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We investigate spinodal decomposition and structuring effects in binary immiscible and ternary amphiphilic
fluid mixtures under shear by means of three-dimensional lattice Boltzmann simulations. We show that the
growth of individual fluid domains can be arrested by adding surfactant to the system, thus forming a bicon-
tinuous microemulsion. We demonstrate that the maximum domain size and the time of arrest depend linearly
on the concentration of amphiphile molecules. In addition, we find that for a well-defined threshold value of
amphiphile concentration, the maximum domain size and time of complete arrest do not change. For systems
under constant and oscillatory shear we analyze domain growth rates in directions parallel and perpendicular to
the applied shear. We find a structural transition from a sponge to a lamellar phase by applying a constant shear
and the occurrence of tubular structures under oscillatory shear. The size of the resulting lamellae and tubes
depends strongly on the amphiphile concentration, shear rate, and shear frequency.
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I. INTRODUCTION

Complex fluid mixtures consisting of immiscible fluid
species and surfactants are ubiquitous in many industrial ap-
plications. These fluid mixtures involve both hydrodynamic
flow effects and complex interactions between fluid particles.
Typical examples can be found in the food, cosmetic, and
chemical industries where surfactants are utilized to stabilize
otherwise immiscible fluids. A good example is a barbecue
sauce containing large fractions of water and oil or fat. With-
out any additives the constituents would phase separate, en-
tering a not very appealing demixed state in which the fat
accumulates in a thick layer on top of the remainder. Adding
an emulsifier or surfactant helps to stabilize the sauce. These
molecules are often called amphiphiles and, in their simplest
form, are comprised of a hydrophilic �water-loving� head
group and a hydrophobic �oil-loving� tail. The surfactant
molecules self-assemble on the surface of oil droplets and
reduce the surface tension. Thus, the droplets stabilize and
remain suspended within the bulk water. A typical emulsifier
used by the food industry is egg yolk lecithin. Proteins and
emulsifiers with low molecular weight are also common
emulsifiers.

Amphiphilic fluids containing at least one species made of
surfactant molecules are in general complex fluids that can
self-assemble to form ordered structures such as lamellae,
micelles, not ordered sponge phases and liquid crystalline
�cubic� phases. In general, adding amphiphiles to a binary
mixture of otherwise immiscible fluids �for example oil and
water� that is undergoing phase separation can cause the de-
mixing process to slow down. If the amphiphile concentra-
tion is sufficiently high, the demixing process might eventu-
ally arrest completely. It has been shown by Langevin,
molecular dynamics, lattice gas, and lattice Boltzmann simu-
lations that the temporal growth law for the size of oil and
water domains in a system without amphiphiles follows a
power law t� �1,2� and crosses over to a logarithmic growth

law �ln t��, where �, � are fitting parameters and t is the time
�3–5�. A further increase of the surfactant concentration can
lead to growth which is well described by a stretched expo-
nential form A−B exp�−CtD�, where capital letters denote
fitting parameters �4,5�. By adjusting temperature, fluid com-
position, or pressure, amphiphiles can self-assemble and
force the fluid mixture into a number of equilibrium struc-
tures or mesophases. These include lamellae and hexagonally
packed cylinders, micellar, primitive, diamond, or gyroid cu-
bic mesophases as well as sponge phases. In this paper we
focus on the sponge mesophase, which in the context of our
simulations is called a bicontinuous microemulsion since it is
formed by the amphiphilic stabilization of a phase-separating
binary mixture, where the immiscible fluid constituents oc-
cur in equal proportions. Here, the oil and water phases in-
terpenetrate and percolate and are separated by a monolayer
of surfactant at the interface.

Such complex fluids are often subject to shear forces and
show pronounced rheological properties �6,7�. Often, shear-
induced transitions from isotropic to lamellar phases can be
observed. These have been studied experimentally in binary
�8� and ternary amphiphilic fluids �9,10�. If oscillatory shear
is applied, a further transition to a tubular phase or a transi-
tion between differently oriented lamellar phases can occur
�11–14�.

Computationally, such complex fluids are too large and
expensive to tackle with atomistic methods such as molecu-
lar dynamics, yet they require too much molecular detail for
continuum Navier-Stokes approaches. Algorithms that work
at an intermediate or “mesoscale” level of description have
been developed during the last twenty years, including dissi-
pative particle dynamics �15–17�, lattice gas cellular au-
tomata �18�, the stochastic rotation dynamics �19–21�, and
the lattice Boltzmann equation �22–24�. In particular, the lat-
tice Boltzmann method has been found highly useful for
simulating complex fluid flows in a wide variety of systems.
This algorithm, described in more detail in the next section,

PHYSICAL REVIEW E 75, 041504 �2007�

1539-3755/2007/75�4�/041504�12� ©2007 The American Physical Society041504-1

http://dx.doi.org/10.1103/PhysRevE.75.041504


is extremely well suited to implementation on parallel com-
puters, which permits very large systems to be simulated,
reaching hitherto inaccessible physical regimes.

In this paper we investigate spinodal decomposition and
structuring effects in binary immiscible and ternary am-
phiphilic fluid mixtures under shear by means of large scale
three dimensional lattice Boltzmann �LB� simulations. The
purely kinetic LB method we use is able to model complex
flows whose rheological properties are emergent from the
mesoscopic kinetic processes without any imposed macro-
scopic constraints �25�.

Varieties of the lattice Boltzmann method have been used
successfully to study the behavior of multiphase flows in the
past. A number of authors have investigated spinodal decom-
position �2,26–36� and the same phenomenon has also at-
tracted some interest in the presence of shear, where struc-
tural transitions from isotropic to lamellar or tubular phases
may occur �14,37–40�.

There have been only limited investigations of the influ-
ence of amphiphiles on the domain growth within the lattice
Boltzmann method, despite the fact that ternary amphiphilic
fluids have been studied by a number of authors �24,41–43�.
For example, it has been shown that the lattice Boltzmann
method can be used to describe the self-assembly and the
rheological properties of mesophases including the primitive
P phase �44� and the gyroid phase �45�. The gyroid me-
sophase in particular has been of major interest during the
last few years, where the phase formation and structural
properties �5,46�, the influence of defects �47–50�, as well as
its properties under shear �45,51� have been investigated.

In this paper, our aim is to focus on the effect of surfac-
tant concentration on the length and time scales of arrested
growth and on the changes in structural properties induced
by steady or oscillatory shear.

The remainder of the paper is organized as follows. After
an introduction to the simulation method and the fluid pa-
rameters used, we present results from the simulation of ter-
nary amphiphilic systems with varying surfactant density.
Here, we draw on the results of González-Segredo et al. �5�
for the simulation parameters used within the present work.
Thereafter, we extend our study to systems under constant
and oscillatory shear, where we report on the influence of the
domain growth rates and structural transitions induced by the
shear. Finally, a summary and conclusions are given.

II. SIMULATION METHOD

A set of equations can be used to represent a standard LB
system involving multiple species �52�

ni
��x + ci,t + 1� − ni

��x,t� = �i
� �1�

with i=0,1 , . . . ,b. The single-particle distribution function
ni

��x , t� indicates the density of species �, having velocity ci,
at site x on a D-dimensional lattice of coordination number
b, at time step t. The collision operator

�i
� = −

1

�� �ni
��x,t� − ni

�eq�x,t�� �2�

represents the change in the single-particle distribution func-
tion due to the collisions. A popular form is the single relax-
ation time ��, linear Bhatnagar-Gross-Krook �BGK� form
�53� for the collision operator. It can be shown for low Mach
numbers that the LB equations correspond to a solution of
the Navier-Stokes equation for isothermal, quasi-
incompressible fluid flow. The lattice Boltzmann method is
an excellent candidate to exploit the possibilities of parallel
computers, as the dynamics at a lattice site requires only
information about quantities at nearest neighbor lattice sites
�24,49�. The local equilibrium distribution ni

�eq plays a fun-
damental role in the dynamics of the system as shown by Eq.
�1�. In this study, we use a purely kinetic approach, for which
the local equilibrium distribution ni

�eq�x , t� is derived by im-
posing certain restrictions on the microscopic processes,
such as explicit mass and total momentum conservation �54�

ni
�eq = �i�

��1 +
ciu

cs
2 +

�ciu�2

2cs
4 −

u2

2cs
2 +

�ciu�3

6cs
6 −

u2�ciu�
2cs

4 � ,

�3�

where ���x , t���i	i
��x , t� is the fluid density and u

=u�x , t� is the macroscopic bulk velocity of the fluid, given
by ���x , t�u���ini

��x , t�ci. �i are the coefficients resulting
from the velocity space discretization and cs is the speed of
sound, both of which are determined by the choice of the
lattice. We use a D3Q19 implementation, i.e., a three-
dimensional lattice with 19 discrete velocities. Immiscibility
of species � is introduced in the model following Shan and
Chen �55,56�, where only nearest neighbor interactions
among the species are considered. These interactions are de-
scribed by a self-consistently generated mean field body
force

F��x,t� � − 
��x,t��
�̄

g��̄�
x�


�̄�x�,t��x� − x� , �4�

where 
��x , t� is the so-called effective mass, which can
have a general form for modeling various types of fluids �we
use 
�= �1−e−��

� �55��, and g��̄ is a force coupling constant
whose magnitude controls the strength of the interaction be-
tween components � and �̄ and is set positive to mimic
repulsion. The dynamical effect of the force is realized in the
BGK collision operator by adding to the velocity u in the
equilibrium distribution of Eq. �3� the increment

�u� =
��F�

�� . �5�

Amphiphiles are introduced within the model as described
in �25� and �43�. An amphiphile usually possesses two dif-
ferent fragments, each having an affinity for one of the two
immiscible components. The orientation of any amphiphile
present at a lattice site x is represented by an average dipole
vector d�x , t�. Its direction is allowed to vary continuously
and no information is specified for each velocity ci, for rea-
sons of computational efficiency and simplicity. The am-
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phiphile density at a given site is given by an additional fluid
species with density �s. The model has been used success-
fully to study spinodal decomposition �2,27�, the formation
of mesophases �5,44–46,48,51,57�, and flow in porous media
�39�.

We use LB3D �49�, a highly scalable parallel LB code, to
implement the model. The very good scaling of our code
permits us to run all our simulations on multiprocessor ma-
chines and computational grids in order to reduce the length
of data collection to a few weeks. Also, we are able to use
simulation boxes typically eight times bigger than previous
studies so as to minimize finite size effects.

In order to study the rheological behavior of complex
fluid mixtures, we have implemented Lees-Edwards bound-
ary conditions, which were originally developed for molecu-
lar dynamics simulations �58�. They reduce finite size effects
as compared to moving solid walls �58� and have been used
in lattice Boltzmann simulations by various authors
�37,38,40,59�. This computationally convenient method im-
poses new positions and velocities on particles leaving the
simulation box in the direction perpendicular to the imposed
shear strain while leaving the other coordinates unchanged.
Choosing z as the direction of shear and x as the direction of
the velocity gradient, we have

z� � 	�z + �z� mod Nz, x 
 Nx,

z mod Nz, 0 � x � Nx,

�z − �z� mod Nz, x � 0,

�6�

uz� � 	uz + U , x 
 Nx,

uz, 0 � x � Nx,

uz − U , x � 0,

�7�

where �z�U�t, U is the shear velocity, uz is the z compo-
nent of u, and Nx �z� is the system length in the x �z� direc-
tion. We also use an interpolation scheme suggested by Wag-
ner and Pagonabarraga �38� as �z is not generally a multiple
of the nearest neighbor lattice distance. For oscillatory shear,
we set

U�t� = U cos��t� , �8�

where � /2� is the frequency of oscillation.
In nonsheared studies of spinodal decomposition it has

been shown that large lattices are needed to overcome finite
size effects. There, 1283 was the minimum acceptable num-
ber of lattice sites �2�. More quantitatively, Kendon et al.
�33� set L /4 as the maximum length scale, which is not af-
fected by finite size effects in their spinodal decomposition
simulation, where L is the length of the simulation box. We
therefore choose 2563 for all nonsheared simulations to limit
the influence of finite size effects even further. For high shear
rates, systems also have to be highly extended in the direc-
tion of the applied shear because, if the system is too small,
the domains interconnect across the z=0 and z=Nz bound-
aries to form continuous lamellae in the direction of shear
�39,49�. Such artifacts need to be eliminated from our simu-
lations. In this case, a good compromise to limit finite size
effects and to keep the computational expense as low as pos-

sible is a lattice size of 128�128�512 and this is used here.
Mass and relaxation times are always set to unity, i.e., ��

=1.0, m�=1.0. We call the two immiscible fluids “red” and
“blue” and set their initial densities to identical values, �r

=�b. The initial average surfactant density �s is varied be-
tween 0.0 and 0.7. The lattice is then randomly populated
with constant initial total fluid densities �tot=�r+�b+�s

=1.6. This is in contrast to previous studies where only �r

+�b was kept constant �5�. The coupling constant in Eq. �4�
between red and blue species is set to gbr=0.08, the coupling
between an immiscible fluid and surfactant to gbs=−0.006,
and the constant describing the strength of the surfactant-
surfactant interaction is kept at gss=−0.003. All units in this
paper are given in lattice units if not stated otherwise. While
our method has been used to simulate other mesophases like
lamellar phases, the primitive P phase �44�, and the gyroid
phase �5,46�, the parameters used in all simulations pre-
sented here are known to produce a sponge phase in the
absence of bulk flow. More detailed investigations of the
particular choice of coupling constants and how they modify
the system’s properties are given in �2,5,45,46,51�.

To analyze the behavior of the various simulations, we
define the time-dependent lateral domain size L�t� along di-
rection i=x ,y ,z as

Li�t� �
2�


�ki
2�t��

, �9�

where

�ki
2�t�� �

�
k

ki
2S�k,t�

�
k

S�k,t�
�10�

is the second-order moment of the three-dimensional struc-
ture function

S�k,t� �
1

V

�k��t�
2 �11�

with respect to the Cartesian component i, � � denotes the
average in Fourier space, weighted by S�k , t�, and V is the
number of nodes of the lattice, �k��t� is the Fourier transform
of the fluctuations of the order parameter ����− ���, and ki

is the ith component of the wave vector. A projection of the
structure function allows us to compare simulation data to
scattering patterns obtained in experiments. We obtain those
projections by summing up S�k , t� in one of the Cartesian
directions. For example, for the projection in the z direction
this leads to Sz�kx ,ky , t�=�kz

S�k , t�.

III. RESULTS

A. Ternary amphiphilic systems without shear

Spinodal decomposition of a binary immiscible fluid mix-
ture has been studied extensively within our model by
González-Segredo et al. �2�. The authors report domain size
scaling as expected for a crossover from diffusive behavior
to hydrodynamic viscous growth, i.e., the domain size grows
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as L� t�, with � being between 1/3 and 1. Moreover, they
find very good agreement with the dynamical scaling hy-
pothesis, recovering the expected universal behavior of the
structure function.

If one adds surfactant to a binary immiscible fluid mix-
ture, the surfactant molecules self-assemble at the interface
between the two species and slow down the phase-separation
process. For sufficiently high surfactant concentrations, do-
main growth is arrested completely, leading to a stable mi-
croemulsion. In �5�, González-Segredo et al. extend their
work to ternary amphiphilic fluids and study how the phase
separation of a binary immiscible fluid mixture is altered by
the presence of surfactant. As already described in the Intro-
duction, by gradually increasing the surfactant concentration
they find a slowing down of the domain growth, initially
from algebraic to logarithmic temporal dependence, and, at
higher surfactant concentrations, from logarithmic to
stretched-exponential behavior. They also observe a struc-
tural transition from sponge to gyroid phases by increasing
the amphiphile concentration or varying the amphiphile-
amphiphile or amphiphile-binary fluid coupling constants.
For growth-arrested mesophases, they observe temporal os-
cillations of the domain size due to Marangoni flows.

In the present work we use simulation parameters that
differ from those of previous studies and are known to pro-
duce a sponge phase. In order to avoid effects due to varia-
tions of the fluid densities, we also keep the total density in
the system constant at 1.6 �in lattice units�, while varying the
surfactant densities �s between 0.00 and 0.70. Furthermore,
our simulation lattices are up to eight times larger in order to
keep the influence of finite size effects to a minimum, and we
simulate for up to 30 000 time steps in order to gain a better
understanding of the long time behavior of the system. We
study the influence of the amphiphile concentration on the
phase-separation process in this section and reproduce previ-
ous results with the present parameters. In addition, we study
the dependence of the maximum achievable domain size in a
stable microemulsion on surfactant concentration as well as
the time needed to achieve this state.

To depict the influence of the surfactant density on the
phase-separation process, Fig. 1 shows three volume ren-

dered 2563 systems at surfactant densities 0.0 �left�, 0.15
�center�, and 0.3 �right�. As in all figures throughout the pa-
per, for better visibility only one of the immiscible fluid spe-
cies is shown. Different colors denote the interface and areas
of high density of the rendered fluid. The surfactant particles
are aligned at the interfaces and the second immiscible con-
stituent fills the void space. After 30 000 time steps the
phases have separated to a large extent when no surfactant is
present �left�. Running the simulation for even longer would
result in two perfectly separated phases, each of them con-
tained in a single domain only. If one adds some surfactant
��s=0.15, center�, the domains grow more slowly, visualized
by the smaller structures in the volume rendered image. For
sufficiently high amphiphile concentrations ��s=0.30, right�
the growth process arrests leading to a stable bicontinuous
microemulsion with small individual domains formed by the
two immiscible fluids.

The projected structure function Sz�kx ,ky , t� �“scattering
pattern”� is given in Fig. 2 for two surfactant densities �s

=0.00 �a� and 0.30 �b� at time step t=10 000. As can be
clearly seen in Fig. 2�a�, a strong peak occurs for small val-
ues of kx ,ky, depicting the occurrence of length scales that
are of the order of the system size. For �s=0.30, however,
the peaks are by a factor of 100 smaller and shifted to larger
values of kx ,ky. We find a volcanolike scattering pattern, in-
dicating the dominance of small length scales. Since our sys-
tem is cubic and no shear is applied, the projections of the
structure function in x and y directions are equivalent.

To investigate the influence of surfactant more quantita-
tively, in Fig. 3 the time-dependent lateral domain size L�t�
as given in Eq. �9� is shown for a number of surfactant den-
sities �s between 0.00 and 0.50. Since the lattice is cubic
here, L�t� behaves identically in all three directions. Figures
3�a� and 3�b� show identical data, but different scalings of
the axes. In Fig. 3�a�, we plot the data linearly in order to
give a better impression of the time dependence of the
growth dynamics. However, in order to check which data are
best fitted by the various growth laws, we provide a log-log
scale plot of the same data in Fig. 3�b�. For the first few
hundred time steps, the randomly distributed fluid densities

z
y

x

FIG. 1. �Color online� Volume rendered fluid densities of 2563 systems at t=30 000 for surfactant densities �s=0.00, 0.15, 0.30 �from left
to right�. For better visibility only one of the immiscible fluid species is shown. Different colors denote the interface and areas of high density
of the visualized fluid. The surfactant particles �not shown� are aligned at the interfaces and the second immiscible fluid component fills the
void space. After 30 000 time steps the phases have separated to a large extent if no surfactant is present �left�. Adding a small amount of
surfactant ��s=0.15, center� causes the domains to grow more slowly, as depicted by the smaller structures in the volume rendered image.
For sufficiently high amphiphile concentrations ��s=0.30, right� the growth process arrests with the formation of a stable bicontinuous
microemulsion.
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of the initial system configuration cause a spontaneous for-
mation of small domains resulting in a steep increase of L�t�.
For �s�0.00 domain growth does not come to an end until
the domains span the full system. By adding surfactant we

can slow down the growth process, and for high surfactant
densities �s
0.25, the domain growth stops after a few thou-
sand simulation time steps. By adding even more surfactant,
the final average domain size becomes very small and does
not grow beyond 7.7 lattice sites. We fit our numerical data
with the corresponding growth laws and find that for �s

smaller than 0.15 L�t� is best fitted by a function proportional
to t�. For �s being 0.15 or 0.20, a logarithmic behavior pro-
portional to �ln t�� is observed. Increasing �s further results
in L�t� being best described by a stretched exponential.
These results correspond well with the findings in �5�.

We study the dependence of the final domain size Lmax��s�
on the amount of surfactant as depicted in Fig. 4�a�. It can be
observed that the maximum domain size decreases linearly
from 20.9 for �s=0.25 with increasing �s until a threshold
value is reached at �s=0.5, where Lmax�t�=7.7. Then,
Lmax��s� decreases much more slowly and stays almost con-
stant. The slope of the linear regime corresponds to −52.8.
The behavior of Lmax��s� and tarrest��s� is consistent with pre-
vious lattice gas �4,60� and lattice Boltzmann studies �5�,
where the authors determined the dependence of the surface
tension at a planar interface between two immiscible fluid
species on the surfactant concentration. In �5�, the authors
found a linear dependence between surface tension and sur-
factant density, but they did not study such high concentra-
tions as in the current study. In �60�, the surface tension
approaches zero for high concentrations, i.e., a saturation oc-
curs, causing the size of the individual fluid domains to satu-
rate as well. These effects can be explained as follows. Add-
ing surfactant to a binary fluid mixture causes the
amphiphiles to minimize the free energy in the system by
assembling at the interface between the two immiscible fluid
species. An increase of surfactant concentration causes the
interfacial area to be maximized in order to accommodate as
much surfactant as possible. The increasing interfacial area
causes the individual domains to become smaller and
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FIG. 2. �Color online� Projected structure function Sz�kx ,ky , t�
for �s� �a� 0.00 and �b� 0.30 at time step t=10 000. For the case
without surfactant, a strong peak occurs for small values of kx ,ky,
reflecting the dominance of length scales that are of the order of the
system size. For �s=0.30, only much smaller peaks occur for larger
values of kx ,ky, indicating that only small length scales are present.
All quantities are expressed in lattice units.
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Lmax��s� decreases. If the surfactant concentration becomes
very high ��s
0.5 in our case�, Lmax��s� saturates due to the
maximum possible interfacial area being reached and all
available area being covered with surfactant molecules. More
amphiphiles accumulating at the interface would lead to very
steep and energetically unfavorable gradients of surfactant
density in the system. Therefore, further amphiphiles have to
reside within the bulk fluid phases, forming micellar struc-
tures. Within our model the minimum final domain size cor-
responds to 7.7 lattice sites. However, this value can be var-
ied by tuning the coupling constants for the amphiphile-
amphiphile or amphiphile-fluid interactions. A more
thorough investigation of the influence of the particular
choice of the coupling constants on the final domain size is
of particular interest and will be investigated within a future
project.

In Fig. 4�b�, the number of simulation time steps tarrest��s�
needed to reach the final domain size is plotted. Since the
time it takes for the system to relax to its equilibrium state
directly depends on the final domain size, it is consistent
with the data presented in Fig. 4�a� that a linear dependence
of tarrest��s� on the surfactant concentration can be observed.
While for �s=0.25 7000 time steps are needed to reach the
maximum possible domain size, for �s=0.5 500 time steps
are sufficient. For �s
0.5, tarrest��s� decreases much more
slowly than for �s�0.5. The slope of tarrest��s� in the linear
regime is given by −26 000.

B. Steadily sheared systems

If a binary immiscible fluid mixture is driven mechani-
cally by external shear forces, it is known that the evolution
of domains and phase-separation processes is changed pro-
foundly �8–10�. The most noticeable effect is the formation
of a lamellar phase, i.e., elongated domains or lamellae form
and align along the flow direction. Due to the anisotropy of
the system, the time-dependent domain size L�t� behaves dif-
ferently for the different coordinate axes in this case. Fur-
thermore, modified growth exponents are expected due to the
anisotropic effects.

As already seen in the previous section, adding am-
phiphiles to a binary immiscible fluid under shear can change
its properties dramatically. The amphiphiles stabilize the in-
terface between the immiscible fluid species and the domain
growth is hindered as described in the previous section.
Moreover, the amphiphiles might form complex structures

which can have an impact on the properties of the sheared
fluid leading to non-Newtonian flow �8,45,51�.

We study ternary 128�128�512 sized systems under
constant shear. The shear rate is set to �̇=1.56�10−3 and
3.12�10−3, while the surfactant density is varied between
�s=0.0 and 0.4. Figure 5 shows the time-dependent lateral
domain size for all three coordinate axes at �̇=1.56�10−3.
In the x direction, which is the axis between the shear planes,
the power law regime of Lx�t� starts at t=500 for the �s

=0.0 case, while for higher �s the initial growth regime is
overcome by the power law regime before the first measure-
ment at t=100. As long as �s�0.3, the growth rate is not
hindered by the amphiphiles and domains grow until the end
of the simulation. For �s=0.3 the power law regime starts to
breakdown at t=900 and Lx�t� saturates at t=5000. Adding
even more surfactant results in an even earlier saturation at
t=1500. The y direction is the direction parallel to the shear
planes and perpendicular to the direction of shear. Since this
direction is less affected by the shear forces, Ly�t� grows
faster than Lx�t� for low surfactant concentrations �s�0.2,
causing the domains forming to be extended in the y direc-
tion. For �s=0.2 Lx�t� and Ly�t� behave almost identically,
while for �s
0.2 a crossover occurs and the maximum at-
tainable value for Ly�t� is below the result for Lx�t�. In the
direction of shear �z direction�, Lz�t� saturates even for the no
surfactant case at Lz�t�=25 and comes to arrest at even
smaller values with increasing �s. The complex behavior of
Li�t� can be better understood by reminding ourselves that
the domain size is measured in the direction of the Cartesian
coordinate axes. However, individual fluid domains occur-
ring in the system are being elongated due to the shear and
try to align with the shear gradient. Thus, they are not par-
allel to any coordinate axis. Therefore, with a measurement
of Lz�t� one is not able to detect the actual length of indi-
vidual lamellae, but only their thickness in the z direction.
Similar arguments are valid for Lx�t�, shear causing the mea-
sured domain size in the x direction to be larger than the
lamellae’s thickness. For increasing �s, the average domain
size reduces due to the influence of the amphiphiles, thus
causing the individual domains to become smaller. If �s


0.2, the alignment of the domains with the shear causes
Lx�t� to appear larger than Lz�t�. For high surfactant concen-
trations ��s=0.4� all three directions behave very similarly:
domain growth comes to an end after fewer than 2000 time
steps and the final domain size is between 10 and 15 lattice
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FIG. 5. �Color online� Domain
size L��s� in x �a�, y �b�, and z
directions �c� for surfactant densi-
ties �s�0.0, 0.1, 0.2, 0.3, 0.4 and
a constant shear rate �̇=1.56
�10−3. All quantities are reported
in lattice units.
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units in all directions, signaling the appearance of a stable
microemulsion where the shape of the domains is almost
unaffected by the shear.

Regular peaks occur in Lz�t� at every 2500 time steps with
less pronounced peaks in between them. These peaks can be
explained as follows. For the stretching of domains, a certain
amount of work against surface tension is needed. On mac-
roscopic scales, the stress tensor does not vanish due to the
viscoelastic response of the system �61,62�. On the micro-
scale, however, a breakup and recombination of domains can
be observed �63�. These domains grow by diffusion and
eventually join each other to form larger structures. If the
internal stress becomes too large due to the shear-induced
deformation, they break up and start to form again. Assum-
ing a large system with many independent domains growing
and breaking incoherently, the only observable effect might
be a slowing down of the domain growth. In contrast, if the
growth and breakup occur coherently as they do in our simu-
lations, a periodicity in the measured time-dependent domain
size can be observed �64�. As can be observed in Fig. 5�c�,
the frequency of domain breakup is independent of the sur-
factant concentration, while the height of the peaks decreases
with increasing �s.

Figure 6 shows volume rendered examples of a simulated
system with surfactant density �s=0.2 and a constant shear
rate of �̇=1.56�10−3. The four snapshots are taken a differ-
ent times t=1000 �upper left�, 4000 �upper right�, 6000
�lower left�, and 10 000 �lower right�. It can be observed that,
at early stages of the simulation, the shape of individual do-
mains does not show distinct features, while at t=4000,
slightly elongated domains start to occur which begin to
align with the shear gradient. At t=6000, these features are
substantially more dominant and at late simulation times �t
=10 000� the system is filled with elongated and thin lamel-
lae consisting of one of the immiscible fluid species and
which are almost parallel to the shear plane.

In order to permit a comparison with experimentally
available scattering data, in Fig. 7 we present projected struc-
ture functions for the surfactantless case �Figs. 7�a�–7�c��

and a surfactant density of �s=0.30 �Figs. 7�d�–7�f�� at t
=10 000. The x, y, and z directions are shown from top to
bottom. The shown projections are for a cubic 1283 cutout of
the elongated systems. In contrast to the nonsheared case, all
three directions show distinct properties. For �s=0.00, a high
peak of Sz�kx ,ky , t� can be observed around kx=ky =0, while
in the x and y directions two lower peaks at positions above
zero show up. These data can be interpreted as follows. At
t=10 000, the domain size in the direction of the flow corre-
sponds to the size of the cubic cutout, i.e., 128 lattice sites. In
the x and y directions, however, the size of the occurring
structures is smaller, indicating the occurrence of very long
lamellar structures in the system. By adding surfactant to the
system �Figs. 7�d�–7�f��, the occurring length scales depicted
decrease by the splitting of the single peak in the z projection
and the occurrence of two small peaks at kx=0 and ky

= ±10. While the peaks in the y direction denote similar
length scales as in the z direction, the projections in the di-
rection between the shear planes �x� show a different behav-
ior. Here, two parallel structures at ky = ±10 and kz between
−20 and 20 indicate a much wider variation of the thickness
of the individual domains. This is in contrast to the non-
sheared case in Fig. 2, where a volcanolike shape of the
structure factor was observed.

Doubling the shear rate to �̇=3.12�10−3 results in very
similar behavior, as shown in Fig. 8. In the z direction, peaks
can now be observed even for �s=0.4, but Lz�t� is much
noisier for lower surfactant concentrations. However, it can
still be seen that there is a number of equidistant peaks for
�s�0.4 which occur every 2500 time steps with some addi-
tional peaks in between in the case of �s=0.0 and 0.1. The
equidistant peaks occurring with the same frequency as in
the �̇=1.56�10−3 case shows that the breakup phenomena
observed are independent of the shear rate.

A number of experiments have reported that the shear
stabilizes the system and causes the phase separation to come
to an end with Lz�t� being very large and Lx�t� being much
smaller �30,40,65,66�. We are not able to reproduce these
results due to the limited size of our simulations: substan-
tially larger systems and higher shear rates need to be studied
in order to quantify the arrest of domain growth due to shear.
However, the computational resources needed would be at
the limit of what can be done on current supercomputers.

We have shown in this section that the dynamical scaling
hypothesis does not hold for sheared ternary systems in three
dimensions since we indeed find three individual length
scales pointing out the transition from the sponge to the
lamellar phase: while in the flow direction �z�, L�t� is deter-
mined by the resultant length of the occurring lamellae, in
the direction between the shear planes �x�, the domains grow
steadily and exhibit power law behavior up to a maximum
that depends on the surfactant concentration. In the y direc-
tion, domain growth is not hindered by shear. In fact, Ly�t�
grows slightly faster than in the nonsheared case. Increasing
the surfactant concentration has a strong impact on domain
growth: starting at �s=0.3, Ly�t� and Lz�t� recover the behav-
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y

FIG. 6. �Color online� Volume rendered �128�128�512 simu-
lation boxes� fluid densities for surfactant density �s=0.2, a con-
stant shear rate �̇=1.56�10−3, and variable number of time steps
t=1000 �upper left�, 4000 �upper right�, 6000 �lower left�, and
10 000 �lower right�. While the shape of individual domains does
not show distinct features at early times of the simulation, elongated
structures appear at t=4000 and start to become aligned with the
shear at t=6000. At late stages of the simulation run �t=10 000�, the
lamellar phase characterized by thin and long lamellae filling the
whole system can be observed.

STRUCTURAL TRANSITIONS AND ARREST OF DOMAIN… PHYSICAL REVIEW E 75, 041504 �2007�

041504-7



ior of the case without shear, i.e., the length scales saturate
around 15. In the x direction, however, growth continues up
to Lx�t�=26. This can be explained as follows. With increas-
ing surfactant concentration, the final domain sizes become
smaller, reducing the influence of the shear forces in the y
and z directions. In the direction between the shear planes,
however, an increase of Lx�t� can still be observed because
the domains are still being elongated due to shear and try to
align with the velocity profile. Thus, they are tilted and their
size appears to be smaller than it actually is in the z direction
and larger in the x direction.

Our findings are in agreement with Ginzburg-Landau
and Langevin calculations �64,67–69� as well as two-
dimensional lattice Boltzmann simulations of binary immis-
cible fluid mixtures as presented in �31,36,40�. However, to
the best of our knowledge, there are no detailed theoretical
studies of the dependence of domain growth properties on
the surfactant concentration. The only known work utilizes a
Ginzburg-Landau free-energy approach to study sheared mi-

croemulsions, but does not vary the amount of surfactant. In
addition, the authors only cover two-dimensional systems
and are thus unable to describe the behavior of Ly�t� �70�.

C. Complex fluids under oscillatory shear

In the case of oscillatory shear, the morphology and the
domain growth are altered significantly, although the average
deformation is zero after each period of shear. For example,
it has been found experimentally for binary fluid mixtures
that for very low oscillation frequencies domain growth can
be interrupted �71�, or domains can grow on much longer
time scales than given by the oscillation frequency �72�.
Simulations so far either do not include hydrodynamic ef-
fects, or are limited to two dimensions �14�. It has been ob-
served in the two-dimensional lattice Boltzmann studies by
Xu et al. that hydrodynamic effects must not be neglected in
the case of oscillatory shear since there exists a finite time
inversely proportional to the viscosity which is required to

FIG. 7. �Color online� Projected structure functions �scattering pattern� Si for surfactant concentrations �s=0.0 �a�–�c� and 0.3 �d�–�f� at
t=10 000. Projections are in the x, y, and z directions �from top to bottom� and for a cubic cutout of the full system with side length N
=128.
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set a linear velocity profile in the system. For high oscillation
frequencies, this time is longer than the oscillation period
and there will never be a linear velocity profile in the system,
thus influencing the domain growth substantially �14�.

Due to its higher complexity, oscillatory shear has been a
subject of much less research than systems under steady
shear. Therefore, the number of publications that can be
found in the literature is substantially smaller. To the best of
our knowledge, no detailed three-dimensional simulation
studies of phase separation in ternary amphiphilic fluid mix-
tures under oscillatory shear have been reported so far. The
most detailed three-dimensional simulations we are aware of
are our own studies of the gyroid mesophase under oscilla-
tory shear as presented in �45�.

In this section we present our results of simulations of
systems equivalent to the ones considered in the previous
section, but with the shear plane moved as given by Eq. �8�.
We apply two different oscillation frequencies �=0.001 and
0.01, where a single oscillation takes 6283 time steps in the
slow case and 628.3 time steps in the fast case.

Let us first consider the case with a lower oscillation fre-
quency and lower shear rate, i.e., �=0.001 and �̇=1.56
�10−3. In the case of oscillatory sheared systems, the indi-
vidual fluid domains try to align with the velocity gradient as
in the previous section. However, since we do not consider
steadily moving shear planes here, domains are never able to
reach a steady state and instead have to follow the oscillation
of the planes. The frequencies considered in our simulations
are comparably high since no linear velocity gradient sus-
tains long enough during a single oscillation for the domains
to fully align with it. This is depicted in Fig. 9 which shows
two typical examples from a simulation with �s=0.2. On the
left hand side, a volume rendered snapshot is given at t
=2500. Here, the oscillating shear planes have just passed
their reversal point. Close to the shear planes, the domains
are aligned vertically because they have to be turned around
in order to follow the changing direction of movement of the
shear planes. In the bulk of the system, however, no pre-
ferred direction can be observed since the velocity gradient
does not interpenetrate the whole system. At t=10 000, the
shear planes are in a position just before their reversal point.
Thus, the fluid mixture was accelerated for more than 2000
time steps and the domains close to the shear boundary are
well aligned in the direction of the flow. In the bulk, again no
preferred direction can be observed.

The time-dependent lateral domain size of this simulation
and for varied surfactant concentration is presented in Fig.

10. As in the case of continuous shear, the domain growth in
y direction is almost uninfluenced by the applied shear
forces. In fact, for low surfactant concentrations �s�0.2,
Ly�t� even grows slightly faster than in the case without os-
cillatory movement. For �s�0.2 the maximum domain size
obtained is similar to the steady shear case. Due to the non-
steady movement of the shear planes, Lx�t� and Lz�t� show a
richer behavior: both functions show distinct kinks around
the reversal points of the shear and for �s�0.2 it is found
that the growth rates are smaller than in the case of steady
shear. Thus, we can observe the formation of tubular struc-
tures which are elongated in the y direction and show similar
length scales in the x and z directions. For very high surfac-
tant concentrations ��s=0.4� it is not possible to distinguish
between tubular and spherical structures due to the small size
of the individual domains.

In the z direction we can still observe peaks related to the
formation and breakup, as well as the rotational movement,
of domains. However, due to the overlaid effect of the oscil-
lation, these peaks are no longer equidistant as in the steady
shear case.

In Fig. 11 we present a system with a ten times larger
oscillation frequency, i.e., �=0.01. Here, the frequency of
the oscillations is so high that the fluid is no longer able to
follow the movement of the walls. Thus, the influence of the
shear on the growth behavior becomes less pronounced, with
the domains constantly growing as long as the amount of
surfactant present allows it. The growth rates are comparable
to those in the nonsheared case here and show identical
growth laws as in the nonsheared case. The only difference is
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FIG. 8. �Color online� Domain
size L��s� in �a� x, �b� y, and �c� z
directions for surfactant densities
�s�, 0.1, 0.2, 0.3, 0.4 and a con-
stant shear rate �̇=3.12�10−3.
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FIG. 9. �Color online� Volume rendered fluid densities for sur-
factant density �s=0.2 at t=2500 �left� and 10 000 �right�. The shear
rate is �̇=1.56�10−3 and �=0.001. At t=2500, the shear velocity
is close to its reversal point and the domains are aligned vertically
close to the shear plane, while in the bulk of the system no preferred
orientation can be observed. After 10 000 time steps, however, the
domains close to the shear plane are aligned with the flow direction
because the shear planes are in a position just before their reversal
point. In the bulk, still no preferred orientation can be found since it
takes longer for the velocity gradient to penetrate the whole system
than the duration of a single period of shear.
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that the exponents are found to be smaller while Ly�t� grows
slightly faster than Lx�t� and Lz�t�, depicting the occurrence
of tubular structures in the system. The z direction is the only
component of the time-dependent lateral domain size that
differs from the unsheared case, because strong oscillations
start to appear due to the distortions caused by the moving
boundaries.

We have increased the shear rate to �̇=3.12�10−3, but
the lateral domain sizes obtained are almost identical to those
in the �̇=1.56�10−3 case. Therefore, we do not present an
additional figure, but our findings can be used to argue that
for high oscillation frequencies the system behaves in a man-
ner equivalent to the nonsheared case.

In the case of oscillatory shear we have shown the occur-
rence of tubular structures due to shear-imposed anisotropic
domain growth, the slowing down of the domain growth rate
depending on the oscillation frequency, as well as the result
that a microemulsion with high surfactant concentration
stays unaffected by external shear forces. Our results are in
agreement with the simulations of Qiu et al. �11� and the
two-dimensional lattice Boltzmann simulations of Xu et al.
�14�.

IV. CONCLUSIONS

In this paper we have presented detailed three-
dimensional lattice Boltzmann studies of binary immiscible
and ternary amphiphilic fluid mixtures under constant and
oscillatory shear.

We have reproduced the well-known power law growth of
domains in the case of binary immiscible fluids �spinodal
decomposition� which crosses over to a logarithmic law and
to a stretched exponential if one increases the surfactant con-

centration even further. For sufficiently high surfactant con-
centrations, domain growth can come to an end and the sys-
tem corresponds to a stable bicontinuous microemulsion. For
amphiphile concentrations of up to 30% we find linear de-
pendencies of the time of arrest as well as the maximum
domain size on the amphiphile concentration. For concentra-
tions above 30%, neither arrest length nor time of arrest
changes any more since the surface tension at the interfaces
between the two immiscible fluids is at its minimum. The
whole interface is filled with amphiphiles and further am-
phiphile molecules have to reside within the bulk fluid.

In sheared systems, we have studied the influence of mov-
ing boundaries on the effect of domain growth and report
domain breakup phenomena depending on the shear rate as
well as the amphiphile concentration. Depending on the sur-
factant concentration and the shear rate, we find a transition
from a sponge phase to a lamellar phase.

Under oscillatory shear and with the oscillation frequen-
cies chosen, no linear velocity gradient can build up within a
single period of shear. Thus, the domains are constantly re-
arranging and align with the flow in the vicinity of the shear
planes. In the bulk, however, no preferred alignment can be
observed. But since the growth in the y direction is not hin-
dered by the shear, tubular structures occur and are best ob-
servable for low surfactant concentrations. For very fast os-
cillations ��=0.01�, the system is not able to follow the
external shear at all. Thus, it behaves similarly to a nons-
heared one. The only differences are that fluctuations in Lz�t�
can be observed due to the oscillatory forces, while the
growth in the other two directions is slowed down. For sur-
factant concentrations �s�0.2 anisotropic growth in the x
and y directions is observed depicting the presence of tubular
domains in the system. In future work it would be of interest
to study the formation of tubes and their dependency on the
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FIG. 10. �Color online� Do-
main size L��s� in x �a�, y �b�, and
z directions �c� for surfactant den-
sities �s=0, 0.1, 0.2, 0.3, 0.4 and
oscillatory shear with �̇=1.56
�10−3, �=0.001.
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FIG. 11. �Color online� Do-
main size L��s� in x �a�, y �b�, and
z directions �c� for surfactant den-
sities �s=0, 0.1, 0.2, 0.3, 0.4 and
oscillatory shear with �̇=1.56
�10−3, �=0.01.
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shear rate, oscillation frequency, and surfactant concentration
in greater detail. Additionally, the study of asymmetric mix-
tures, where the concentrations of the two immiscible fluid
species differs, remains unexplored.
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