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We derive a set of equations for the dynamics of evolving fluid membranes, such as cell membranes, in the
presence of bulk fluids. We model the membrane as a surface endowed with a director field, which describes
the local average orientation of the molecules on the membrane. A model for the elastic energy of a surface
endowed with a director field is derived using liquid crystal theory. This elastic energy reduces to the well-
known Helfrich energy in the limit when the directors are constrained to be normal to the surface. We then
derive the full dynamic equations for the membrane that incorporate both the elastic and viscous effects, with
and without the presence of bulk fluids. We also consider the effect of local spontaneous curvature, arising
from the presence of membrane proteins. Overall, the systems of equations allow us to carry out stable,
accurate, and robust numerical modeling for the dynamics of the membranes.
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I. INTRODUCTION

In this paper we develop a systematic continuum theory
for the dynamics of membranes that is consistent with ther-
modynamics and takes into account the effect of membrane
proteins, as well as the tilting of the lipid molecules away
from the normal direction of the membrane. The membrane
is assumed to be in the fluid phase, but with bending rigidity.
Our motivation comes from the study of biomembranes, such
as cell membranes.

As boundaries of living cells and organelles, membranes
are crucial to life processes. Membrane consists of lipids,
proteins, carbohydrates, etc. A lipid molecule has a hydro-
philic head and one or two hydrophobic tails. In a water
environment, lipids spontaneously form a bilayer so that the
hydrophobic tails are separated from the water molecules by
the hydrophilic head. Within each layer, lipids can move
freely. But when a lipid molecule tries to escape from the
bilayer, the aqueous environment pushes it back. It is also
difficult for a lipid molecule to flip from one layer to the
other because of the presence of an energy barrier �1�.

The structure and properties of a membrane are very com-
plex and refined, and might also be specially tailored to its
biological functions. Despite these complexities and special-
ties, we will consider only some of the common features of
their dynamics. Basically, we will treat a membrane as a
layer of incompressible fluids, defined on a two-dimensional
evolving surface with bending rigidity, and endowed with a
director field which models the orientation of the lipid mol-
ecules.

During the past several decades, there has been a great
deal of interest in membranes. In 1973, Helfrich �2� recog-

nized that the lipid bilayer has the structure of a smectic
liquid crystal. Based on the elastic theory of liquid crystals,
he proposed the curvature elasticity model:

fc =
kc

2
�2H + C0�2 + kK ,

where kc and k are elastic constants, and H, K, and C0 are the
mean, Gaussian, and spontaneous curvature, respectively.
The free energy is expressed as

FH = �
S

�fc + ��dS + p�
V

dV ,

where p is the osmotic pressure, S is the surface representing
the membrane, V is the volume bounded by the surface, and
� is the surface tension of the membrane. This elastic model
has been proved to be very successful. A lot has been learned
using the Helfrich free energy about the shapes of the cell
membranes �3,4�. For example, the characteristic biconcave
disklike shape can be explained using this model. Much has
been done after the pioneering work of Helfrich. Evans and
Skalak �5� considered the mechanics of membranes using the
Helfrich energy or general elastic energy. Lomholt and Miao
�7� also studied membrane mechanics from a microscopic
perspective, and derived a two-dimensional model by con-
sidering the limit of full three-dimensional elastic models.
Steigmann �8� considered the relationship between the
Cosserat and Kirchhoff-Love theories of elastic shells. In
addition, the elastic stress of the membrane has also been
considered by Capovilla and Guven �6�.

The dynamics of the membrane has also received atten-
tion. Oldroyd introduced surface viscosity for fluid films �9�.
Scriven �10� considered Newtonian surface fluids on evolv-
ing surfaces. It was found that the dynamics and stability of
an interface between two immiscible bulk fluids might be
profoundly influenced by the presence of a separate surface
phase located at the interface �11�. MacArthur and Berg �12�
attempted to simulate the effect of cell membranes using
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some refined models which included a separate Newtonian
surface phase or additional thin-film coating. Stone derived
the convective-diffusion equation for surfactant transport
along a deforming interface �13�. These papers did not con-
sider explicitly the bending resistance of the membrane.
However, Steigmann �14,15� considered fluid films with cur-
vature elasticity but neglected viscous effects. Waxman
�16–18� studied the kinematics and dynamics of fluids on an
evolving surface with both bending resistance and viscous
effects.

The dynamics of membranes in bulk fluids also attracted
great interest. Seifert �19� studied the configuration of quasi-
spherical vesicles in shear flow. Cai and Lubensky �20� de-
rived the hydrodynamical equations for a fluid membrane
and considered the renormalization of the compressibility
and the dissipative coefficients. Pozrikidis and co-workers
�21–26� followed part of the work of Waxman, but consid-
ered the membrane as a compressible shell with bending re-
sistance. They also considered the coupling of the elastic
membrane to the bulk fluid and conducted a series of impor-
tant simulations on the coupled system. Miao and co-workers
�27,28� considered the dynamics of a fluid membrane and the
coupling between the membrane and the bulk fluids. Mem-
brane incompressibility and other kinds of membrane en-
tropy production processes �e.g., due to chemical reactions�
were taken into account in their model.

Our motivation is as follows. We would like to follow
Helfrich’s lead and view membranes as a two-dimensional
liquid crystal systems, but taking into account the additional
effects that are important for dynamics, such as the viscous
effects and the effect of the bulk fluid. Restoring the director
model is important in order to model accurately small-scale
effects such as defects or effects of membrane proteins. We
will also derive a reduced model in the case when such
small-scale variations are negligible. Our approach is closest
to that of Waxman. For example, following Waxman, we will
also model the effect of membrane proteins through a local
spontaneous curvature. However, as we point out later, Wax-
man’s model suffers from an inconsistency with the second
law of thermodynamics, since it neglected an important elas-
tic in-plane stress term. One by-product of our work is to
correct this problem.

We take the viewpoint that the structure of cell membrane
is that of a layer of smectic crystal �29�. We represent such a
structure as a Cosserat surface endowed with a director field.
A simple elastic energy for the director field is obtained from
the Frank energy of liquid crystals. A similar treatment and
elastic energy have been studied by Fournier �30,31� and
applied to membrane fusion by Kozlovsky and Kozlov �32�.
Fournier considered the coupling between tilt difference and
dilation and the coupling between the two monolayers. As
Kozlovsky and Kozlov explain, the tilt of the directors plays
an important role in membrane fusion.

We study the fluid dynamics based on the elastic energy
and taking into consideration the viscous effects and the ef-
fects of the bulk fluids. By applying the principle of virtual
work, the torque and the elastic stress induced by the direc-
tors are determined. The bending resistance is found to be
the result of a transverse stress. The dynamic equations are
then obtained by using the conservation laws for the linear

and angular momenta. We also consider the case when the
director field is constrained to be the same as the normal
vector of the surface, and derive a reduced model for this
case. We also consider the effect of spontaneous curvature,
which plays an important role in the shape transition of cell
membranes. We make a distinction between global and local
spontaneous curvature. The latter is important for many life
processes, but taking it into account in previous models has
been a difficulty.

Since there has been much work in the literature on the
topic discussed here, we will discuss the similarities and dif-
ferences of our work with existing work, after we present our
model.

II. KINEMATICS OF EVOLVING SURFACES

In this section, we collect some of the mathematical back-
ground materials that we will need for describing the kine-
matics and dynamics of evolving surfaces. This is classic
material �10,18,34,35�; but we include a brief discussion here
to establish notations and terminologies.

A. Geometry of surfaces

We introduce a system of surface coordinates u� ��
=1,2� at time t=0 to label the material points on the surface.
The system of convected coordinates is obtained if we im-
pose that all material points retain their coordinates. Let
R�u� , t� be the position of a material point in the three-
dimensional Euclidean space at time t with convected coor-
dinates u�. The covariant basis vectors, namely, the tangent
a� and the unit normal vector n, the metric tensor a��, and
the covariant alternating tensor ��� are defined as

a� =
�R

�u� , n · a� = 0, n · n = 1,

a�� = a� · a�, ��� = �a� � a�� · n . �1�

The covariant metric tensor of the convected coordinates,
along with its inverse a��, is used to lower and raise the
indices of vectors and tensors. For example, b�

� =a��b��. ���

take the values �12=−�21=�a, �11=�22=0, where a
=det�a���. The surface Christoffel symbols ���

� =���
� and

curvature tensor b��=b�� are given by the Gauss-
Weingarten-Codazzi equations

�a�

�u� = ���
� a� + b��n ,

�n

�u� = − b�
�a� = − a��b��a�,

b��,� = b��,�,

where we have used a comma followed by a lowercase
Greek subscript to denote covariant derivatives based on the
metric tensor a��:
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Q
¯�¯,�
¯�¯ =

�Q
¯�¯
¯�¯

�u� + � Q
¯�¯
¯�¯���

� − � Q
¯�¯
¯�¯���

� . �2�

For example, we have

b��,� =
�b��

�u� − b�����
� − b�����.

�

We may also write the Gauss-Weingarten-Codazzi equation
as

a�,� = b��n, n,� = − b�
�a�, b��,� = b��,�, �3�

which does not involve the Christoffel symbols explicitly.
Note that a vector in the three-dimensional Euclidean space
is not regarded as a tensor, and a� is regarded as a first-order
tensor. The covariant derivative of a general tensor is defined
by Eq. �2�. The covariant derivative of a scalar or a vector is
simply the partial derivative.

If v is a vector defined on the surface, e.g., the spatial
velocity of the surface, it can be decomposed as

v = v�a� + v�n�n , �4�

where v�n� is a scalar. The covariant �partial� derivative of v
is given by

v,� = �v,�
� − v�n�b�

��a� + �v,�
�n� + v�b���n . �5�

B. Evolution of geometrical quantities

Let v�u� , t� be the velocity field in the convected coordi-
nates:

v�u�,t� =
�R�u�,t�

�t
= v�a� + v�n�n .

Noting that u� and t are independent variables, we have

�a�

�t
=

�

�t

�R

�u� =
�

�u�

�R

�t
=

�v

�u�

= v,� = �v�
,� − v�n�b�

��a� + �v�n�
,� + v�b���n . �6�

Therefore, we have

�a��

�t
=

�a�

�t
· a� +

�a�

�t
· a� = �v�,� + v�,�� − 2v�n�b��,

����

�t
=

�a�

�t
� a� · n + a� �

�a�

�t
· n

= �v,�
� − v�n�b�

����� + �v,�
� − v�n�b�

�����. �7�

Since n ·a�=0, n ·n=1, we have

�n

�t
= − �v�b�

� + a��v�n�
,��a�. �8�

Differentiating a��a��=��
� and ������=−��

�, we obtain

�a��

�t
= − a��a���v�,� + v�,�� + 2v�n�b��,

����

�t
= − �v,�

� − v�n�b�
����� − �v,�

� − v�n�b�
�����. �9�

By differentiating the second equation of �3� with respect to
time, we also obtain the time derivative of the curvature
tensor:

�b��

�t
= �v�n�

,�� − v�n�b�
�b��� + �v,�

� b�� + v,�
� b��� + v�b��,�.

�10�

C. Accelerations and strains

Since the velocity v and the acceleration A can be decom-
posed as v=v�a�+v�n�n and A= ��v /�t�=A�a�+A�n�n, we
have

A� =
�v�

�t
+ v�v�

,� − 2v�n�v�b�
� − a��v�n�v�n�

,�,

A�n� =
�v�n�

�t
+ v�v�ba� + v�v�n�

,�. �11�

Strain is defined as

E�� =
1

2
�a�� − å��� , �12�

where å�� is the metric tensor for the strain-free state and is
time independent. The rate of strain is simply the time de-
rivative of E��:

S�� =
�E��

�t
=

1

2
�v�,� + v�,�� − v�n�b��. �13�

D. Hodge decomposition

Let 	 be a smooth closed surface in the three-dimensional
Euclidian space and B be a vector-valued function defined on
the surface. We have the unique decomposition B=C+P
with C,�

� −2HC�n�=0 �H is the mean curvature� and P takes
the form P= �
a��a��,�. 
 satisfies the equation

a��
,�� − 4H2
 = B,�
� − 2HB�n�. �14�

When the divergence of C� �C,�
� −2HC�n�� is a given nonzero

function c�x�, the above decomposition also exists, and 

satisfies

a��
,�� − 4H2
 = B,�
� − 2HB�n� − c�x� .

If the velocity satisfies v,�
� −2Hv�n�=0, the acceleration satis-

fies

A,�
� − 2HA�n� = �v,�

� − 2v�n�b�
���v,�

� − 2v�n�b�
�� − � �n

�t
	2

,

where the right side is determined by the velocity. Therefore,
if the velocity and the forces acting on the membrane are
known, the pressure is determined by the Hodge decomposi-
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tion. For numerical simulations, the Hodge decomposition is
the base of the projection method.

E. Reynolds transport theorem

Let Q be a function defined on the surface, and 	 be a
convected subset of the surface. Then the integral of Q over
the area 	 is

�
	

Q dS = �
	

Q�a du1du2.

We have

d

dt
�

	

Q dS = �
	

�

�t
�Q�a�du1du2

= �
	

� �Q

�t
+

Q

2a

�a

�t
	�a du1du2.

Using the fact that a−1��a /�t�=a����a�� /�t�=2S�
�, we obtain

the transport theorem

d

dt
�

	

Q dS = �
	

� �Q

�t
+ QS�

�	dS . �15�

If � denotes the surface mass density, by applying the trans-
port theorem, we have

d

dt
�

	

� dS = �
	

� ��

�t
+ �S�

�	dS = 0.

Since 	 is arbitrary, we obtain

��

�t
+ �S�

� = 0. �16�

For incompressible surface phases, this reduces to the condi-
tion

S�
� = v�

,� − 2Hv�n� = 0. �17�

Therefore the transport theorem for an incompressible sur-
face fluid membrane in the convected coordinates is simply

d

dt
�

	

Q dS = �
	

�Q

�t
dS . �18�

F. Oldroyd’s theorem

Though the convected coordinate system is convenient for
describing the dynamics of the membrane, it may not be
suitable for analysis and numerical simulation. Let u� ��
=I , II� be another coordinate system, and w=�R�u� , t� /�t.
Since the normal component of w is independent of the co-
ordinate system, we have

v = w + d�a� = w + d�a�. �19�

The tensors transform between the convected coordinate sys-
tem and the new coordinate system at any instant of time in
the usual way,

Q
¯�¯
¯�¯ = � �u�

�u� ¯

�u�

�u� ¯ 	Q
¯�¯
¯�¯. �20�

Oldroyd’s theorem �36� then defines the convected derivative
of Q

¯�¯
¯�¯

�Q
¯�¯
¯�¯�u�,t�

�t
= � �u�

�u� ¯

�u�

�u� ¯ 	 �Q
¯�¯
¯�¯�u�,t�

�t
,

�Q
¯�¯
¯�¯�u�,t�

�t
=

�Q
¯�¯
¯�¯�u�,t�

�t
+ d�Q

¯�¯,�
¯�¯ + � d,�

� Q
¯�¯

¯�¯

− � d,�
� Q

¯�¯
¯�¯. �21�

This allows us to change between different coordinate sys-
tems.

III. ENERGETICS

We view a biomembrane as a layer of incompressible
fluid of lipid molecules. We will model the membrane by a
surface, together with a director field O defined on the sur-
face. The director field indicates the average orientation of
the lipid molecules. At this point, we will not assume that the
director is normal to the surface, i.e., we allow the molecules
to tilt. Normally such a tilt is very small, so later on we will
consider a simplified model in which the director field is
constrained to be normal to the surface.

We now consider the elastic energy for the director field
O. Since lipids have hydrophobic tails, slippage of a mol-
ecule along the direction of the directors will cost energy.
Therefore, we assume that when two directors are put to-
gether, they prefer to be parallel to each other with no slip-
page along the direction of directors. This is also consistent
with the fact that biomembranes are single-layer smectic-A
liquid crystals. If the director at a point deviates from the
normal of the surface �Fig. 1�, it results in slippage along the
director, and stores some energy k2O�O� /2. Here k2 is the
tilt modulus. When k2 is large, the directors are constrained
to be nearly normal to the surface, and O�O� must be small.

The other part of the energy comes from distortion. We
start from the Frank energy density for nematic liquid crys-
tals �29�:

−f

f

(A)

(B)

FIG. 1. �a� Deflection of directors from the normal is equivalent
to slippage of the molecule along the direction of directors. Slip-
page causes a transverse shear stress. �b� Directors prefer to be
parallel to each other. When two neighboring directors are in a
splay or staggered configuration, torques are generated.
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E�O� = 
1�� · O�2 + 
2�O · �� � O��2 + 
3�O � �� � O��2.

Since the system under consideration has only one layer, we
naturally assume that all derivatives along the normal are
zero. Then the Frank energy can be expressed as

E�O� = k11�a��O,� · a��2 + k22�a��O · �O,� � a���2

+ k33�a��O � �O,� � a���2. �22�

For simplicity of presentation, we will make the one-constant
approximation �k11=k22=k33�. The general case can be con-
sidered along the same lines, but the expressions of the stress
and torque are much more complicated. However, since
a��n,��a�=0, when the difference between the director O
and the normal n is small �O�O� is small�, the difference of
the energy between the general case and the one-constant
case is also small and can be neglected.

Neglecting some divergence terms, since a biomembrane
has no boundary, we have the elastic energy density

E�O� = k
�O
2 = ka��O,� · O,�.

Therefore the simplest form of the elastic energy density
is given by

Eel =
k2

2
O�O� +

k1 + �1

2
a��O,� · O,�

+
k1 − �1

2
����O,� � O,�� · O , �23�

where k1, k2, and �1 are positive elastic moduli and k1��1
�see Fig. 2�. The last term ��� �O,��O,�� ·O does not actu-
ally cause any torque or any stress �but will cause torque and
stress when we consider the spontaneous curvature; see the
energy estimate in Appendix A�. This term reduces to the
Gaussian curvature when O=n, and the integral of this term
over any closed surface is a constant, which is the Euler
characteristic of the surface. Thus it plays a role only when
the topology of the membrane changes. Note that this elastic
energy density Eel reduces to the Helfrich energy density
C����b��b�� when O=n. A similar form to the first two
terms was also introduced by Kozlovsky and Kozlov �32�.

Their elastic energy also reduces to Helfrich’s elastic energy
when O=n. Fournier also considered directors with tilt en-
ergy. His free energy does not reduce to Helfrich’s energy
and plays the role of an addition to Helfrich’s free energy
�30,31�.

IV. DYNAMIC LAWS OF MOTION

Now we derive the dynamic equation of an incompress-
ible fluid membrane. If the net force exerted on 	 is denoted
by F, we have

d

dt
�

	

�v dS = F . �24�

The net force may be decomposed into external forces on 	
and traction acting on the boundary �	. The external force f
consists of the body forces as well as normal and shear
stresses exerted on the surface by the neighboring bulk flu-
ids. To understand the contribution to the internal forces act-
ing on the boundary curve, we decompose the total surface
stress into two parts: one part induced by the material points,
and another part induced by the directors. Naturally, the first
part should be an in-plane one. The other part should contain
the transverse shear stress. Therefore, the total in-plane stress
T��m�a� over an in-plane curve, where m=m�a� is the in-
plane unit normal vector of the curve, can be written as

T�� = T0
�� + T1

��, �25�

where T0
�� is the part induced by the material points them-

selves, and T1
�� is the in-plane stress induced by the direc-

tors. T0
�� has the same form as that of a two-dimensional

bulk fluid:

T0
�� = − 
a�� + J��, �26�

where 
 is the net surface pressure, and J�� is a symmetric
tensor reflecting the dynamic component of surface stress.
For a pure lipid bilayer, J�� is accurately modeled by the
Newtonian relation �10�

J�� = C����S��. �27�

For isotropic fluids, the fourth-order tensor C���� has only
two independent parameters:

C���� = �k0 − �0�a��a�� + �0�a��a�� + a��a��� .

Here k0 and �0 are the dilation and shear viscosity. Since we
are considering an incompressible fluid, J�� reduces to

J�� = 2�0S��. �28�

Cell membranes are also endowed with a cytoskeleton and a
cell cortex. The cytoskeleton or the cell cortex will deform
along with the membrane, and the relaxation process will
cause stress on the membrane. As a result, the membrane
exhibits some levels of viscoelastic response. We use the
well-known Oldroyd-B model to describe this viscoelastic
response:

J�� = 2�0S�� + ���,

A’

A

B

C

D

B’

C’

D’

A

B

C

D

A’

B’

C’

D’

(A) (B)

FIG. 2. When we consider the thickness of the membrane, the
change of the directors along the two coordinate curves has an
effect on the density on both sides of the surface. For the second
term of the free energy, �a� and �b� have the same elastic energy.
The densities of the two sides in �a� are different, namely, the quad-
rilaterals ABCD and A�B�C�D� have different areas. But the densi-
ties in �b� are the same. It is natural to conclude that the energy of
�a� is greater than that of �b�. This is the origin of the term ���

�O,��O,�� ·O.
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����

�t
+ ��� = 2�S��, �29�

where 
 is the characteristic time for the deformed cytoskel-
eton and cell cortex to relax to its steady state, and � is the
polymeric viscosity. In Waxman’s model �18�, the convected
derivative is replaced by the corotational derivative. Since
the cytoskeleton and cell cortex are affected by the strain, the
corotational derivative is not suitable.

The other part of the stress is induced by the directors. By
applying the principle of virtual work, we can obtain the
expressions for the stresses and torques on the directors �see
Appendix A�.

On one hand, when the director at a point is deflected
from the normal, a transverse shear stress k2O�n�O�m�n will
result on the boundary. This transverse shear stress is the
origin of bending resistance. On the other hand, the differ-
ence between the two neighboring directors will induce a
torque

��k1 + �1�a��O � O,� − �k1 − �1����O,��m�

on the boundary. We notice that the strain can also affect the
elastic energy. This suggests that there should be an in-plane
stress T1

�� which acts on the material points. The expression
of T1

�� is obtained from the principle of virtual work:

T1
�� = �k1 + �1�a��a��O,� · O,�. �30�

Conservation of momentum gives:

�

�t
�

	

�v dS = �
	

�A dS

= �
	

f dS + �
	

�T��a� + k2O�n�O�n�m�dl .

Applying Green’s theorem to the boundary integral, and not-
ing that 	 is arbitrary, we obtain

�A� = f� + T��
,� − k2O�n�O�b�

�,

�A�n� = f �n� + T��b�� + k2�O�n�O��,�. �31�

Let L be the external couple �e.g., an electric and mag-
netic couple or the couple that comes from the bulk fluid�
acting on the director �thus O ·L=0�. The total net torque on
the area 	 is

� = �
	

�L + R � f�dS + �
	

�T��R � a� + k2O�n�O�R � n�

�m�dl + �
	

�k1 + �1�a��O � O,�m�dl

− �
	

�k1 − �1����O,�m�dl . �32�

Applying the conservation of angular momentum, we have

�

�t
�

	

��R � v + ��O �
�O

�t
	dS = � , �33�

where �� is the moment of inertia about an axis lying in the
surface. Using Green’s theorem, and noting that

���O,�� = 0,

O�a� � �O − O�n�n� = O�a� � �O�a�� = 0,

we obtain

��O �
�2O

�t2 = L − k2O�O � a� + �k1 + �1�a��O � O,��.

�34�

Finally, the complete system of equations for the dynamics
of an evolving membrane is as follows:

�A� = f� + T��
,� − k2O�n�O�b�

�,

�A�n� = f �n� + T��b�� + k2�O�n�O��,�,

��O �
�2O

�t2 = L − k2O�O � a� + �k1 + �1�a��O � O,��,

�35�

where the constitutive relation for the Newtonian fluid is

T�� = − 
a�� + 2�0S�� + �k1 + �1�a��a��O,� · O,�, �36�

and for viscoelastic fluids,

T�� = − 
a�� + 2�0S�� + ��� + �k1 + �1�a��a��O,� · O,�,



����

�t
+ ��� = 2�S��. �37�

This system of equations has the following energy dissipa-
tion relation �neglecting the external force and coupling�:

d

dt
� ��

2

v
2 +

��

2
�O �

�O

�t
�2

+ Eel	dS = − 2�0� S��S��dS

�38�

for the Newtonian case or

d

dt
� ��

2

v
2 +

��

2
�O �

�O

�t
�2

+ Eel +
1

2
��

�	dS

= −� �2�0S��S�� +
1

2

��

�	dS �39�

for the viscoelastic case. This is proven in Appendix A.
When a director rotates, the speeds of its two ends are

different from the speed of the bulk fluid. The bulk fluid will
causes an additional friction force on the director. This fric-
tional force is typically much larger than the inertial force.
Therefore the director equation may be simplified to
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�O �
�O

�t
= L − k2O�O � a� + �k1 + �1�a��O � O,��.

�40�

The energy dissipation relation changes to

d

dt
� ��

2

v
2 + Eel	dS

= − 2�0� C����S��S��dS − �� �O �
�O

�t
�2

dS . �41�

If we define vorticity by �=���v�,�, we have the vorticity
equation

�

�t
� �

�
	 =

1

�
���A�,�. �42�

V. SPONTANEOUS CURVATURE

Spontaneous curvature is important for the shape of a
membrane �2–4�. The origin of spontaneous curvature might
be very complex. Some factors that influence the spontane-
ous curvature include the binding of proteins, such as the
clatharin coat protein, to a monolayer; one monolayer might
have more lipids than the other; or the two monolayers might
have different fractions of some particular lipids. We will
take these effects into account, by replacing O,� in the elastic
energy density by O,�+b�:

Eel =
k2

2
O�O� + �1a���O,� + b�� · �O,� + b��

+
k1 − �1

2
�����O,� + b�� � �O,� + b��� · O , �43�

where �1= �k1+�1� /2, �2= �k1−�1� /2, and b� satisfies the
equations

O � � �b�

�t
− S�

�b� −
�

2
O � b�	 = 0 and O · b� = 0.

�44�

The term −S�
�b� comes from the influence of the strain. The

term −�� /2�O�b� comes from the assumption that b� ro-
tates along the director O with the angular speed � /2. This
rotation induces some angular momentum along the director.
When there is no strain and no vorticity, b� rotates along
with O. When O is constrained to be the normal n, a� is a
solution of this equation �see Appendix B�.

As a result, the dynamic equations of the surface fluids
change to

�A� = f� + T��
,� − k2O�n�O�b�

�,

�A�n� = f �n� + T��b�� + k2�O�n�O��,�,

��O �
�2O

�t2 = L − k2O�O � a� + 2�1a��O � �O,� + b��,�

+ 2�2���O � �O � b�,�� , �45�

where the in-plane stress tensor is also modified:

T�� = − 
a�� + 2�0S�� + ��1�a��a�� + a��a���

− 2�2������� · �O,� + b�� · O,� + ��2����a�� + ���a���

+ 2�1���a��� · �O,� + b�� � O,� · O . �46�

The energy dissipation relation is now

d

dt
� ��

2

v
2 +

��

2
�O �

�O

�t
�2

+ Eel	dS

= − 2�0� S��S��dS . �47�

VI. THE LIMIT AS k2\�

In reality, cell membranes are often considered to be in
the smectic-A phase, i.e., O=n. In this section, we will de-
rive the dynamic equations in that case.

In �43�, the term k2O�O� /2 can be viewed as the relax-
ation of the constraint that O=n. To obtain a model for
which O=n, we consider the limit as k2→�. We show in
Appendix B that in this case, the equation for b� has the
solution b�=B�

�a�, where

DsB��

Dt
=

�B��

�t
− B�

�S�� − B�
�S�� = 0. �48�

Using this, we obtain

lim
k2→�

T1
�� = M��b�

� ,

M�� = C�����B�� − b��� . �49�

Since the directors oscillate with a large frequency when
k2 is large, the transverse shear stress k2O�n�O� also changes
fast, and the average effect is determined by the equilibrium
position. The equilibrium position is determined by minimiz-
ing the total elastic energy 
EeldS. Expanding the elastic en-
ergy to first order in �O−n� �but keeping the term
�k2 /2�O�O� since k2 is large�, we have

k2

2
O�O� + �1a���O,� + b�� · �O,� + b�� + �2�����O,� + b��

� �O,� + b��� · O = C����K��K��

+ �a divergence term� + o��O − n�� +
k2

2
O�O�

− 2�1a��O�K��,� − 2�2������O�K�,�
� .

The terms in the last line are the leading order terms, which
determine the leading order corrections to the preferred con-
figuration of the director. Therefore, the average effect of the
transverse shear stress is:
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lim
k2→�

k2O�n�O� = 2�2�K�� + ������K���,� + 2�1K,�
�� = M ,�

��.

�50�

Hence, we obtain the dynamic equation in this limit:

�A� = f� + T��
,� − q�b�

�,

�A�n� = f �n� + T��b�� + q,�
� , �51�

where the transverse shear stress q� and the in-plane stress
T�� are given by

T�� = − 
a�� + J�� + M��b�
� ,

q� = �M���,�. �52�

We call this the reduced model.
In the case when the spontaneous curvature is caused by

the difference in the number of lipids in the two monolayers,
we may simply let B��=Ba��, which corresponds to a global
spontaneous curvature. The spontaneous curvature may also
be caused by some local but intrinsic properties of the mem-
brane. For example, the binding of the clathrin and adaptin
proteins to the membrane �1� is important for endocytosis
and exocytosis. The membrane tends to bend locally as a
result of the binding of these proteins. The sizes of these
regions are small compared to the size of membrane, and the
use of continuum mechanics may be called into question.
But, formally at least, we can use B��=B�u1 ,u2�a�� �where
B�u1 ,u2� is a local function and independent of the time� as
the spontaneous curvature. We call this the local spontaneous
curvature. This is also a solution of Eq. �48� �see Appendix
B�. For such B��, the in-plane stress M��b�

� is symmetric,
and

�M��b�
��,� − q�b�

� = − 4k1Ha��B,� − a����2H2 + �1b��b��

− 4k1HB�,�.

Therefore, absorbing the gradient term into the pressure 
,
we obtain

�A� = f� + �− 
a�� + J���,� − 4k1Ha��B,�,

�A�n� = f �n� − 2H
 + J��b�� + 2k1�a��B,�� − 2KB�

− 4�1�a��H,�� + 2H�H2 − K�� . �53�

This result is consistent with the results in �7,19,20�.
It is easy to see that the following energy dissipation re-

lation holds for the model �51� and �52�:

1

2

d

�t
� ��
v
2 + C����K��K���dS = − 2�0� S��S��dS . �54�

Moreover, the elastic energy density

Eel = C�����B�� − b����B�� − b��� = C����K��K�� �55�

is simply the Helfrich energy density. Equations �51� and
�52� can also be obtained using the principle of virtual work.

Next we consider some special cases of this model. For a
flat membrane �without normal velocity�, the curvature ten-
sor is zero. Accordingly Eqs. �51� become

�A� = �f� + �G�� + �− 
a�� + J���,�, �56�

which is the Lagrangian form of the Navier-Stokes equa-
tions. Using Oldroyd’s theorem, we can write Eq. �56� in the
Eulerian coordinate system

A = � �v

�t
+ v · �v − v · �v	 + v · �v =

�v

�t
+ v · �v .

In fixed coordinates, �56� becomes

�� �v

�t
+ v · �v	 = f − �
 + �0�v

for Newtonian fluids. This is the Eulerian form of the Navier-
Stokes Equations.

For a membrane with cylindrical symmetry, we can de-
scribe its dynamics by the motion of its transversal. If we use
the arc length parameter as the coordinate at t=0, the con-
vected coordinate for the transversal is still the arc length
parameter for the deformed configuration because of the in-
compressibility. Therefore, Eqs. �53� simplifies to

�A1 = f1 − �s
 − 4k1H�sB ,

�A�n� = f �n� − 2H
 + 2k1�s
2B − 4�1��s

2H + 2H3� , �57�

where �s and �s
2 are the first- and second-order derivatives

along the transverse. In fact, these are the equations of an
incompressible string with bending resistance.

VII. COUPLING TO THE BULK FLUIDS FOR THE
REDUCED MODEL

Membranes are often immersed in a bulk fluid, which will
also be modeled as an incompressible fluid. The Navier-
Stokes equation for the bulk fluid in the Eulerian coordinate
system is

�� �U

�t
+ U · �U	 = − �P + � · � ,

� · U = 0, �58�

where � is the density of the bulk fluid, U is the velocity, P
is the pressure, and � is the stress. Without loss of generality,
we assume that the stress � satisfies the Newtonian relation

� = 2�D = ���U + ��U�T� , �59�

where � is the viscosity coefficient.
When we consider a membrane in a bulk fluid, the inertia

of the membrane becomes unimportant since the membrane
is very thin. If we apply the no-slip condition, the velocity of
the membrane is simply that of the bulk fluid at the same
position. The effect of the membrane is to produce some
extra stress. As a result, the bulk stress jumps across the
membrane

�PI − �� · n = �T��a��,� + �q�n�,�. �60�

This jump of stress acts on the membrane and balances the
membrane stress. Since the incompressibility condition of a
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membrane in an incompressible bulk fluid is n ·D ·n=0, we
can decompose the stress into

2�0�D� · n = �q�b�
� − T,�

���a�,

�P� = T��b�� + q,�
� , �61�

where �0 is the viscosity coefficient between the membrane
and the surrounding bulk fluid. This condition is different
from that of Pozrikidis �26� due to the presence of the addi-
tional stress term. At steady state, the condition becomes


,� = − 4k1HB,�,

�P� = − 2
H + 2k1�a��B,�� − 2KB�

− 4�1�a��H,�� + 2H�H2 − K�� . �62�

Therefore H and B must satisfy the relation 
1H,�+
2B,�
=0 at the steady state. If B is a constant, the pressure is also
a constant, and the equation becomes

�P� = − 2
H − 4k1KB − 4�1�a��H,�� + 2H�H2 − K�� .

�63�

For B=0 and 
=0, we get the Euler-Lagrange equation for
the Willmore problem. The no-slip condition also indicates
that �−�P+� ·�� ·n=0, or

��P · n� = �� · � · n� = ���U · n� . �64�

The energy dissipation relation of the coupled system
�viscous case� is

d

dt�� �
U
2dV + �
S

Eelds	
= − �� 
�U
2dV −

��0

�0
�

S

C����S��S��ds . �65�

VIII. COMPARISON WITH EXISTING WORK AND
CONCLUSIONS

There are three main components in the models we pre-
sented above: the director model, the reduced model, and the
model for local spontaneous curvature, which accounts for
the effect of membrane proteins. Most existing literature
deals with the reduced model without discussing the effect of
local spontaneous curvature. In itself the reduced model also
consists of four parts: the elastic part, the viscous part, the
viscoelastic response, and the coupling with the bulk fluid.
From this viewpoint, the work of Miao et al. is closest to
ours: If we neglect the viscoelastic response, our model re-
duces to that of Miao et al. �27,28�. However, taking into
account local spontaneous curvature does not seem to be
trivial in their model. Other existing models in general con-
tain less components. Waxman’s model �18� lacked the im-
portant elastic in-plane stress term. The model of Capovilla
and Guven �6� and the model of Steigmann �8,14,15� contain
the elastic stress term which are the same as ours, but ne-
glects the viscous contributions. In the models of Evans and

Skalak �5�, Capovilla and Guven �6�, and Lomholt and Miao
�7�, the mechanics of the membrane with bending energy
was considered, but not the dynamics. Since these models
focus on the equilibrium states of the membrane, the viscous
effects are not considered in this papers. In Seifert’s work,
the effects of the bulk fluid is considered and the membrane
viscous effects is neglected. In the work of Cai and Luben-
sky �20�, the in-plane viscous effects are considered but the
effects of the bulk fluid are neglected.

Our reduced model is quite similar in appearance to that
of Waxman, except for an additional in-plane stress term.
This is particularly noticeable when local spontaneous cur-
vature is taken into account. But, contrary to Waxman’s
model, our equations satisfy the natural energy dissipation
relation, as a result of this additional stress term. Such an
oversight may go back to some earlier papers on elastic
shells �33�. As pointed out by Steigmann �8�, in Naghdi’s
�33� treatment of this subject, the Kirchhoff-Love theory is
not derived from the Cosserat theory but instead considered
separately on the basis of distinct balance and invariance
postulates. Since this stress is an elastic stress, it appears in
the models which are derived from the free energy
�6,8,14,27,28�. When the spontaneous curvature is a con-
stant, this stress can be absorbed by the in-plane pressure,
and the resulting equations are consistent with the models
�5,7,19,20�. Including this elastic term is important, not only
for consistency with thermodynamics, but also for carrying
out stable and robust numerical simulations for the fluid dy-
namics of the membrane, which was our original motivation
for this project.
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APPENDIX A: ENERGY DISSIPATION RELATION

Consider

�A� = T��
,� − k2O�n�Ob�

�,

�A�n� = T��b�� + k2�O�n�O��,�,

��O �
�2O

�t2 = − k2O�O � a� + 2�1a��O � �O,� + b��,�

+ 2�2���O � �O � b�,�� .

For the left-hand side, we have the next equations:

� ��A�v� + A�n�v�n��dS =
1

2

�

�t
� �
v
2dS

and
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� ���O �
�O

�t
	 · �O �

�2O

�t2 	dS

=
1

2

�

�t
� ���O �

�O

�t
�2

dS .

For the right-hand side, we have

� �T��
,�v� + T��b��v�n��dS

=� �− T��v�,� + T��b��v�n��dS

=� �
S,�
a − 2�0S��S���dS +� T1

���− v�,� + b��v�n��dS

= − 2�0� S��S��dS +� T1
���− v�,� + b��v�n��dS ,

� ��− O�n�O�b�
��v� + �O�n�O��,�v�n��dS

−� �O
�O

�t
	 · O�O � a�dS

= −� �v�b�
� + v,�

�n��O�n�O�dS −� �O

�t
· O�a�dS

=� O�n��n

�t
· O�a�dS −

1

2

�

�t
� �O�a��2dS

−� ��O�n�n�
�t

· O�a�dS = −
1

2

�

�t
� O�O�dS ,

� �O �
�O

�t
	 · a��O � �O,� + b��,�dS

=� �O

�t
· a���O,� + b��,�dS

= −� �O,�

�t
· a���O,� + b��dS

= −
1

2

�

�t
� �a���O,� + b�� · �O,� + b���dS

+� �O,� + b�� · O,�S��dS

−
1

2
� �a��O · ��O,� + b�� � O,��dS ,

and

� �O �
�O

�t
	 · ����O � �O � b�,���dS

=� �O

�t
· ����O � �O,� + b��,��dS

= −� �O,�

�t
· ����O � �O,� + b���dS

= −
1

2

�

�t
� �����O,� + b�� � �O,� + b�� · O�dS

−� ����a�� + ���a����O,� + b�� � b� · OS��dS

+
1

2
� �����O,� + b�� · b�dS .

Note that �=���v�,�=����v�,�−v�n�b���; we then obtain

�k1 + �1� � �O �
�O

�t
	 · �a��O � �O,� + b���,�dS

− �k1 − �1� � �O �
�O

�t
	 · �����O,� + b���,�dS

= −
�

�t
� EeldS −� T1

���− v�,� + b��v�n��dS .

Finally, we get

�

�t
� ��

2

v
2 +

��

2
�O �

�O

�t
�2

+ Eel	dS = − 2�0� S��S��dS .

APPENDIX B: EQUATIONS FOR THE COROTATIONAL
DERIVATIVE

The corotational derivative is defined as

DsB��

Dt
=

�B��

�t
− B�

�S�� − B�
�S��,

DsB�
�

Dt
=

�B�
�

�t
− B��S�� + S��B��,

DsB
��

Dt
=

�B��

�t
+ B��S�

� + S��B�
� .

By simple calculations, we find

Dsa
��

Dt
= 0,

Dsa��

Dt
= 0,

DsC
����B��

Dt
= C����DsB��

Dt
,

��C����B��B���
�t

= B��

DsC
����B��

Dt
.

For b�, if we define
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D
b�

Dt
=

�b�

�t
− S�

�b� −
�

2
O � b�,

then we have

O �
D
B�

�b�

Dt
= O � � �B�

�b�

�t
− S�

�B�
�b� −

�

2
O � B�

�b�	
= O � � �B�

�

�t
b� + B�

��b�

�t

− S�
�B�

�b� −
�

2
O � B�

�b�	
= O � � �B�

�

�t
b� + B�

�S�
�b�

− S�
�B�

�b�	 + B�
�O �

D
b�

Dt

= O � �DsB�
�

Dt
b� + B�

�D
b�

Dt
	 .

When O=n, we have

n � � �a�

�t
− S�

�a� −
�

2
n � a�	 = 0 and n · a� = 0.

Therefore

n �
D
B�

�a�

Dt
=

DsB�
�

Dt
n � a� = 0.

Hence, we obtain

DsB��

Dt
= 0.
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