulation for different sample
sizes, N=13 (O, [=10; O, [=20; and A, [=30). (For more details,
see the caption to Fig. 3.) Monte Carlo simulation results around the
nematic-to-isotropic transition exhibit a “spurious” spike, whose
height decreases with increasing sample size.
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0.07r,
© Monte Carlo, [ =10 <
(R; -
02 ) o Monte Carlo, [ =20 7 “
0.06H 4 Monte Carlo, I =30 ,; o
o isotropic phase v o %
== uniaxial phase ! aﬂﬂﬂ%
— biaxial phase ,‘l e ; %
0.05 Sog 3
B EB i)
U E (o]
1
!
0.04F ‘ .
s £ °
I/ gg@ bk
0.03F ,~’B,,ﬂ %
I‘Inu E
0.021 i%
. e
%D
0.01F A
A
0 , , , , , ,
0 0.2 0.4 0.6 0.8 1.2

FIG. 5. (Color online) The ensemble average <R%2)=%S’ of the
Wigner function R(z)z, obtained by a mean-field analysis of the
Hamiltonian represented by G (see Fig. 2), is plotted as a function
of the ratio #/ty;; superimposed to the plot are the corresponding
points obtained from a Monte Carlo simulation for different sample
sizes, N=0° (O, [=10; O, [=20; and A, [=30). (For more details,
see the caption to Fig. 3.) At the onset of the biaxial phase, both the
mean-field analysis and the Monte Carlo simulation predict a re-
bound for this order parameter, which is a measure of the strength
of attraction between the short molecular axes.

from a Monte Carlo simulation with different sample sizes:
the total number of particles is N =3, with =10, 20, and 30,
respectively; the computational details are summarized in
Sec. V. Though the values of #y; computed through the mean-
field approximation and the Monte Carlo simulation are dif-
ferent, once reduced to the same dimensionless temperature
scale t/ty;, the data obtained with the two methods are in
remarkable agreement. Here for all three Monte Carlo simu-

0.5
RZ > © Monte Carlo, [ =10
< 22 o Monte Carlo, [ =20
0.4+ A Monte Carlo, [ =30
-+ isotropic phase
== uniaxial phase
0.3 — biaxial phase

0.2
0.1
200
00 0.2 0.4 1 l 1.2
: t/tNl

FIG. 6. (Color online) The ensemble average (R%Q:%T’ of the
Wigner function R%z, obtained by a mean-field analysis of the
Hamiltonian represented by G (see Fig. 2), is plotted as a function
of the ratio t/ty;; superimposed to the plot are the corresponding
points obtained from a Monte Carlo simulation for different sample
sizes, N=1° (O, [=10; O, [=20; and A, [=30). (For more details,
see the caption to Fig. 3.)
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FIG. 7. (Color onlme) The ensemble average (R02>— L8’ of the
Wigner function Roz» obtained by a mean-field analy51s of the
Hamiltonians represented by several points in the essential triangle
taken along the line through | and G below the tricritical line C,C3
(see the corresponding dashed line in Fig. 2). (R§2> is plotted as a
function of #/ty;, for several linearly spaced values of yzg—g)\
ranging in [0.145, 0.395]. The rebound at the uniaxial-to-biaxial
transition is a generic feature manifesting itself throughout the
whole line selected, though with different strength.

lations #,; is the transition temperature computed for the larg-
est sample size (/=30).

In particular one feature of the graphs for <R(2)2) in Fig. 5
strikes one’s attention: as the temperature is reduced, at the
onset of the biaxial phase, <R02> starts growing again before
decreasing towards zero, in agreement with inequalities
(14a), as t/ty; further decreases. In the light of our 1nterpre-
tation of the meaning of S’, we take the growth of (R,) at
the biaxial transition as a qualitative measure of the strength
of the short axes attraction. As expected this growth is cor-
related with a dip in the graph of <R00> Our understanding is
that a higher uniaxial rebound at the biaxial transition wit-
nesses a stronger biaxial effectiveness of the molecular inter-
action and should be associated with a deeper dip in the
temperature profile of the uniaxial primary order parameter.

To see whether this feature is or is not peculiar to the
point G, we extended our mean-field analysis along the di-
rection |G up to the points where this intersects the tricritical
line C%C3 and the base OV. The different graphs obtained
for (Ry,) are shown in Fig. 7: they clearly suggest that the
uniaxial rebound at the biaxial transition may indeed be a
generic feature of all interactions described by the subregion
OC,C;V of the essential triangle.

A similar exploration was conducted for the point R: the
corresponding order parameter plots are shown in Figs.
8—11, where they again appear contrasted against the Monte
Carlo simulation illustrated in Sec. V. Figure 12 shows a
collection of graphs for (R%,) taken on the section along IR.
A uniaxial rebound at the biaxial transition is still appre-
ciable here, though its degree has lessened compared with
the section along IG.

Figures 7 and 12 support our claim that the uniaxial re-
bound is a property that accompanies the biaxial transition as
soon as the interaction Hamiltonian fails to be represented by
the border OIV of the essential triangle, where two scalar
order parameters in general suffice to describe all equilib-
rium phases [25,28,38].

PHYSICAL REVIEW E 75, 041705 (2007)

2
(R,
0.8f

0.61

0.4/ o Monte Carlo, [ =10
o Monte Carlo, [ =20
A Monte Carlo, [ =30 i3

0.2+ isotropic phase £o

- - uniaxial phase %

—— biaxial phase

0 0.2 0.4 0.6 0.8 1 1.2

FIG. 8. (Color online) The ensemble average (R(%O):S of the
Wigner function ROO, obtained by a mean-field analysis of the
Hamiltonian represented by R (see Fig. 2), is plotted as a function
of the ratio #/ty;; superimposed to the plot are the corresponding
points obtained from a Monte Carlo simulation for different sample
sizes, N=0 (O, [=10; O, [=20; and A, [=30). (For more details,
see the caption to Fig. 3.)

V. MONTE CARLO VALIDATION

The uniaxial rebound at the biaxial transition we de-
scribed above appears as a universal feature accompanying
the condensed phases predicted by the most general of Stra-
ley’s interactions. This property was first predicted for the
points G and R in the essential triangle representing the ad-
missible interaction parameters, points for which the interac-
tion Hamiltonian is partly repulsive, and so the minimax
strategy must be applied to identify the equilibrium order
parameters [29]. The suspicion could legitimately creep in a
critical mind that this strategy may be responsible for the
allegedly systematic uniaxial rebound, which could thus fail

L
(R2 > o Monte Carlo, [ =10 o &
20 = Monte Carlo, = 20 N
4r o OA
A Monte Carlo, [ = 30 ox
““““ isotropic phase OO oa
. . o
3b | - uniaxial phase o g‘
— biaxial phase 0 oz
A
A

1 1.2
Z/INI

FIG. 9. (Color onhne) The ensemble average <R20> \ 2T of the
Wigner function R20, obtained by a mean-field analysis of the
Hamiltonian represented by R (see Fig. 2), is plotted as a function
of the ratio #/ty;; superimposed to the plot are the corresponding
points obtained from a Monte Carlo simulation for different sample
sizes, N=1 (O, [=10; O, [=20; and A, [=30). (For more details,
see the caption of Fig. 3.) Like in Fig. 4, Monte Carlo data show a
spurious spike at the isotropic-to-nematic transition temperature,
which is clearly a finite-size effect.
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== uniaxial phase ’
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FIG. 10. (Color online) The ensemble average (R3,)= %S " of the
Wigner function R%z, obtained by a mean-field analysis of the
Hamiltonian represented by R (see Fig. 2), is plotted as a function
of the ratio #/ty;; superimposed to the plot are the corresponding
points obtained from a Monte Carlo simulation for different sample
sizes, N=13 (O, [=10; O, [=20; and A, [=30). (For more details,
see the caption of Fig. 3.) The rebound at the onset of the biaxial
phase, predicted both by the mean-field analysis and the Monte
Carlo simulation, is less pronounced than in Fig. 5, but it is still
present.

to be real. To ensure that this feature is independent of our
mean-field treatment, we performed a Monte Carlo simula-
tion, which has only the interaction potential in common
with the former treatment.

It was shown in [15] that, by standard geometric identi-
ties, Eq. (2) identically reduces to a combination of squares
of the three scalar products involving corresponding unit
vectors in the two molecular frames, (e,e,,m) and
(e',e' ,m’). Here we consider a three-dimensional simple-
cubic lattice Z*> whose axes define the orthonormal basis
(e,.ey.e;). To each site u, with coordinate vector x,, we
associate a particle center of mass; the interaction potential H
in Eq. (2) is restricted to nearest neighbors, involving mol-

0.51

(R2 ) © Monte Carlo, [ =10
22 o Monte Carlo, [ =20
0.4 g & Monte Carlo, [ = 30
- isotropic phase
== uniaxial phase
0.3 — biaxial phase

0.2

0 0.2 0.4 0.6 0.8

B 12
t/le

FIG. 11. (Color online) The ensemble average (R%z)z %T’ of the
Wigner function R%z, obtained by a mean-field analysis of the
Hamiltonian represented by R (see Fig. 2), is plotted as a function
of the ratio t/ty;; superimposed to the plot are the corresponding
points obtained from a Monte Carlo simulation for different sample
sizes, N=13 (O, [=10; O, [=20; and A, [=30). (For more details,
see the caption of Fig. 3.)

PHYSICAL REVIEW E 75, 041705 (2007)

2
(Ry,»
0.03
0.025
0.02

0.015

0.01
0.005

FIG. 12. (Color online) The ensemble average <R32)= %S " of the
Wigner function R%z, obtained by a mean-field analysis of the
Hamiltonian represented by several points in the essential triangle
taken along the line through | and R below the tricritical line C;C4
(see the corresponding dashed line in Fig. 2). (R3,) is plotted as a
function of #/ty;, for several linearly spaced values of y=é—%)\
ranging in [0.067, 0.16]. The rebound at the uniaxial-to-biaxial tran-
sition is a generic feature manifesting itself throughout the whole
line selected, though with different strength.

ecules or sites labeled by u and v, respectively. Thus in the
present setting,

H=- E{PZ(m,u : mv) + Z’y[P2(eJ_,u, : eJ_V) - PZ(e,u : ev)]
+ )\[ZPZ(eLM : eLv) + 2P2(e,u : eV) - PZ(m,u, : mv)]}3
(22)

where e=§U0 and P,(x):= %(3x2— 1) is the second Legendre
polynomial.

In a lattice situation, with a coordination number 6, the
mean-field formalism changes by appropriate numerical fac-
tors [28]. In actual simulations we used a dimensionless tem-
perature scale 7" which differs by a factor of 9 from the one
in Eq. (9). Our conversion rule derives from the coordination
number used for Monte Carlo simulations, as well as from an
energy scale of the microscopic potential differing from the
one used in the preceding sections by a factor % (in turn, this
was chosen so as to enforce a better compatibility with the
Lebwohl-Lasher model). Thus the following mapping exists
between the temperature scales:

9
T ==, 23
F: (23)

and both mean-field and simulation results were eventually
converted to one and the same scale for comparisons. We list
in Table I the critical temperatures in the scale T" for both the
I-U and the U=B phase transitions, computed within the
mean-field and the Monte Carlo treatments for the points R
and G in the essential triangle.

Calculations were carried on a periodically repeated cubic
sample, consisting of N=/3 particles, /=10, 20, and 30, and
run in cascade, in order of increasing temperature; each cycle
(or sweep) consisted of 2N Monte Carlo steps, including a
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TABLE L. Transition temperatures in the 7" scale computed with
both mean-field and Monte Carlo treatments for the Hamiltonians
described by the points R and G in the essential triangle (see Fig.
2). 1-U denotes the first-order isotropic-to-uniaxial transition; U
=B denotes the second-order uniaxial-to-biaxial transition. The
Monte Carlo transition temperatures are computed for the largest
sample size, /=30.

1-U U=B

Mean field Monte Carlo Mean field Monte Carlo

R 1.365+0.004
G 1.560+0.001

1.117+0.002  0.111x0.003  0.080+0.001
1.101+0.002  0.610+0.004 0.428+0.005

sublattice sweep [50]. The simulation methodology closely
followed other simulations of ours, e.g., [28], where further
details can be found.

Equilibration runs took between 25000 and
200 000 cycles, and production runs took between 200 000
and 800 000; macrostep averages for evaluating statistical
errors were taken over 1000 cycles. Calculated thermody-
namic quantities include mean potential energy per site U"
(where the asterisk means scaling by €) and configurational
specific heat per particle C* (where the asterisk means scal-
ing by kg).

The four order parameters were obtained by averaging the
appropriate symmetry adapted basis functions, and computed
by analyzing a configuration every cycle, according to meth-
odologies discussed in detail by other authors [18,22,43-45];
simulation results for the three sample sizes investigated here
have been reported in Figs. 3—-6 and 8—11.

Simulation results for the potential energy were largely
insensitive to the sample size; simulation results for the spe-
cific heat exhibited a recognizable sample-size dependency
only in the two transition ranges, where peaks could be seen
growing higher and sharper upon increasing sample size.

Throughout the ordered phases, the sample-size depen-
dencies of (Rj,) as well as (R3,), i.e., of the two uniaxial
order parameters, were found to saturate between /=20 and
30. At even higher temperatures, both observables were
found to decrease with increasing sample sizes, and the tem-
perature range where this change of scaling behavior took
place was found to correspond to the high-temperature peak
of the specific heat.

As for the two biaxial order parameters, both <R§0> and
(R%2> remained independent of sample sizes up to a tempera-
ture range corresponding to the low-temperature peak of the
specific heat, and then exhibited a pronounced decrease with
increasing sample size above it; in this region, <R§0> first
decreased with increasing temperature, then it started in-
creasing and reached a peak at a temperature corresponding
to the loss of uniaxial order, and whose height kept decreas-
ing with temperature; this behavior we interpret as a pure
finite-size effect.

As far as we could check in the previous literature, the
rebound behavior we are reporting here was not seen nor
noticed; there seems to be a faint clue to it in some figures of

[18].
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VI. CONCLUSION

In the theoretical explorations of Straley’s general inter-
action Hamiltonian for nematogenic biaxial molecules, it
was often observed that only two scalar order parameters
suffice to describe the whole sequence of equilibrium con-
densed phases experienced by an undistorted ensemble of
biaxial molecules as the temperature is decreased
[1,2,17,25,28]. It has recently been proved [29,38] that this
property is actually the consequence of a symmetry enjoyed
by Straley’s interaction Hamiltonian H in Eq. (2) when the
parameters (y,\) are chosen along the sides Ol and IV of the
essential triangle in Fig. 2. A similar order parameter reduc-
tion has long been known for the Hamiltonian H,, in Eq. (4)
represented by the arc OT along the parabola corresponding
to London’s dispersion forces approximation [1,2].

Our attempt to find further symmetries that would justify
an order parameter reduction in the interior of the essential
triangle has so far failed. Here we endeavored to select a
generic macroscopic feature that would be common to the
whole class of Straley’s microscopic interactions correspond-
ing to the points in the interior of the essential triangle. We
think we identified this feature in the temporary increase of
the order parameter S, related to the ensemble average (Rgz)
of a Wigner symmetry-adapted function, which represents
the uniaxial component of the biaxial order tensor B in Eq.
(7b).

In all our mean-field calculations, we found that as the
temperature is decreased, S’, already decreasing in the
uniaxial phase, abruptly starts to increase again at the biaxial
transition. Such a uniaxial rebound is temporary, as S’ even-
tually decreases to zero, but it seems to persist for all inter-
actions in the interior of the essential triangle. A dip in the
temperature profile of S is systematically associated with the
rebound of §'.

Our analysis was applied to both fully attractive and
partly repulsive Hamiltonians, that is, to both the Hamilto-
nians described by the region above the arc OT in Fig. 2 and
those described by the region below it. While the global
minimum of the mean-field free energy exists for the former
Hamiltonians, it does not for the latter. Our computational
approach was correspondingly based on minimum and mini-
max principles [29].

A Monte Carlo simulation was also conducted for two
partly repulsive Hamiltonians and it confirmed our mean-
field predictions, including the uniaxial rebound at the biax-
ial transition. The results of these simulations, which are not
doctored by any mean-field treatment, were contrasted with
our mean-field predictions. The qualitative agreement we
achieved between these different approaches should be re-
garded as a tribute to the validity of the minimax principle.

We conclude that the uniaxial rebound at the biaxial tran-
sition can be regarded as a generic signature of Straley’s
interaction: within this theory, its absence could only be ex-
plained by the further symmetries associated with either
sides Ol and IV of the essential triangle.

Finally, an experimental test of the prediction reported
here requires measuring the appropriate order parameters; we
recall that in some cases it has been possible to estimate both
(R%,) and (R3,) by combining experimental data obtained by
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different techniques [51-53]. On the other hand, we cannot
forget the caveat of [53], page 89: “It should be stated from
the outset that there really are no experimental methods that
provide unambiguous absolute values for the order param-
eters.”
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