PHYSICAL REVIEW E 75, 041408 (2007)

Two-dimensional colloidal aggregation mediated by the range of repulsive interactions
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We study the effect of the interaction’s range on the structural and kinetic properties of a computer-simulated
two-dimensional aggregating colloidal system. For this purpose, we considered that the particles of the system
interact through a repulsive Yukawa potential which depends on two parameters: the value of the interaction
potential between particles in contact V|, and the range of the interaction xd. We observed that the increase of
the interaction range or V,, provokes the arrangement of the small aggregates in linear structures. The repulsive
interactions have also a strong influence on the kinetic behavior of the coagulation process. Indeed, they induce
the formation of three different time-separated aggregation regimes. In the first regime (at early states) the
aggregation is dominated by the range of the repulsive forces, and the cluster-cluster repulsion increases with
the cluster size. The second regime (at intermediate times) is reached when the average cluster size is larger
than the interaction range. Here, the cluster-cluster repulsions do not grow anymore with the cluster size, so the
probability of overcoming the repulsive barrier is the same for all clusters. This corresponds with the so-called
reaction-limited-cluster-aggregation regime, where more than one collision between the clusters is needed to
form a bond. The third aggregation regime is found at long aggregation times. In this region the coagulation is
mainly determined by the diffusion time and the kinetics becomes diffusion controlled. A physical interpreta-
tion for the transition between chain structures and the typical fractals aggregates from the point of view of the
range of the interactions is discussed. Moreover, a method has been developed in order to obtain the effect of
the interactions with a non-negligible range over the aggregation rates directly from the simulations. The
relation between these different regions with the parameters of the interaction potential V|, and «d is analyzed.
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I. INTRODUCTION

Colloidal aggregation is involved in many different appli-
cations of the industrial sectors as food technology, biologi-
cal materials, paintings, polymers, pharmaceutical research,
and magnetorheological fluids [1-5]. Moreover, colloidal
systems play an important role from the theoretical point of
view because they can be used as model systems in order to
study complicated physical phenomena such as phase transi-
tion [6], multibody interactions [7], and cluster formation of
galaxies [8]. Therefore a great effort has been done to under-
stand their main features and to model their aggregation ki-
netics.

The groundwork for our present understanding of the pro-
cess of particle aggregation is the result of the work pub-
lished in 1916 by von Smoluchowski [9]. The Smoluchowski
equation describes the kinetic aggregation in terms of the
reaction probability (kernel k;;) between clusters of sizes i
and j (aggregates composed by i and j monomers, respec-
tively). The physics of the coagulation process is embodied
in this reaction probability, which depends on the nature of
the relative motion between the aggregates as well as the
details of the pairwise interaction potential among the clus-
ters.

In the last decade, both theories and experiments have
shown the existence of two universal behaviors, independent
of the particle nature, called diffusion-limited cluster aggre-
gation (DLCA) or reaction-limited cluster aggregation
(RLCA). The better known aggregation kinetics corresponds
to the DLCA regime [10]. In this case, colloidal particles
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freely move by Brownian diffusion (without interparticle in-
teractions) and they become irreversibly stuck after a colli-
sion. The kinetic properties of this aggregation process have
been described using the Brownian kernel [11].

Another studied aggregation regime corresponds to colloi-
dal particles that experience short-range interparticle repul-
sions. These repulsions provoke a decrease of the aggrega-
tion rate. When the potential barrier is short-ranged
(compared to the particle radius), the interaction between the
particles is approximated by a sticking probability defined as
the fraction of effective collisions leading to the formation of
new bonds. This is usually called the reaction-limited cluster
aggregation (RLCA) regime [12,13].

However, when the range of the repulsive interactions is
not negligible, the aggregation process cannot be modeled in
terms of the sticking probability. It is necessary to include
the effect of the interaction range in the aggregation kernels
in order to describe properly the kinetics of the aggregation
process.

A previous simulation work (Ref. [14]), using a Metropo-
lis Monte Carlo procedure, was able to successfully obtain
the low cluster fractal dimensions obtained experimentally
on a two-dimensional colloidal aggregating system [15],
whose particles were supposed to interact via a repulsive
medium-range potential. However, that work was restricted
to the structural behavior, while the dynamics was set aside.
Furthermore, due to computational limitations, the simula-
tions were stopped at a short time, preventing us from seeing
the crossover that is generally known to occur from RLCA to
DLCA, due to the multiple contacts that two large colliding
clusters can have.
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In this paper we report the effect of the medium-range
repulsive interactions on the kinetic and structural properties
of the aggregating clusters in simulations of colloidal par-
ticles whose movement is confined into a plane. This work
gives the answer to an important question: how the aggrega-
tion rate and the cluster structure of two-dimensional coagu-
lation are affected by the presence of a repulsive component
with a non-negligible range in the total interaction potential?
The repulsive interaction considered is the Yukawa potential,
which has been used in many fields to model screened inter-
actions.

The paper is organized as follows. Section I is the intro-
duction. Section II reviews the theoretical background
needed for describing the aggregation kinetics when the par-
ticles interact through a pairwise interaction potential with a
non-negligible range. Section III describes the simulations.
Section IV summarizes the results of the simulations and the
discussion. Finally, the main conclusions are extracted in
Sec. V.

II. THEORETICAL BACKGROUND
A. Cluster structure

The observations that the structure of clusters formed dur-
ing an aggregation process exhibit fractal behavior, at least
within certain length scales, have substantially simplified the
description of the cluster geometry. The fundamental relation
is the scaling of the cluster size i with its cluster radius of
gyration (R,):

R,~i"r, i>1, (1)

where d; is the fractal dimension and iR;(i):(E};zl[(xk
—Xe )2+ (Vi=Yem)?]) (c.m. indicates the position of the cen-
ter of mass of the cluster and k denotes the position of the
particles in a cluster of size i).

The fractal dimension characterizes the inner structure of
the cluster and it depends on both the clusters-diffusion and
the cluster-cluster interaction. As it is well-known, DLCA
aggregation leads to more open structures (d;~ 1.44 for 2D-
DLCA) than in the case of short-range likely repulsion, e.g.,
RLCA regime (d;~1.55) [16]. For RLCA aggregation re-
gime multiple collisions between two clusters are required to
coagulate them. The probability of coagulation in this regime
is proportional to the number of collisions. Therefore a
higher interpenetration between clusters is necessary, which
provides a greater number of potential monomer-monomer
combinations. This fact explains the formation of more com-
pact aggregates under the RLCA regime in comparison with
those formed under the DLCA regime.

B. Kinetics

The most important quantities that characterizes the ki-
netic properties of a coagulating system is the cluster size
distribution n,(¢) defined as the number of clusters containing
i monomers at time 7. The time evolution of the aggregation
process is featured in global terms using the weight-average
cluster size S,,(r) given by [17]
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E izni(t)
S, = . )

2 in(t)

i=1

For long aggregation times, it has been observed experi-
mentally and by simulations that the weight-average cluster
size develops a power-law behavior for long times, S,,(7)
~t*, where z is the so-called kinetic exponent. Then, if one
represents the function S,,(f)%n,(f) versus a normalized clus-
ter size, i/S,,(t), we see that all the curves can be scaled into
a single time-independent scaling function W[i/S,(¢)]
=S,,(1)%n,(). The shape of this master curve depends on the
aggregation regime [18,19].

For dilute systems, the time evolution of the cluster popu-
lations is given by the Smoluchowski equation [9]:

de(t) 1
dt 2

> kijci(t)c;(t) = > kyjei(t)c;(1). (3)
j=1

i+j=k

Here, ¢;(r) are the cluster concentrations defined as ¢;(z)
=n,(t)/S, where S is the total area of the system. This is a
mean-rate equation that predicts the evolution of the mass
spectrum of a collection of particles due to successive merg-
ers. It is widely used for modeling growth in many fields of
science. Examples include planetesimal accumulation, merg-
ers in dense clusters of stars, coalescence of interstellar dust
grains, galaxy mergers in astrophysics, aerosol coalescence
in atmospheric physics, colloids, and polymerization and ge-
lation [20-23]. The first term of Eq. (3) accounts for the
creations of k-mers through collision of j-mers and
(k-j)-mers and the second term represents the annihilation of
k-mers due to a coagulation with other clusters.

Equation (3) gives the kinetic aggregation in terms of the
reaction kernel k;;, which is related to the aggregation rate
between an i-mer and a j-mer. The reaction kernel accounts
for two physical factors: the collision frequency between two
clusters and the corresponding sticking efficiency.

Some approximations are involved in this equation: first,
it considers only binary collisions. Second, the aggregation is
irreversible, i.e., the possibility of fragmentation or rear-
rangement of the particles in the aggregate is not taken into
account. Third, the effect of cluster morphology on the rates
of aggregation is averaged over all particular cluster forma-
tion possibilities. Finally, we assume that there are no spatial
correlations between the clusters. So, this equation is a mean
field approach to the aggregation dynamics.

A more general and realistic description of the aggrega-
tion process should include the possibility that the aggregates
could break into smaller pieces or rearrangement. This is the
well-known reversible aggregation process, which has been
the subject of extensive theoretical and computational work
[24,25]. However, the experimental results for two-
dimensional coagulation processes showed than the bonds
formed by aggregation are very rigid and this reversible ag-
gregation has not been observed yet. Therefore we only con-
sidered irreversible aggregation in this work.
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The Smoluchowski equation gives the time evolution of
the cluster concentration in terms of the reacting kernels, k,-j,
which is related to the aggregation rate between i-mers and
j-mers. Most kernels used in the literature are homogeneous
functions of i and j. According to van Dongen and Ernst
[26], this kind of kernel may be characterized by two expo-

nents, N and u, which are defined as

kai’aJ‘:a)\k l,]> 1,

ij»
kij~ iR >, (4)

where a is a large positive constant. For A <1, the exponents
z and \ are related by z=1/(1-N\).

The aggregation kernel is directly related to the “average
lifetime™ (z;;), which represents the mean time used by ag-
gregates of sizes i and j to diffuse and coagulate:

1
ki~ —. (5)
/ (i)

For certain aggregation kernels an analytical solution as
well as scaling solutions of Eq. (3) are available [11,27].
However, in the general case only numerical solutions can be
obtained.

When clusters stick at the first collision, the aggregation
rate is completely determined by the Brownian diffusion of
the aggregates (DLCA). For this regime, an explicit expres-
sion for the kernel may be obtained by estimating the rate of
collisions for sufficiently long times. In a d-dimensional
space, this reasoning yields [28]

ki ~ (D;+D)(R;+R)*, (6)

where D; and R; are the diffusion coefficient and the radius
of gyration of an i-size aggregate, respectively.

We assume that the average diffusion coefficient for a
cluster with a characteristic radius of gyration R, is given by
D~1/R, [29]. Inserting here Eq. (1), one finally obtains for
d=2:

kBr
kﬁr= %(i_”df+j_1/df). (7)

This kernel is homogeneous, having A=u=-1/d,
=-1/1.45=-0.69.

When repulsive interparticle forces are present, the aggre-
gation rate decreases since only a fraction of the cluster-
cluster collisions leads to coagulation. In this case, the inter-
action kernel, k,-j, can be written as

ki _ o
kij:#=k§ Pij’ (®)

ij

where the stability factor W;; is the stability factor defined as
the ratio of the aggregation rate constants for noninteracting
particles and for those with a finite interaction. W;; is a mea-
sure of the stability of the colloidal dispersions. Analogously,
P;; represents an effective sticking probability. Fuchs [30]
derived the following relationship between the total interac-
tion potential V;(r) and the stability factor in a three-
dimensional coagulation process:
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. [ exp[ V,(r)/kpT]
Wi =[R,()) + R, ()] —— ==y (9)
Ry(i)+Ry(j) r

If V;;(r) is a short-range repulsive interaction, the kinetic
coagulation regime corresponds to RLCA. In this case, the
P;; functions increase with the cluster size because the prob-
ability of collision of two aggregates grows with the number
of particles that can collide. The characteristic kernel used in
this regime is [12]

kij= ki Po(ij). (10)

The N parameter accounts for the increased aggregation
efficiency of larger clusters due to a larger number of contact
possibilities on their surface and P, is the monomer-
monomer sticking probability.

It is worth noting that, in the absence of attractive inter-
action between the particles, the DLCA regime represents the
upper limit of the cluster aggregation rate constant. The num-
ber of consecutive collisions between two aggregates in-
creases for larger cluster sizes. This implies that two huge
approaching clusters are involved in so many consecutive
collisions that, even for very low sticking probabilities, they
are not able to diffuse away and finally end up forming a
stable bond. This corresponds to the transition from RLCA to
DLCA, which occurs as the aggregate size increases in time
and it has been experimentally observed [31-33] and theo-
retically modeled [16,33].

C. Effect of the interaction range

The effect of the interaction range over the coagulation
process could be explained on the basis of the “superposition
principle” applied to find the cluster-cluster interaction po-
tential. This potential can be obtained as the sum of all the
interactions between the monomers that compose the inter-
acting aggregates. Therefore the total interaction between an
i-mer and a j-mer can be estimated with the following for-
mula:

i

Vij=EEVn(rkm), (11)

k=1 m=1

where V,,(r) is the monomer-monomer interaction potential
and ry, is the center-to-center distance between the
k-monomer of the i-cluster and the m-monomer of the
Jj-cluster.

It is not possible to define a collision between two clusters
as usual, when we have colloidal particles that interact
among them through a potential with a non-negligible inter-
action range. In this case, two approximating clusters feel
each other before and after they collide. For this reason, it is
necessary to define an interaction region between two mono-
mers as a circle of radii r,,, centered in one of the monomers
where V,,(r>r,,) <0.1kgT. Hence the monomer-monomer
interaction outside of this region, i.e., when the distance be-
tween the centers of the monomers is larger than r,, can be
considered negligible. The monomers are depicted as gray
disks in Fig. 1. Around one of theses monomers the “inter-
action region” is sketched as a dashed circle of radii 7.,
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FIG. 1. Scheme of cluster-cluster interactions. The monomers
are represented as gray disks and the interaction region around a
monomer is sketched as a dashed circle. (a) The monomer-
monomer interaction is isotropic. When one of the monomers is
outside the interaction region of the other monomer, the interaction
potential is neglected. (b) The dimer-monomer interaction is aniso-
tropic. Around the dimer there is a more repulsive region due to the
superposition of two monomer-monomer interactions (denoted as
I=2 in this scheme) and a less repulsive region (/=1). (c) Trimer-
monomer interaction. The interaction is again anisotropic and it is
easier to induce coagulation at the extremes of the trimer. (d)
Tetramer-monomer interaction. In this scheme, not all the mono-
mers being part of the same tetramer participate in the interaction as
the monomer cannot “feel” the gray particle of the tetramer. (e)
Cluster-cluster interaction. Only the monomers that are inside the
circles participate in the interaction.

Now, we define an “encounter” between two clusters
which begins when any monomer of one aggregate crosses
the interaction region of some monomer of the other aggre-
gate. The encounter finishes when these clusters coagulate or
when one of the aggregates diffuses away from the interac-
tion region of the other. It may now have a new encounter
with another cluster.

A dimer is formed when the monomers overcome the re-
pulsive barrier and they collide, forming a strong bond aris-
ing, in the true experimental colloidal system, from the van
der Waals interactions. This strong bond would not allow
each of the particles to roll over around the other, due to the
roughness of their surfaces. In Fig. 1(b) we represent the
interaction between a dimer and a monomer. As the interac-
tion range is larger than the particle diameter, there is some
region around the dimer where the interaction is summed due
to the superposition principle. Therefore we can distinguish
two different regions in a dimer: a more repulsive region
[depicted as /=2 in Fig. 1(b)] due to the overlapping of the
repulsive interactions of the two monomers that compose the
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dimer, and a less repulsive region [depicted as /=1 in Fig.
1(b)] where there is no overlapping of the interaction re-
gions. Hence the resulting interaction potential V,, is aniso-
tropic, which means that when a monomer interacts with a
dimer, there is a convenient orientation between the aggre-
gates which minimizes the repulsive interaction. So, the co-
agulation is easier when they approach through the less re-
pulsive region I=1.

With the same idea, three different spatial regions appear
when a trimer interacts with a monomer, depending on the
number of superposed monomer-monomer interactions. In
Fig. 1(c) they are represented as I=1, 2, and 3. Again, the
aggregation will occur preferentially through a low-number
region (less repulsive region). The I=1 regions are usually at
the extremes of the aggregates, so it is easier for a monomer
to coagulate in such extremes, and therefore the small aggre-
gates tend to develop a linear structure (chains).

In the case of the tetramer-monomer interaction [Fig.
1(d)], it is possible for the monomer to coagulate through an
interaction region /<<4. This means that not all the mono-
mers forming part of the tetramer participate in the interac-
tion (the monomer can aggregate with the tetramer without
feeling the interaction of the whole cluster). Therefore we
can define the critical cluster size, i, as the maximum size in
which all the monomers forming the cluster participate in the
interaction with the approaching monomer.

Hence the interaction between a monomer and a cluster of
size i becomes more repulsive with the increasing of i until it
reaches the critical size i,. After that, the monomer-cluster
interaction becomes independent on the cluster size.

When two clusters larger than the critical size approach
each other, not all the monomers participate in the interac-
tion. From this moment, there is not any “privileged” direc-
tion and the aggregates with a size i> i, begin to lose their
linearity. In Fig. 1(e) two interacting big aggregates are
shown. In this case, the monomers that participate in the
interactions are the monomers inside the circles. Therefore
when the colloidal particles interact between them through a
potential with a non-negligible range (in comparison with the
particle diameter), we will have the following kinetic re-
gions.

First region. For small aggregates, the cluster-cluster re-
pulsions increase with the cluster size due to the superposi-
tion of the interactions. Therefore the function P;; of Eq. (8)
decreases with the clusters size. In this region, the cluster-
cluster interaction is anisotropic and this causes the forma-
tion of chains, which is the preferred configuration to mini-
mize the repulsive interaction between two approaching
clusters.

Second region. When the size of the interacting clusters is
bigger than the critical size, i, the cluster-cluster interaction
potential becomes size independent since not all the mono-
mers that form the aggregates participate in the interaction.
Since the range of the cluster-cluster interactions do not
grow anymore with the cluster size, the probability of over-
lapping the repulsive barrier tends to be also size-
independent. Under this situation we can use again the term
“collision” between clusters. Moreover, the interaction is
more isotropic than in the previous region and the chains
coagulate to form clusters with higher fractal dimension. Al-
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though the collision efficiencies are constant, the probability
P;; of coagulation of two clusters with sizes larger than i,
still grows with the size, due to the increase of the cluster
cross section. Hence the typical coagulation kinetics for the
RLCA regime [kernel of Eq. (10)] is recovered.

Third region. For long enough aggregation times, the
cross section of the clusters is so large that the number of
consecutive collisions per encounter between a pair of neigh-
boring clusters is usually very high. This implies that two
colliding big clusters are not able to diffuse away and finally
end up forming a bond. Hence in this region a cluster coagu-
lates almost certainly during its first encounter with another
cluster and the aggregation rate becomes diffusion controlled
(DLCA). However, there is a finite time between the encoun-
ter and the coagulation that prevents reaching completely the
DLCA regime. Therefore the kernel for this third region will
be

kij= Ak}, (12)

where A is a constant with values 0<A<1.

Hence the coagulation of the large clusters is controlled
by the Brownian diffusion of the aggregates, and then the
kinetic exponent z of Eq. (2) and the fractal structure of the
final clusters will be the same as in a typical DLCA coagu-
lation regime.

II1. SIMULATIONS DESCRIPTION
A. Simulation sketch

Brownian dynamics off-lattice simulations were per-
formed in a square box of side L, by considering a total
number of monomers of Ny=20 000 with a particle radius
=300 nm and a packing fraction of ¢,=N,ma*/L*=0.001.
In the initial state, monomers were placed at random avoid-
ing particle-particle overlapping. Periodic boundary condi-
tions were imposed at the boundaries of the simulation sur-
face. The time step of the simulation Az was constant and the
mean square displacement of a particle is 2kgTAt/ (3mna).
This simulation was designed to model a two-dimensional
system of bare colloidal particles, capable of truly irrevers-
ible aggregating in a very deep and very short-ranged pri-
mary minimum coming from the van der Waals interactions
between the colloidal particles, as described in the DLVO
theory. This aggregation would take place as long as the
particles are capable of surmounting (by thermal fluctua-
tions) the repulsive potential barrier, whose height and range
are explicitly varied in our simulations.

The interaction potential between the particles considered
in the simulations was the Yukawa potential:

V
Vll — _Oe—/m!(r—l)7
r

(13)
where 7 is the distance between the centers of the particles
expressed in units of the particle diameter d=2a, V|, is the
potential between particles in contact (r=1), and 1/(xd) is
related to the range of the potential (see Fig. 2). As the pur-
pose of this work is to study the effect of the repulsive part
of the potential when this is long-or medium-ranged, of more
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FIG. 2. Interaction potentials used in the simulations. (a) Differ-
ent interaction ranges (kd) used (Vy=3kzT). (b) Different V|, values
used (kd=1).

than a particle radius, we did not consider the possibility of
having a secondary minimum after the potential barrier, com-
ing from the van der Waals attraction.

The movement of the aggregates in the simulation is per-
formed as follows: one of the clusters is picked cyclically

and the deterministic total force F,,, acting over it is calcu-
lated. This total force is the result of the pairwise Yukawa
interaction [Eq. (13)] with the particles of other clusters that
are closer than the cutoff length r,,,. This cuttoff length was
taken in order to have V,,(r.,)=0.1kzT,

I;extz_ 2 €V11.

particles

(14)

The particle motion is governed by the Langevin equation
[34]:

>

dp .
—=—Fi+f+F,,, 15
dt f f ext ( )

where f(t) is a rapidly varying force resulting from the ran-
dom collisions of the solvent molecules with the cluster, and

F 18 the frictional force due to the systematic collisions with
the solvent molecules as the cluster moves, which depends
on the cluster velocity.

Equation (15) is solvable and the probability density func-
tion in the diffusive time scale, defined as the probability to
find a cluster at the position 7 at time #, given that it was in 7
at time ¢, is given by
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FIG. 3. In this scheme we depicted three monomers labeled as 1,
2, and 3. The dashed circles around the monomers 2 and 3 of radii
1. represent the interaction regions around them. Outside this re-
gion, the monomer-monomer interaction is negligible [V;(r
> 1) <0.1kgT]. First, the particle 1 crosses the interaction region
of particle 2 several times (first encounter). This encounter finishes

when particle 1 diffuses away from particle 2 to interact with par-
ticle 3.

P(’:: t) = E_l;_ FO - F;xrt/7|2/(4DAl)’ (16)

47mDAt
where D is the cluster’s diffusion coefficient, 1/y=D/(kzT),
kg is the Boltzmann constant, and 7 is the temperature. The

center of mass of the cluster is moved by a vector d
=(d,.d,) where d, and d, are numbers distributed according
to this Gaussian probability distribution.

A coagulation is considered to occur when a moved ag-
gregate overlaps another one. Then, the position of the
moved cluster is corrected in the opposite direction of move-
ment, putting them in contact. Afterwards, these clusters are
joined to form a larger cluster that will continue the move-
ment in the following time step.

The simulations were stopped when the number of clus-
ters was smaller than 200 aggregates. For the entire simula-
tions performed, this condition is enough to reach the scaling
time and it is a warranty to have good statistics for all ag-
gregation times. The algorithms used in this work have been
already applied with success to prove the existence of dy-
namic scaling in both DLCA and RLCA regimes [16,35,36].

B. Method to obtain the aggregation kernel

In order to describe the kinetics of a coagulation process
we have developed a method to obtain the ratios k;;/ kg’ di-
rectly from the simulations performed. In all simulations we
associated to each monomer an interaction region as a circle
centered on it of radius r,,, (Fig. 3). The interaction potential
with another monomer outside this region is neglected
[Vi1(r>re,) <0.1kzT]. We define N;; as the average number
of encounters between clusters of size i with clusters of size
J» and Cj; as the number of coagulations between i-clusters
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with j-clusters. Therefore we can calculate the “probability
of coagulation per encounter” (£;;) as

C;;

L

If we keep the same cutoff radius, r,,, for the DLCA
coagulation process we have that 5?LCA< 1 because not all
encounters lead to coagulation. In order to consider only the
effect of the interaction potential (not the diffusion effect),
we need to discount the probability of coagulation by en-
counter due to pure diffusion 5?LCA (without interactions).
Therefore the probabilities P;; may be obtained as the ratio

& ki

Pij:gpLCA:k—;é~ (18)
ij ij

Hence with the Brownian kernel of Eq. (7) and the values
of Py calculated from the simulations, we obtain the coagu-
lation kernel. Therefore we are able to study directly the
effect of the variation of the different parameters of the in-
teraction potential over the coagulation rates.

C. Method to solve the Smoluchowski equation

In order to solve the Smoluchowski equation, we need
first to know the explicit expression of the coagulation ker-
nel, k;;, given by kf;’P,»j, where kf’ is the Brownian kernel
[Eq. (7) with k;;=4.5X 107" m*/s] and P;; are obtained
from the simulation results following the method mentioned
in Sec. III B. The integration of these equations was done
using a fourth-order Runge-Kutta technique with an adaptive
time step [37], with c,(¢) evaluated at each time step sequen-
tially. In order to have good accuracy and reach aggregates
with a mean weighted cluster size of §S,,~ 200, we truncated
the infinite differential equations system to a set of 500
equations.

IV. RESULTS AND DISCUSSION
A. Structure

The characterization of the structure of the colloidal clus-
ters is strongly related to the study of the aggregation kinet-
ics. The fractal dimension characterizes the inner structure of
the cluster. Is well-known that DLCA aggregation leads to
more open structures (d;~ 1.44 for 2D-DLCA) than if there
is some short-range repulsion between the particles such as
in the RLCA regime (d,~ 1.55) [16]. However, the question
that we would like to answer here is, what happens when the
pairwise interaction has a repulsive component which has a
range larger than the particle diameter?

We have used the radius of gyration method [1] in order
to calculate the fractal dimension (Fig. 4). We observe that
the slope for small sizes (before the scaling region) ap-
proaches 1 when the interaction range [Fig. 4(a)] or when V,,
[Fig. 4(b)] are increased. Although it is not possible to define
the fractal dimension for the aggregates before the scaling
region, this slope is clearly related to the structure of these
small clusters. The approach to 1 of this slope represents an
enhancement of the linear conformation of the small clusters.
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FIG. 4. The cluster size versus the radius of gyration. (a) xd
=0.75, Vy=3kgT (open circles) and rd=5, Vy=3kzT (open tri-
angles). (b) kd=1, Vy=1kgT (open circles) and kd=1, Vy=4kgT
(open triangles). The slope for small aggregates approach 1 when
kd decreases. The same phenomenon happens when V|, is increased.

We also have a more direct confirmation of the high linearity
of the small clusters by looking at the structure of small
aggregates. In conclusion, the formation of linear structures
is a consequence of the cluster-cluster repulsions, according
to the discussion of Sec. II C. Indeed, a non-negligible inter-
action range induces an anisotropic cluster-cluster interaction
potential depending on the relative orientation between the
clusters. The convenient orientation to minimize the repul-
sion corresponds to the formation of linear structures, which
means that two clusters tend to coagulate setting the mono-
mers that constitute them as separated as possible. When the
interacting clusters are large enough (larger than the critical
size iy), the cluster-cluster interaction potential becomes in-
dependent on the cluster size, as not all the monomers that
form these clusters participate in the cluster-cluster interac-
tion. From this moment, the cluster-cluster interaction poten-
tial begins to recover the isotropy and then, for these
medium-sized clusters, there is not a privileged orientation of
coagulation.

This important property of the cluster-cluster interactions
can be easily corroborated by calculating the average inter-
action potential, (V;;). In order to calculate (V;), 50 different
clusters of size i and j where selected from the simulations,
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FIG. 5. Average of the trimer—i-mer interaction potential versus
the cluster-cluster separation, r, where r., is the center of mass
distance and R, (i) and R,(j) the radius of gyration of the clusters,
respectively. Each interaction curve is the average between a set of
50 trimers and 50 j-mers and their relative orientation. We observed
that the interaction becomes more repulsive with the cluster size j.
After reaching the critical size, j=iy=5, the interaction becomes
independent on j.

and the total interaction was averaged over their relative ori-
entations and shapes. The (V3;) interaction is shown as an
example in Fig. 5 for the simulation with Vy=3kzT and «d
=2.5. We observe that the interaction potential becomes in-
dependent of j for j=i,=6, which supports that the cluster
reactions larger than iy do not depend on the clusters sizes.

When the interaction potential becomes independent of
the clusters size, the effect of the interaction range becomes
unimportant and the typical fractal dimension for the RLCA
regime (d;~ 1.55) is recovered [see, for example, the me-
dium region in the R, behavior of V,=3kzT and xd=0.75 in
Fig. 4(a) or Vy=4kzT and kd=1 in [Fig. 4(b)].

For long enough aggregation times, the mean size of the
interacting clusters is so big that there is a transition from the
RLCA to the DLCA regimes as commented on in Sec. II C.
Here, the coagulation process is mainly mediated by the
Brownian motion of the clusters and the typical structures
expected for DLCA clusters (d;~ 1.44) are recovered. This
phenomenon explains the three different behaviors observed
in the gyration radius in Fig. 6. For Vy=3kzT and kd>1.5 or
for kd=1 and V<2, the RLCA region is so narrow that it
cannot be distinguished.

Thus we can explain the formation of chains and the tran-
sition to the typical fractals aggregates formed in the DLCA
and RLCA kinetic regimes on the basis of the superposition
of the cluster-cluster interactions with a non-negligible range
and the dependence of such interactions on the sizes of the
involved clusters.

The formation of chain structures has been also observed
in experiments [38] and simulations [40,39] in three-
dimensional colloidal systems when the particles interact
among them with a potential that prevents the aggregation in
the primary minimum. However, this potential has a second-
ary minimum induced by the presence of nonadsorbing poly-
mers (depletion interactions). This provokes a nontruly irre-
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FIG. 6. (a) Fractal dimension versus «d and (b) versus Vy/kgT.
In both cases the closed triangles represent the region where the
chains are formed, the closed circles describe the average cluster
fractal dimension in the DLCA region, and the open circles repre-
sent the structure in the RLCA region. For Vy=3kpT and xkd>1.5
and for kd=1 and V(y<2 the RLCA region cannot be distinguished.

versible aggregation. In this situation, the clusters are not
rigid but they fluctuate around typical configurations and the
system can be arrested as in a glass.

B. Kinetics

Figure 7 shows the evolution of the weight-average clus-
ter size [Eq. (2)] versus the aggregation time for the simula-
tions performed varying «d and V. Again, we can distin-
guish three different kinetic regions in the behavior of S, ().
In the first region (range effect region), the average cluster
size increases very slowly with the time. Here, the growth of
the clusters is strongly dependent on the parameters of the
interaction potential. As can be seen in Figs. 7(a) and 7(b)
this region is more clear when the interaction range or V, is
increased. In the second region (RLCA region), the growth
of the cluster is faster. Finally, in the third region (DLCA
region) the average cluster size tends to the DLCA behavior.
Indeed, the kinetics exponent in the third region, obtained for
all the simulations performed, has the same value z~0.6,
very close to the typical value of the kinetic exponent for the
DLCA aggregation regime (zp;c4=0.59 [16]).

The kinetic results of the simulations are consistent with
the effect of the interaction range considered in Sec. II C. For
small aggregates (with sizes i <<ij) the cluster-cluster repul-
sion increases with the cluster size. This explains the first
kinetic region where the growth of the clusters is very slow.
When the mean cluster size is about the critical size, i, the
interaction becomes size-independent of the size, i.e., the ef-
fect of the interaction range becomes negligible. Therefore
aggregation rate is faster due to the increase of the cross
section of the clusters, keeping the interaction potential con-
stant: this is the RLCA region. When the aggregates are large
enough, every encounter between clusters provokes coagula-
tion after some time. So, a DLCA regime displaced in time is
recovered, and the kinetic exponent approaches the typical
for the DLCA regime (z~0.59).

C. Coagulation kernels

The aggregation rate constants k;; account for all the rel-
evant physical and chemical effects on the kinetics of the
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performed

aggregation process. The influence of the pairwise interac-
tion potential between the particles over the coagulation ki-
netics is resumed in the P;; function (k,-j:kf}’Pij). Thus all the
effects of the interaction potential over the kinetics of the
coagulation processes have been included in the P;; func-
tions. As we see in Sec. III B, we have developed a method
to obtain these functions directly from the simulations, and
then, this allows us to analyze the effect of the interactions
over the coagulation kinetic.

In Fig. 8 we show the P;; obtained in the simulations
versus the sizes of the reacting clusters i and j when the
particles interact with a Yukawa potential with V,=3kpT for
the studied values of kd. For the shorter interaction range

FIG. 8. P;; functions obtained from the simulations for the val-
ues of the interaction potential Vy=3kgT and (a) xd=35, (b) kd
=2.5, (¢) kd=1.5, and (d) xkd=0.75.
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[Fig. 8(a) with kd=5], the kernel increases with i and j until
it reaches a constant value. In this case, the range of the
interaction is very short and the cluster-cluster interaction
potential V;; does not depend on the clusters sizes so the
effect of the interaction range is irrelevant. The P;; functions
increase with the cluster sizes i and j because the number of
particles that can collide in the encounter between these ag-
gregates increases with their sizes. This is the typical RLCA
aggregation regime where the kernel is given by Eq. (10).
Finally, when the sizes of the reacting aggregates are very
large, their diffusion coefficients are very small and they
have more probability to interact between them many times
than diffuse and interact with another cluster. Hence the
crossover to DLCA appears. However there is a time be-
tween the beginning of the encounter and the coagulation
which causes that the pure DLCA regime cannot be reached.
Hence in this region kijzAkf;r where A is a constant less than
1.

If the interaction range is enlarged, the cluster-cluster in-
teraction potential becomes more repulsive when the sizes of
the involved clusters are increased. This causes the decrease
of P; with i and j for small clusters. This effect can be
clearly observed in Figs. 8(b)—(d) where kd=2.5, 1.5, and
0.75, respectively. For large enough aggregates (i,j=1iy), V;;
becomes independent on i and j so the RLCA coagulation
regime is found and the functions P;; start growing with the
cluster’s sizes. Finally, for large aggregates, the coagulation
process is mediated again by the diffusion of the clusters and
the third region appears in the behavior of P;;, where this
functions remains constant with i and j.

The quantitative dependencies of the P;; functions with
the interaction range «d are shown in Fig. 9. Each inset
shows P;; versus i for a fix j and for the simulations with
Vo=3kpT and kd=0.75, 1.5, 2.5, and 5. Here, the three dif-
ferent kinetic regions (effect of the interaction range, RLCA,
and DLCA) can be clearly observed. The curvature of P;; for
small values of i and j is enhanced for long range repulsions.
This is due to the growth of the critical size i, with the
interaction range. For sizes bigger than i,, the interaction
potential V;; becomes independent of the clusters sizes and
the RLCA regime is recovered. Finally, the functions P;; tend
again to a saturation value P, for large values of i and j. This
value is the same for all the simulations performed with V,,
=3kgT so P, is independent of the interaction range.

In Fig. 10 we present the P;; obtained from the simula-
tions with kd=1 and for the different values of V|, used. For
these simulations we always observe the three different ki-
netic regions (interaction range-RLCA-DLCA). We also
show, in Fig. 11, the effect of varying V, in the same plot on
P;;, with i fixed in each of the insets. The functions P;; also
tend to a saturation value P, for large values of i and j, but
in this case this value depends on the value of the V;, used in
the simulations. This can be explained by the fact that the
effect of the interaction range becomes negligible in the P;;
functions when the sizes i and j are very large. Therefore the
magnitude that determines the values of these functions for
i,j>1 is the interaction potential at contact, that is, V.
Greater values of V,, imply smaller values of the coagulation
probability by collision, and then, smaller values for P... This
can be understood with the idea that for large aggregates all

ij»
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FIG. 9. In each inset we represent the P;; functions for j fixed
(j from 1 to 6) versus i for Vy=3kzT and for all values of xd used
in the simulations (closed squares, kd=0.75; open circles, kd=1.5;
open triangles, kd=2.5; and closed circles, kd=5.0).

the encounters end up in a coagulation, but there is a finite
time between the beginning of the encounter and the coagu-
lation, this time being determined by V/,.

By solving the Smoluchowski equation [Eq. (3)] with
these aggregations kernels we are able to reproduce the clus-

FIG. 10. P;; functions obtained from the simulations for the
values of the interaction range xd=1 and (a) Vy=1kgT, (b) V,
=2kpT, (c) Vy=4kgT, and (d) Vy=5kT.
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FIG. 11. In each inset we represent the P;; functions for j fix (;
from 1 to 6) versus i for kd=1 and for all values of V,, used in the
simulations (closed squares, Vy=1kgT; open circles, V,=2kgT;
open triangles, Vy=4kgT; and closed circles, Vy=5kgT).

ter size distributions and the weighted average cluster size
with good accuracy for all the simulations (Fig. 12).

Therefore we are able to characterize the coagulation ki-
netics through the P;; functions where the transition between
the three kinetic regions is included. When the mean cluster
size reaches the defined critical size, i, the transition from
the first kinetic regime (induced by the range of the interac-
tion) to the classical kinetic regimes (RLCA and DLCA)
appears.

V. CONCLUSIONS

We studied the effect of an interaction potential with a
non-negligible range on the kinetic properties and the struc-
ture of the aggregates formed in a computer-simulated two-
dimensional aggregating system.

Three different regions have been observed in the repre-
sentation of the weight-average cluster size S,,(¢) that corre-
sponds with three kinetics regions. “Interaction range re-
gion:” here the cluster-cluster interaction potential, V;,
becomes more repulsive with the increasing of the sizes of
the clusters due to the non-negligible range of the interac-
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FIG. 12. Weight-average cluster size S,,(r) and cluster sizes dis-
tribution x;(¢)=n;(r)/ Ny given by the simulations (open circles) and
the results of solving the Smoluchowski equation (3) (lines) with
the obtained kernels for (al) and (a2) V,=3k,T and kd=0.75; and
(bl) and (b2) Vy=2kpT and kd=1.

tion. In this region, the aggregates tend to adopt a linear
structure. This phenomenon is contrasted with the direct ob-
servation of the small aggregates given by the simulations.
The linearity of the small aggregates can be explained based
on the “superposition approximation” of the interaction po-
tential. RLCA region: when the reacting clusters have sizes
over the critical size iy, not all the monomers that compose
these aggregates participate in the total interaction. Therefore
V;; becomes independent on i and j for i,j> iy, the cluster-
cluster interaction recovers its isotropy. From this time, the
classical aggregation kinetics are recovered with the well-
known RLCA-DLCA crossover. The chains formed in the
previous region coagulate to form fractal aggregates with a
fractal dimension typical for the RLCA coagulation. In this
region, the growing of the clusters is faster than in the pre-
vious region. “DLCA region:” here, the diffusion coefficients
of the reacting clusters are very low and so it is easier for
two interacting large clusters to collide between them many
times and coagulate than to diffuse away to collide with an-
other cluster. Hence for large aggregates all “encounters”
between two aggregates end up in coagulation after some
time and the coagulation limited by the Brownian diffusion
of the clusters (DLCA) is recovered, which explains the frac-
tal dimension of the aggregates formed after the scaling time
typical for DLCA obtained in all simulations.

A method has been developed in order to obtain the ag-
gregation rate constants through the functions P;;=k; j/kf;-’ di-
rectly from the simulations performed. This method allows
us to study the effect of the interaction range over the real
coagulation kinetics. Then, the kernel found with this proce-
dure was introduced in the Smoluchowski equation (3) and
the cluster size distributions were obtained. These functions
were compared with the simulation and the adjustment is
practically perfect.

Therefore we have connected the kinetic region induced
by the range of the interaction with the well-known RLCA-
DLCA crossover. Hence we have a complete description of
the kinetic behavior of a two-dimensional aggregating sys-
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tem composed by colloidal particles that interact with a
medium-range pairwise repulsive interaction. We have ob-
served that the range of the interaction modifies not only the
kinetics of the coagulation process at short times but also
the structure of the small aggregates formed in this process.
Moreover, although the effect of the interaction range ap-
pears only in the first stages of the coagulation, the conse-
quences of this affect the complete development of the
process.

Future investigations will involve the study of the effect
of the interaction range in a three-dimensional coagulation

PHYSICAL REVIEW E 75, 041408 (2007)

process, where we are able to calculate theoretically the “sta-
bility factor.”
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