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Sedimentation-diffusion equilibrium density profiles of suspensions of charge-stabilized colloids are calcu-
lated theoretically and by Monte Carlo (MC) simulations, both for a one-component model of colloidal
particles interacting through pairwise screened-Coulomb repulsions and for a three-component model of col-
loids, cations, and anions with unscreened-Coulomb interactions. We focus on a state point for which experi-
mental measurements are available [C. P. Royall et al., J. Phys.: Condens Matter 17, 2315 (2005)]. Despite the
apparently different picture that emerges from the one- and three-component models (repelling colloids push-
ing each other to high altitude in the former, versus a self-generated electric field that pushes the colloids up in
the latter), we find similar colloidal density profiles for both models from theory as well as simulation, thereby
suggesting that these pictures represent different viewpoints of the same phenomenon. The sedimentation
profiles obtained from an effective one-component model by MC simulations and theory, together with MC
simulations of the multicomponent primitive model are consistent among themselves, but differ quantitatively
from the results of a theoretical multicomponent description at the Poisson-Boltzmann level. We find that for
small and moderate colloid charge the Poisson-Boltzmann theory gives profiles in excellent agreement with the
effective one-component theory if a smaller effective charge is used. We attribute this discrepancy to the poor

treatment of correlations in the Poisson-Boltzmann theory.
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I. INTRODUCTION

Colloidal particles with a density different from that of the
dispersive medium sediment because of the gravitational
force. At fixed temperature 7, the resulting nonhomogeneous
equilibrium distribution is a consequence of the balance be-
tween energy and entropy of the different chemical species
involved. This equilibrium is characterized by measurable
density profiles [1,2]. In the case of sufficiently dilute
suspensions those profiles obey the barometric law
p(x)oc exp(—x/L), with L=kgzT/mg the gravitational length,
m the buoyant mass, g the gravitational acceleration, kg the
Boltzmann constant, T the absolute temperature, and p(x) the
number density of colloids at altitude x. In dense systems,
with nonnegligible colloidal interactions, strong deviations
from the barometric law have been observed, e.g., for colloi-
dal hard spheres at packing fractions up to and beyond the
freezing point [1,3]. More surprisingly (at least initially)
were the strong deviations from the barometric law in rather
dilute suspensions of highly charged colloids at low salinity
[4]. The measured density profiles suggested an extreme en-
hancement, by at least one order of magnitude, of the appar-
ent mass of the colloids [2,4]. This system was theoretically
analyzed in terms of a three-component model of colloids
and monovalent cations and anions, for which (modified)
Poisson-Boltzmann (PB) theories in gravity revealed a self-
consistent electric field that pushes up the colloids to high
altitude against gravity [5—10], thereby reducing the apparent
mass as observed experimentally. Moreover, the existence of
this electric field was confirmed in primitive model simula-
tions [11]. However, another explanation was given more
recently in Ref. [12], where hydrostatic equilibrium in a one-
component system of colloids interacting through pairwise
screened-Coulomb repulsion was considered. In the present
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paper we investigate the relations between these two pictures
in more detail by considering both models (colloid-cation-
anion mixture and colloids-only system) by theory as well as
Monte Carlo (MC) simulation. For the one-component ap-
proach we use a model based on effective pairwise screened-
Coulomb interactions. The profiles are obtained from the so-
lution of the hydrostatic equilibrium equation that uses the
isothermal compressibility obtained from the solution of the
Ornstein-Zernike (OZ) equation with the rescaled mean
spherical approximation (RMSA) closure [13]. This ap-
proach is similar to that introduced in [12]. In this case,
entropic and electrostatic effects are implicitly included in
the structure of the suspension (see Sec. IT). Furthermore, we
perform MC simulations for this model. Within the multi-
component picture, we approach the problem using the
Poisson-Boltzmann theory introduced in Ref. [9], which ex-
plains the nonbarometric profiles in terms of a macroscopic
electric field that appears as a consequence of a charge inho-
mogeneity [5-11]. We also performed simulations of this
system using the primitive model in gravity. These particular
simulations require a substantial amount of CPU time since a
considerable number of microions has to be taken into ac-
count to mimic the substantial salt concentration in the sus-
pension. We focus on a state point for which experimental
information is available, and compare the profiles obtained
from the mentioned theoretical and numerical approaches
with published measurements [2].

The paper is organized as follows. In Sec. II we introduce
the one-component model, the structure factor of the suspen-
sion determined through RMSA, and we discuss some details
regarding the simulation technique of the one-component
model. In Sec. IIT we briefly revise the PB theory for sedi-
mentation, introduce the primitive model in gravity, and
some aspects regarding the simulations. Results and discus-
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sion are presented in Secs. IV and V, respectively, where we
compare the different theoretical and numerical results with
experimental data. A summary and conclusions are gathered
in Sec. VL.

II. EFFECTIVE ONE-COMPONENT MODEL

Let us consider a system consisting of charged spheres of
diameter o=2a, mass M, and electric charge —Ze, in osmotic
contact with a reservoir of 1:1 electrolyte with salt concen-
tration 2p,. The solvent has mass density p; and is character-
ized by an electric permittivity €. Let us assume also that the
dielectric constant of the spheres and the electrolyte are iden-
tical to avoid electrostatic image effects and Van der Waals
forces between the spheres. Assuming pairwise effective col-
loidal interactions, the potential energy part of the Hamil-
tonian of the effective one-component system of colloids in
the presence of gravity is given by

N N
H=2mgx,-+zv(r,»j), (1)
i=1

i<j

where the first term in the right-hand side is the potential
energy of colloid i at height x; measured from the bottom of
the sample. Here m=M —p,mo°/6 the buoyant mass of the
colloidal particles, and v(r) is the familiar screened-Coulomb
potential
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with B=(kyzT)~!, where kj is the Boltzmann constant and
where )\Bzﬂf2 is the Bjerrum length, k=+v8m\gp, is the in-
verse screening length, and r is the distance between centers
of colloidal particles. Under isothermal conditions and for
small density gradients, the osmotic pressure of the suspen-
sion depends only on the local number density of colloids
p(x). The latter is determined from the nonlinear differential
equation that follows from inserting p(x) into the hydrostatic
equilibrium equation dII(x)/dx=-mgp(x) with II the os-
motic pressure of the suspension with respect to the salt res-
ervoir. This yields

dp(x)  xr(p(x))
—+=—px) =0, 3
i . PW 3)
-1 (ﬂ(ﬁm) . . .
where 7 =\—"=/; is the inverse of the isothermal com-

pressibility of the bulk fluid and L is the gravitational length
defined above. The sedimentation profiles can be obtained by
solving Eq. (3) if the function y,(p) is known for the relevant
density regime. In order to determine x;{(p) we use the well-
known Kirkwood-Buff relation xr=lim,_S(g) with S(q)
the structure factor as calculated by Hansen, Hayter, and
Penfold within the RMSA closure of the Ornstein-Zernike
equation [13,14]. By this procedure the sedimentation pro-
files are determined solely from the structure of the effective
one-component bulk fluid. Notice that such a scheme was
applied successfully to explain the measured hard-sphere
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density profiles in Ref. [1]. For later comparison we also
consider an alternative expression for y7(p), which is based
on the Donnan equation of state as, e.g., given in Ref. [9].
This yields

Zpl2p,

+—, 4)
V1 +(Zpl2p,)?

Xr =
which features the high-density or low-salt limit y(p)=1
+Z for Zp>2p,, such that insertion into Eq. (3) yields p(x)
o exp[—x/(Z+1)L], i.e., an effective gravitational length that
is a factor Z+ 1 larger than that in the barometric law [9]. The
remaining task in order to find the sedimentation profiles is
to insert y into Eq. (3) and to solve the nonlinear equation
numerically on an x grid.

In addition we perform standard Monte Carlo simulations
of a system described by the interaction Hamiltonian (1) for
the parameters Z=76, colloid diameter 0=1.91 um, Bjerrum
length A\;=10.4 nm, screening parameter ko=1.2, and aver-
age colloidal packing fraction 7=H"! SI 7(x)dx=0.0053 with
the height H=50.920. The experimental screening parameter
satisfies ko=1.2. These parameters are identical to those of
the experimental system studied in Ref. [2], where Z=76
stems from the best fit of the experimental density profile
with a theoretical prediction based on the primitive model
(see below). The dimensions of the rectangular simulation
box are 100X 100X H. We checked that the horizontal area
was large enough to exclude finite-size effects. We employed
periodic boundary conditions in the horizontal directions; in
the vertical directions the system is bounded by hard walls
that exclude the centers of colloids at x<<0 and x> H.

III. PRIMITIVE MODEL IN GRAVITY

As mentioned in the Introduction, a different approach to
study sedimentation profiles is to consider each chemical
species separately, namely, colloids (c), coions (-), and
counterions (+). The Hamiltonian of the system can be writ-
ten as

N

H=H..+H;+H,+ > mgx;, (5)
i=1

where the first three terms in the right-hand side include
colloid-colloid, ion-ion, and colloid-ion pairwise interac-
tions, respectively, and the last term is the gravitational en-
ergy of the colloids introduced in Eq. (1); the ions are as-
sumed to be massless. In this model, the electrostatic pair
interactions are of the form

oo 1fr<0',j=(0',+0'J)/2

A 6
772  ifr=g, ©

2 ij»
J r ]

IBUij(r) =

with o and Z, the diameter and the charge number of spe-
cies k={c,+,-}, ie., Z,=-Z, Z,=1, Z_=-1, o.=0, and o,
=0_< 0. The number of particles are denoted by N, i.e.,
N.=N and N,=N_+ZN for charge neutrality reasons. This
three-component model can be studied within Poisson-
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Boltzmann theory [5-10]. The main idea is to relate the den-
sity profiles p(x), p,(x),p_(x) of the colloids cations and an-
ions, respectively, to the local electrostatic Donnan potential
(x) through

p=(x) = py exp[= $(x)], (7)
p(x) = py exp[— x/L + Ze(x)], )
¢"(x) = k% sinh ¢(x) + 4mAzZp(x), 9)

with ¢(x) defined by the dimensionless combination ¢(x)
=eif(x)/kgT and where p, is a normalization constant. Here a
prime denotes a derivative with respect to x. Under appro-
priate conditions, typically Z?p(x)>2p,, it was found that
¢(x) is a linear function of x in macroscopically large parts
of the system, i.e., there is a constant electric field that lifts
the colloids to higher altitudes than expected on the basis of
their mass [9]. This result stems both from numerical solu-
tions of Egs. (7)—(9) and from the “Laplace-Boltzmann”
equation, where Eq. (9) is replaced by the local charge neu-
trality condition & sinh ¢(x)+47A\zZp(x)=0. Note that by
combining the latter equation with Egs. (7) and (8) one re-
covers the hydrostatic equilibrium condition (3) with y;
given by Eq. (4). On the other hand, the set of equations
(7)-(9) can be solved numerically in order to determine the
local electrostatic potential ¢(x) together with the equilib-
rium profile p(x) by an iterative procedure as pointed out in
[9]. Such a procedure requires two boundary conditions, e.g.,
¢'(0)=¢'(H)=0, where H is the height of the solvent me-
niscus.

A system described by the Hamiltonian (5) was simulated
in a rectangular box of horizontal area 90X 90 and height
H=500. The vertical coordinate x is restricted to x € [0, H],
and periodic boundary conditions are only applied in the
horizontal plane and not in the vertical direction. In order to
be as close as possible to the experiments of Ref. [2], we
considered colloids with charge Z=76, diameter o
=1.910 um, gravitational length L=2.410, Bjerrum length
Ap=10.4 nm, and average colloidal packing fraction 7%
=H"'[H(x)dx=0.0053 (with H=500). The experimental
screening parameter satisfies ko=1.2. This state point is re-
alized, with the present box size and shape, by the number of
colloids N.=12 and the number of positive and negative ions
N,=13516 and N_=12 604, respectively. In order to take the
long-range electrostatic interactions into account we have
employed a combination of Ewald summation in a slab ge-
ometry with the lattice method proposed by Panagiotopoulos
and Kumar [15]. The parameters of the Ewald summation
and lattice method are the same as those in Ref. [16]. Note
that the large number of ions, which have to be included to
represent the low but yet substantial screening parameter,
makes the simulations extremely time consuming.

In a dense system of microions, a simple Monte Carlo
move of a colloid would almost certainly result in a hard-
core overlap with one of the microions. In order to avoid
such overlaps we use a cluster move technique, where ions
that overlap with the new colloid position are moved into the
space left empty by the displaced colloid, more details on
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FIG. 1. Colloidal sedimentation profiles based on hydrostatic
equilibrium (3) calculated using the RMSA-based compressibility
of the one-component Yukawa model, compared to those based on
the multicomponent PB theory (7)—(9), for the screening parameters
ko=0.8, 1.2, and 1.6. The colloidal charge is Z=76, the colloid
diameter is 0=1.91 um, the Bjerrum length is A\z3=10.4 nm, the
gravitational length is L=2.410, the average colloid packing frac-
tion is 7=0.0053, and the sample height is H=500, as reported in
Ref. [2]. The dashed curve is the barometric distribution with the
same normalization. The inset shows the RMSA-based
compressibility.

this technique can be found in Refs. [17,18]. The percentage
of accepted moves of each component (colloids and micro-
ions) was maintained at about 40%. A typical simulation
consists of 10° MC cycles. Due to the high number of mi-
croions, if ions and colloids are chosen with the same prob-
ability, the colloids would be almost motionless. To avoid
this in order to obtain colloidal density profiles with good
statistics, each cycle consists of 0.9\ trials to move a ran-
domly chosen colloid (together with the microions that are
included in the cluster move) and 0.1A trials to move a
randomly chosen colloid or microion, with N=N+N,+N_
the total number of microions and colloids in the system.
This choice satisfies detailed balance and was tested success-
fully for the conditions reported in Ref. [16]. To check if the
system was equilibrated, the average altitude of the centers
of mass of the colloids was monitored in the simulation;
when the center of mass was not stable, further equilibration
was performed before taking measurements. A final simula-
tion with 2% 103 MC cycles was performed to obtain aver-
ages.

IV. RESULTS

Figure 1 shows a first comparison of theoretical predic-
tions based on the one-component and three-component
models. We see several theoretical sedimentation profiles as
a function of the altitude x, corresponding to colloids of di-
ameter 0=1.91 um, and three different salt concentrations
characterized by screening parameters ko=0.8, 1.2, and 1.6.
All profiles shown in Fig. 1 are for the same gravitational
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FIG. 2. Colloidal sedimentation density profiles for colloidal
charge Z=76 stemming from multicomponent PB theory (7)—(9),
from the Donnan compressibility (4) combined with hydrostatic
equilibrium (3), and simulations of the primitive model in gravity,
for the parameters of Fig. 1 and xko=1.2. The symbols denote the
experimental measurements from Ref. [2].

length L=2.410, average packing fraction 7=0.0053, sample
height H=500, and Bjerrum length A3=10.4 nm. For each
ko, the colloid density profile is calculated for both the ef-
fective one-component model based on the solution of the
hydrostatic equilibrium equation (3) using the isothermal
compressibility obtained from the RMSA closure, as well as
from the multicomponent PB theory described by Egs.
(7)—(9). We also show, for the sake of comparison, the cor-
responding barometric profile obtained from Egs. (8) and (9)
in the case of uncharged colloids (Z=0), for the same nor-
malization. The inset shows the compressibilities as a func-
tion of the colloid density, as obtained from the solution of
the OZ equation within the RMSA closure. At zero density
all the compressibility curves reduce to the ideal-gas com-
pressibility, and with increasing colloid density the electro-
static repulsions manifest themselves as a reduction of
the weaker the screening, the stronger the effective colloidal
interactions. We note that each one-component Yukawa sys-
tem yields steeper density profiles than those of the corre-
sponding three-component model, for all ko considered
here, i.e., the one-component systems have a relatively small
average altitude and a relatively low density at higher alti-
tudes. We will argue in more detail below that the source of
the difference between the one- and three-component predic-
tions is mainly due to the poor representation of the colloid-
colloid correlations in the three-component PB theory.
Figure 2 shows the experimentally measured density pro-
file of Ref. [2] compared to density profiles as obtained from
the multicomponent models: the three-component PB theory
of Egs. (7)=(9) and simulation of the primitive model in
gravity as introduced in Sec. III. In spite of the fact that the
primitive model simulation was equilibrated during about
one year CPU time and the measurements were performed
over four months CPU time, the level of noise in the raw
data is still quite high. Therefore also a smoothed curve of
the simulated profile is shown to facilitate comparisons. The
difficulty in obtaining good statistics in this particular simu-
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FIG. 3. Sedimentation profiles of the effective one-component
Yukawa model calculated using both RMSA and standard MC
simulations, compared with the experimental measurements of Ref.
[2] and the three-component PB theory, for Z=76 and all other
parameters as in Fig. 2. Note the close agreement between the two
Yukawa results, and their small but systematic deviation from the
experiments and the PB theory.

lation is due to the fact that the total number of colloids in
the system is exceedingly small (N,=12), whereas the total
number of particles in the system is rather large (26 132),
most of them salt ions, needed to achieve the required
screening parameter condition. That the Donnan-based den-
sity profile is accurate when compared to the experiments is
only due to the fact that the experimental value' Z=76 stems
from a fit to PB theory [2], which is equivalent to the Don-
nan equation of state in the local neutrality “Laplace-
Boltzmann” limit as explained below Egs. (7)—(9). In other
words, Z=76 is close to a best fit to the Donnan equation of
state.

In Fig. 3 we see a first comparison of the sedimentation
profile obtained experimentally with sedimentation profiles
calculated using the effective one-component models: simu-
lation of the Yukawa system and the RMSA approach of Sec.
II. We also include the profiles obtained from the multicom-
ponent PB theory for the sake of comparison. The contrast
between the simulations and the experimental curve seems to
reveal a systematic deviation such that the simulated and
RMSA profiles are actually somewhat too steep. Indeed,
when we allow Z to be a fit parameter in the one-component
Yukawa system, keeping all the other parameters equal, it
turns out that Z=94 gives the best the agreement of the one-
component models with the experimental profile. It is tempt-
ing to conclude, therefore, that Z=76 gives merely a best fit
to the experiment within PB theory given by Egs. (7)—(9),
which (to a large extent) ignores colloid-colloid correlations,
whereas inclusion of these correlations (as in the simulations

'"The measured density profile was fitted to the predictions of
Poisson-Boltzmann theory, and it was concluded in Ref. [2] that the
colloidal charge equals —78¢. Here we concluded that —76e gives
the best fit within Poisson-Boltzmann theory, this difference is due
to details of the fitting procedure and does not interfere with our
arguments.
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FIG. 4. As in Fig. 3, but with Z=94, such that the Yukawa
model profiles (both RMSA and simulated) fit the experimental pro-
file best. The PB profile is clearly less accurate now.

of the primitive model and that of the Yukawa system, and in
the RMSA-based theory) gives rise to a density profile that is
systematically steeper in comparison with the experiment.

In Fig. 4 we show the resulting sedimentation profiles
based on the Yukawa potential simulations and the RMSA
closure for Z=94. For comparison we also plot the multi-
component PB model for Z=94 revealing a relatively poor
agreement with the other curves. In this case the PB ap-
proach clearly fails to reproduce quantitatively the sedimen-
tation profiles. On the other hand, the agreement of the ex-
perimental profile with the effective one-component models
is good, except that as mentioned before, the simulated pro-
file exhibits much more structure close to the hard wall that
represents the bottom of the sample in the simulations—this
packing effect is not captured by the local-density approxi-
mation that underlies the hydrostatic equilibrium condition,
and is not seen in the experiment because the actual sample
extends beyond the plotted x range.

In Fig. 5 we show sedimentation profiles as obtained by
simulations of the primitive model and of the Yukawa model,
compared with those by the RMSA approach, all for Z=76.
The agreement is perhaps a bit less quantitative than one
would have expected. One of the reasons that the density in
the primitive model is considerably higher in x/o e (10,25)
is due to the structure close to the hard wall at the bottom
near x=0, as shown in the inset of Fig. 5, where the two
Yukawa systems reveal a larger net adsorption than that of
the primitive model, albeit for different reasons: the simu-
lated Yukawa system shows a strong peak at x=0/2 while
the RMSA-based profile continues to be nonzero down to
x=0. Given that we imposed that 7 is identical in all cases,
there must also be a region in space where the density in the
primitive model exceeds the other two; the order of magni-
tude of the integrated differences over x/o e (10,25) is in-
deed similar to the negative of that over x/o € (0,3). An-
other reason for these differences might be the poor statistics
and slow equilibration of the primitive model simulations.
Recall that the present data are based on about one year of
CPU time, so considerable extensions and more checks are
not easily obtained. This also prevented us from performing
primitive model simulations for Z=94.
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FIG. 5. Sedimentation density profiles as obtained from simula-
tions of the primitive model in gravity and simulations of the
Yukawa fluid compared with the one-component RMSA model for
colloidal charge Z=76 and all other parameters as in Fig. 2. The
difference between the profiles can partly be attributed to the struc-
tural differences close to the bottom at x=0 as shown in the inset,
where the simulations reveal a hard-wall induced structure that is
not captured by the RMSA-based theory, and perhaps partly by
slow equilibration and poor statistics in the simulations due to the
small number of colloids.

V. DISCUSSION

The first observation from Fig. 3 should be the gross
agreement between the experiments and all calculated and
simulated profiles. In all cases we have ko=1.2, Bjerrum
length Ap=10.4 nm, colloid diameter o=1.91 um, and
gravitational length L=2.410. The colloidal charge is taken
as Z=76, and the measured packing fractions are in the range
0< 75(x)<0.02, where 7(x)=(m/6)c>p(x). This regime is
such that Zp(x)/2p,<0.17 for all x, i.e., even at the highest
density the ion concentration is dominated by the reservoir
salt concentration 2p,, such that the screening constant is
indeed essentially a constant independent of the height or
density, as implicitly assumed in Eq. (2). A closer look, how-
ever, shows that even though the simulations and the RMSA
result of the Yukawa system are very close to each other
(except at the bottom where packing effects affect the simu-
lations), they both deviate systematically from the experi-
ment: the former two are too steep and have too low a den-
sity at higher altitudes. From the fact that the RMSA-based
profile and that of the Yukawa simulations are so close to
each other, one could conclude that they are mutually con-
sistent and both accurate, and that their deviation from the
experiment is mainly due to the present choice of Z=76,
which was based on the fitting to the PB theory of Eqgs.
(7)-(9). This fitting is not optimal due to the inadequacy of
the present PB theory to account for correlations among the
different species in the system. In particular, PB theory over-
estimates the colloid density at high altitudes for a given
value of Z. This happens for charges Z=50, whereas for
smaller values of the colloid charge the agreement between
the profiles obtained from the PB and RMSA approaches is

041405-5



TORRES et al.

IR
| \\‘Q\ ]
NS S — xo=1.2
09 E\\ -- ¥6=0.8 n
D S~ % Ko=1.6

| | | |
0'50 50 100 150 200

ZRMSA

FIG. 6. Ratio of the best-fitting colloidal charge Z=Zpp (see the
text) and that of the RMSA charge Zgys4, as a function Zgyex
€ (0,200), with o, N, L, 7, and H as in Fig. 1, for various screen-
ing parameters xo. Note that PB theory is increasingly better for
lower colloidal charges and lower salt concentrations. The lines are
mere guides for the eye.

excellent, as far as an effective (smaller) value for the charge
is used in the PB approach as discussed in detail below. For
the parameters of present interest, fitting the experimental
density profile to that of the Yukawa system treated within
the RMSA closure, we concluded that Z=94 gives the best
fit.

Given that a Yukawa system with a colloidal charge Z
=Zpysa=94 is best described within PB theory by a colloidal
charge Z=Zpp=76, for the present system parameters, it is
interesting to investigate the relation between Zzs4 and Zpp
for other values of the colloid charge. In Fig. 6 we plot the
ratio Zpg/Zpysa for 0<Zpy54 <200, for three screening
constants while all the other parameters are left unchanged.
Figure 7 shows the corresponding density profiles for ko
=1.2 and Zgy;54=200, 94, and 40. One can conclude that for
Zrusa =50, PB theory reproduces the RMSA-Yukawa sedi-
mentation profiles very accurately provided the colloidal
charge Zpp is reduced by up to 20% of Zg4. Note that the
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FIG. 7. Sedimentation profiles obtained from RMSA theory
compared to those of PB theory using the best-fitting Zpp from Fig.
6, for ko=1.2 and all the other parameters as in Fig. 6. Note that
the quality of the fit detoriates slightly with increasing Zgsga-
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average density here is low enough that the profile in the
limit of Zzy,54 — 0 becomes essentially barometric; at higher
average packing fractions one also expects Zpp/Zgysa # 1 in
this limit, due to hard-core effects that are not accounted for
properly in the PB theory. The required reduction of
Zppl Zrysa With increasing Zgy54 > 50 exceeds 20%, and, in
addition, the quality of the best-fitting PB profile (quantified
by the mean-squared deviation) becomes slightly less satis-
factory as is reflected by the increase of the error bars in Fig.
6 with increasing Zgpys4; this is also shown in Fig. 7.

The difference between Zg,,54 and Zpp in the present sys-
tem is of course considerable and significant, but not quali-
tative. The seemingly different mechanisms that underly the
lifting of the colloids to higher altitudes than given by the
barometric distribution, as predicted by the three- and one-
component theory, should therefore be actually equivalent:
the self-consistent electric field that is generated by a net
charge imbalance at the boundaries of the three-component
system such that the colloids are pushed upwards is merely
another way of describing a pairwise screened-Coulomb re-
pulsion that pushes the colloids apart to higher altitudes in a
one-component model. This is in line with conclusions in
Ref. [12].

We have attributed the difference between the best fit for
Z based on Poisson-Boltzmann theory and the other three
methods (simulations of the primitive model, and simula-
tions and RMSA theory of the one-component Yukawa sys-
tem) to the poor account of correlations in the Poisson-
Boltzmann theory. In principle, however, there could be
other sources that cause such a difference, e.g., charge renor-
malization and hard-core exclusion effects for the screening
ions. Charge renormalization due to nonlinear screening ef-
fects [19] is, however, not a candidate here to explain the
difference for at least two reasons: (i) The actual bare charge
is usually larger than the renormalized charge that appears in
the prefactor of the screened-Coulomb interactions, whereas
here the former seems to be smaller. (ii) The present param-
eters here are such that Z\z/a <1, whereas charge renormal-
ization is only substantial if this dimensionless combination
exceeds about five or so [19-21]. A mechanism whereby the
effective colloidal charge is increased was discussed in Refs.
[23,22], and is based on the hard-core exclusion of the
screening ions at sufficiently high colloid packing fractions:
the screening is therefore less effective, which appears as an
increase of the effective colloidal charge. However, applying
the analysis of Ref. [23] to the present case gives only mar-
ginally larger values of the effective charge, by less than 1%
at the highest density 7=0.02. In other words, it appears that
this effect cannot explain the difference between Z=76 and
Z=94, leaving the poor account of colloid-colloid correla-
tions in the Poisson-Boltzmann theory as the most plausible
source of the difference.

It is interesting to inquire whether the one- and three-
component models would also produce essentially the same
sedimentation profiles for other sets of parameters than con-
sidered here, and whether the hydrostatic equilibrium condi-
tion (3) and the Poisson-Boltzmann theory (7)—(9) for the
one-component and the three-component case, respectively,
produce reliable profiles in all circumstances. In order to
answer these questions we consider the regimes of extremely
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low and extremely high salt concentrations. First, the poten-
tial energy part of the Hamiltonian (1) for the effective one-
component system is pairwise additive, which is expected to
be a good approximation for the present parameter set where
ko>1 and Zp/2p,<1, i.e., the range of the interactions is
smaller than the size of the particles and the background
electrolyte concentration dominates the counterion concen-
tration. At lower salt concentrations, such that ko<<1 and/or
Zp/2p,>1, one would expect effective many-body interac-
tions to become relevant [21,24], such that Eq. (1) is not
necessarily a reliable effective Hamiltonian anymore. In such
an extremely low-salt regime, which is realized in salt-free
systems, the Poisson-Boltzmann theory proved to be quanti-
tatively accurate, at least in comparison with simulations
[11,25] at low Coulomb couplings. It is interesting to see if
the pairwise one-component description is capable of de-
scribing the density profiles in this case. We wish to stress
here that the possible breakdown of the pairwise screened-
Coulomb picture does not imply that the system can no
longer be seen as a one-component system in hydrostatic
equilibrium as described by Eq. (3) with a compressibility
that follows from the Kirkwood-Buff relation S(0)=x;: these
relations remain valid (the former only within the local-
density approximation, but given the long screening length in
the extremely low-salt regime this approximation is probably
accurate). The breakdown would “merely” imply that it is
not obvious how to calculate the compressibility or the struc-
ture factor without detailed knowledge of the effective
Hamiltonian. Second, let us consider the opposite high-salt
regime such that ko>1 and Zp<<2p,. In this regime the
electrostatic interactions are completely screened over dis-
tances much smaller than the colloidal diameter, such that
the effective one-component system is essentially a (pair-
wise) hard-sphere system (for water at room temperature at
least, where ion-ion correlations are not all that important).
In this regime the one-component description based on Eq.
(3) is far superior over the PB theory of Egs. (7)—(9). This is
directly seen by regarding the Z=0 limit of Egs. (7)—(9),
which reduce to ¢(x)=0 and p(x)=p,exp[-x/L], i.e., the
sedimentation profiles become barometric; the hard-core cor-
relations are left out completely from this theory. By con-
trast, the RMSA closure is, in this hard-core limit, equivalent
to the Percus-Yevick closure, and in combination with Eq.
(3) the density profiles of hard-sphere sedimentation equilib-
rium are well described [1,3]. Moreover, also in the present
regime with ko =1 the one-component theory performs bet-
ter. We are currently working on the formulation of a theory
that is able to describe sedimentation density profiles in both
the high-salt and the low-salt regime on the same footing.

VI. SUMMARY AND CONCLUSIONS

In this paper we have studied sedimentation equilibrium
of charge-stabilized colloids at nonzero salt concentration.
We compared experimental results with theoretical and simu-
lated profiles obtained on the basis of two models. On one
hand a multicomponent model of pointlike colloids, cations,
and anions interact with bare Coulomb potentials. For this
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model we considered a Poisson-Boltzmann theory of the
three-component mixture and performed MC simulations us-
ing 12 colloids and a total of about 26 132 particles to guar-
antee the electroneutrality of the system. On the other hand
we considered an effective one-component model of colloids
interacting by an effective screened-Coulomb potential. For
this model we employed a theory based on hydrostatic equi-
librium, where the isothermal compressibility is given by the
Kirkwood-Buff relation as obtained from the solution of the
Ornstein-Zernike equation with the rescaled mean spherical
approximation (RMSA) closure for the screened-Coulomb
potential. For the effective one-component Yukawa model,
we also performed simulations of sedimentation profiles.

The sedimentation profiles obtained from the one-
component RMSA theory, simulations of the Yukawa system,
and simulations of the primitive model are essentially con-
sistent among themselves but differ from the results of the
Poisson-Boltzmann theory. The PB theory shows good
agreement with the experiments only because the numerical
value of the charge was estimated as to give the best fitting
according to this theory. In fact, we have seen that PB theory
actually overestimates the colloid density at high altitudes
compared to the corresponding Yukawa system, for identical
values of Z, at the parameters of interest here. Agreement
between PB theory and Yukawa systems can be obtained by
reducing the colloidal charge in the PB theory compared to
that of the Yukawa model. For small values of the colloid
charge, Z=<50 or so, the agreement between the resulting
profiles obtained from the PB and RMSA approach is truly
excellent, for larger charges up to say Z=200 the agreement
is still good though somewhat less quantitative as regards the
functional form. The CPU time required for the simulation of
the multicomponent primitive model and the effective one-
component Yukawa model varies between about one year in
the former case and one hour in the latter. This shows that
theory and simulations of sedimentation profiles on the basis
of the effective one-component potential and the Poisson-
Boltzmann theory (possibly with a reduced effective charge
when colloid-colloid correlations are important) are consid-
erably more efficient than primitive model simulations. In
spite of the fact that we have only considered a particular
case study, this is presumably true in general, with the
Yukawa model probably more accurate when xko=1 while
PB theory could be more accurate or efficient when ko<<1.
In a future publication we will report on a theory which
allows one to interpolate smoothly between these two re-
gimes.
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