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Modeling percolation in high-aspect-ratio fiber systems. 1. Soft-core versus hard-core models
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Numerical and analytical studies of the onset of percolation in high-aspect-ratio fiber fiber systems such as
nanotube reinforced polymers available in the literature have consistently modeled fibers as penetrable,
straight, capped cylinders, also referred to as spherocylinders. In reality, however, fibers of very high-aspect
ratio embedded in a polymer do not come into direct physical contact with each other, let alone exhibit any
degree of penetrability. Further, embedded fibers of very high-aspect ratio are often actually wavy, rather than
straight. In this two-part paper we address these critical differences between known physical systems, and the
presently used spherocylinder percolation model. In Paper I we evaluate the effect of allowing penetration of
the model fibers on simulation results by comparing the soft-core and the hard-core approaches to modeling
percolation onset. We use Monte Carlo simulations to investigate the relationship between percolation thresh-
old and excluded volume for both modeling approaches. Our results show that the generally accepted inverse
proportionality between percolation threshold and excluded volume holds for both models. We further dem-
onstrate that the error introduced by allowing the fibers to intersect is non-negligible, and is a function of both
aspect ratio and tunneling distance. Thus while the results of both the soft-core model and hard-core assump-
tions can be matched to select experimental results, the hard-core model is more appropriate for modeling
percolation in nanotubes-reinforced composites. The hard-core model can also potentially be used as a tool in
calculating the tunneling distance in composite materials, given the fiber morphology and experimentally
derived electrical percolation threshold. In Paper II we investigate the effect of the waviness of the fibers on the

onset of percolation in fiber reinforced composites.
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I. INTRODUCTION

Percolation in carbon nanotube-reinforced composites is
of high interest because of the potential to create electrically
and/or thermally conductive systems with an extremely low
mass of particles. Indeed, experimental findings in nanotube-
reinforced polymeric [1-11] and ceramic [12] matrix mate-
rials have shown that conductivity follows a percolationlike
behavior. Specifically, at a relatively low concentration of
nanotubes, the conductivity dramatically increases; near the
percolation threshold, the conductivity follows the classic
scaling law of percolation theory (Table I).

Analytical and numerical tools presently available to
model percolation onset stem from a variety of disciplines,
and span both two-dimensional (2D) and 3D systems of fi-
bers and fiberlike objects. The earliest models were devel-
oped to study cellulose [13,14] and other biological fibers.
More recent work, by Sastry and co-workers, has resulted
from the study of energy storage materials [15-22], and has
also included studies on mechanical properties of fibrous ar-
rangements [23-25].

Table IT summarizes key literature on geometric percola-
tion studies in random three-dimensional fibrous materials
[26-31], and includes work in systems of ellipses, since fi-
bers can often be conveniently modeled as high-aspect-ratio
(i.e., high values of length by radius) ellipses in numerical
implementations in which singularities must be reduced [15].
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In these treatments, percolation is defined as the formation of
a connected cluster that spans a representative volume ele-
ment. Geometric percolation and electrical percolation are
often treated as coincident in the literature, since the perco-
lationlike conductivity behavior is generally attributed to the
formation of a physically connected path of the conducting
particles within the matrix. While this phenomenon is true of
some materials in which conducting particles coalesce and
produce a continuous conducting network, nanotubes embed-
ded in a polymer matrix are not in physical contact. The
primary charge transport mechanism in nanotubes reinforced
composites is electron tunneling [32,33].

In composites in which the primary charge transfer
mechanism is tunneling, all objects are electrically con-
nected. Further, the objects are not connected physically, and
therefore there is no geometric percolation threshold. These
two factors are incompatible with classic percolation theory.
This inconsistency is often ignored in discussions of the con-
ductivity of composite materials, and a classic geometric
model of penetrable particles is widely used to model the
onset of their electrical percolation. Balberg and co-workers
[34-36] recently studied percolation and tunneling in com-
posite materials. Using capacitance probe microscopy they
found that the percolating cluster consisted of nearest neigh-
bor particles and thus the electrical conductivity of carbon
black copolymer composites was well described by geomet-
ric percolation. They concluded that metal-insulator compos-
ite materials behave like “bona fide percolating systems”
when only nearest neighbor tunneling contributes to the con-
duction. In composite materials in which the conducting par-
ticles do not coalesce, the percolationlike behavior can thus
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TABLE 1. Experimentally derived percolation thresholds for composites reinforced with single walled nanotubes (SWNT) and multi-
walled nanotubes (MWNT) from selected literature.

Percolation
Carbon Nanotube threshold
nanotube density
Authors Year Ref. type Matrix type (g/cm?) wt % vol % Dispersion
Coleman et al. 1998 [5] PMPV 8.4
Sandler et al. 1999 [10] epoxy 0.025-0.04 nonuniform
Yoshino er al. 1999 [11] MWNT PAT6 5.9
Benoit er al. 2001 [2] SWNT PMMA 1.3 0.33 0.33
Andrews et al. 2002 [1] MWNT poly(propylene) 0.05 uniform
Kilbride er al. 2002 [6] MWNT PmPV, PVA 0.055
Biercuk er al. 2002 [3] SWNT epoxy 0.1-0.2 uniform
Kymakis, 2002 [7] SWNT P30T 11
Alexandou, and
Amaratunga
Potschke, 2002 [9] MWNT polycarbonate 1.0-2.0
Fornes, and Paul
Blanchet, 2003 [4] SWNT polyaniline 0.3 uniform
Fincher, and Gao
Ounaies et al. 2003 [8] SWNT polyimide 1.33-1.4 0.05 0.05 uniform

be attributed to the formation of an effective percolating
cluster in which nearest neighbor particles are within a cer-
tain tunneling range from one another. The electrical perco-
lation onset depends not only on particle geometry and dis-
tribution, but also on parameters that affect tunneling
distance.

A more suitable approach to modeling percolation in these
systems is the hard-core model in which each conducting
inclusion is modeled as an impenetrable hard core sur-
rounded by a soft shell, where the hard core represents the
actual inclusion and the thickness of the surrounding pen-
etrable soft shell is related to the tunneling distance. The
hard-core approach is widely used to model microemulsions
[37,38], and liquids in which spherical particles are consid-
ered. However, treatments using the hard-core approach to
model percolation of fibrous systems are limited to the study
of low-aspect-ratio objects.

Balberg and Binenbaum [39] used Monte Carlo simula-
tions to investigate the average critical number of bonds per
site, B, for three-dimensional continuum systems of spheres
and cylinders in the hard-core—soft-core transition. Their
results led to the conjecture that B, was dimensionally invari-
ant for long cylinders, however, due to computation con-
straints the ratio of length to radius (i.e., aspect ratio) in their
simulations was limited to 10. Ogale and Wang [40] used a
hard-core model to study percolation in short fiber reinforced
composites and found that experimentally obtained values of
the percolation threshold were in good agreement with the
results of Monte Carlo simulations. Their results support the
conjecture that a composite behaves as a genuine percolating
system when only interactions between nearest neighbor fi-
bers are considered. However, their simulations were limited
to systems where the aspect ratios of the hard core were
between 12 and 50. Their results are therefore not directly

applicable to composites reinforced with very high-aspect-
ratio fibers, such as nanotube reinforced composites.

A hard-core numerical modeling approach for high-
aspect-ratio fibers is very computationally intensive. A popu-
lar approach to modeling the percolation behavior of com-
posites with high-aspect-ratio fibers is to consider the
geometric percolation of soft-core (i.e., fully permeable) rods
and to assume that the onset of both geometric and electrical
percolation occur simultaneously. Several researchers have
studied the percolation in nanotubes reinforced composites
by modeling each nanotube as a rigid, straight, penetrable
spherocylinder (i.e., a cylinder with hemispheric end caps)
(e.g., [8,41,42]), most without noting the inconsistencies be-
tween the physical system and the soft-core approach. De-
spite the differences between a soft-core spherocylinder net-
work model and the actual nanotube reinforced composite,
the soft-core model has been shown to predict percolation
thresholds that are in very good agreement with experimental
results. This apparent validation of the soft-core model may
serve as an explanation of why the applicability of the soft-
core spherocylinder model to the specific problem of nano-
tube reinforced composite has not been addressed in the lit-
erature.

In this paper, we investigate the applicability of the soft-
core vs the hard-core approach to modeling percolation in
high-aspect-ratio fibrous systems and composites. We pro-
pose an analytical approach to studying systems of very high
aspect ratios (on the order of hundreds or thousands) based
on the results of simulations performed at lower-aspect-
ratios. The specific objectives of this work are (i) to use
Monte Carlo simulations to find the percolation threshold of
systems of randomly oriented straight cylinders using both
hard-core and soft-core approaches, (ii) to develop an ana-
lytical approach for the determination of onset of percolation
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TABLE II. Key percolation studies in three-dimensional random fibrous materials.

Authors Year Ref. Arrangement Objects Contribution Approach
Balberg, 1984 [27] isotropic capped First study of percolation of random Monte Carlo
Binenbaum, cylinders objects in three dimensions. simulations
and Wagner
Balberg et al. 1984 [26] isotropic capped Presented the conjecture that Monte Carlo
cylinders percolation threshold for a system of simulations
identical objects in three dimensions
is inversely proportional to excluded
volume of one object.
Bug, Safran, 1985 [28] isotropic capped Confirmed excluded volume rule and cluster
and Webman cylinders showed constant of proportionality expansion
equals one in slender rod limit.

Neda, Florian, 1999 [29] isotropic capped Performed Monte Carlo simulations Monte Carlo
and Brechet cylinders of 3D stick systems using correct simulations

isotropic distribution and confirmed

excluded volume theory.

Yi and Sastry 2004 [30] isotropic ellipsoids Presented analytical approximation series

for the percolation threshold of two- expansion

and three-dimensional arrays of
overlapping ellipsoids.

Yi, Wang, 2004 [31] Uniform ellipsoids Provided comparisons of cluster Monte Carlo
and Sastry distribution in sizes, densities, and percolation simulations

x—y plane. Range
of distributions
fromparallel to

random in z
direction.

points for two- and three-dimensional
systems of overlapping
ellipsoids to investigate the range of
applicability of a 2D model for
predicting percolation in thin
three-dimensional systems.

in ct ratio fiber systems, and (iii) to compare the results of
both soft-core and hard-core approaches to experimental data
for nanotubes reinforced composites.

In Sec. II we present descriptions of the classic soft-core
spherocylinder model and the hard-core approach. In Sec. III
we use Monte Carlo simulations to find the percolation
threshold for three-dimensional systems for randomly ori-
ented straight spherocylinders using both modeling ap-
proaches and present relationships between percolation
threshold and excluded volume. In Sec. IV we compare the
results of both the soft-core and hard-core models to experi-
mental results for nanotubes reinforced composites reported
in the literature. These results are discussed in the context of
the applicability of the models to nanotube-reinforced com-
posites in Sec. V.

II. MODELING APPROACH

A. Soft-core spherocylinder model

Monte Carlo simulations can be used to numerically de-
termine percolation onset in 3D fiber systems, using either a
soft-core or hard-core approach. However, calculations be-
come prohibitively intensive for arrays of fibers of very high
aspect ratio. Thus we first return to a semiempirical, analyti-
cal result by Balberg ef al. [26] as a starting point in our
investigation. This model considers the percolation of soft-

core (interpenetrable) rigid spherocylinders, randomly ori-
ented in three dimensions. These “sticks” are assumed to be
straight cylinders of length L and radius R, with hemispheric
end caps of radius R to allow comparison of results in the
L/R—0 limit with well-established results for spheres. The
derivation begins with the assumption that the number of
objects per unit volume at percolation g, is inversely propor-
tional to the excluded volume V., of one of the objects, i.e.,

1

o« —. 1
4, v (1)

The excluded volume is the volume around the object into
which the center point of an identical object is prohibited, if
the two are not to overlap. In general, for spherocylinders of
length L and radius R, the excluded volume is given by

=)o

where (sin(6)) is the average value of sin(6) for two sticks
and 6 is the angle between them. For a random distribution
(sin(6))y=7, thus

327 3[ 3<L> 3 (Lﬂ
Vo= —R| 1+ =+ =2 | (3)
3 4\R) " 32\R

The volume of a single spherocylinder can be written as

041120-3



L. BERHAN AND A. M. SASTRY

S 4
e
@ ()

FIG. 1. (Color online) (a) Soft-core model and (b) hard-core
model with soft shell of radius R for a spherocylinder of length L
and radius r.

4
V= ?WR3 +7RL. (4)

In this paper we define aspect ratio as the ratio of length to
radius, i.e., L/R. It has been shown previously [28] using a
cluster expansion method, and supported by numerical simu-
lations [29], that in the slender rod limit (as R/L—0) the
constant of proportionality in Eq. (1) is unity, therefore for
very high-aspect-ratio fibers the analytical solution for g, is
often expressed as

1
=—. (5)
"V,
Since g, is the number of objects per unit volume at perco-
lation, the analytical solution for the volume fraction of high-
aspect-ratio fibers at the percolation threshold is often writ-
ten as

\%
¢.= v (6)

B. Hard-core spherocylinder model

Figure 1 shows the soft-core and hard-core spherocylinder
models. The soft-shell model [Fig. 1(a)] has length L and
radius r and is assumed to be fully penetrable, so that objects
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are allowed to overlap and penetrate each other. The hard-
core model [Fig. 1(b)] has an impenetrable core of radius r
and length L with hemispheric end caps of radius r along
with a surrounding spherocylindrical soft shell of length L
and radius R and hemispheric end caps of radius R. The hard
cores are not permitted to overlap, and two hard-core objects
are considered to intersect if the penetrable soft shells over-
lap.

We define the parameter ¢ as the ratio of the radius of the
core to the outer radius of the soft shell,

(7

r
t=—.
R
We can express the soft-core limit as =0 and the hard-core
limit is given by 7=1.

Since the interior spherocylinder is impenetrable, the ex-
cluded volume of the hard-core object is equal to the ex-
cluded volume of the soft shell minus that of the hard core.
The excluded volume can be written as

L z(e) L 1(5)2 }
vV, = R{(l A\ )a=A+ | 2] (-0

3
(8)

III. NUMERICAL DETERMINATION
OF PERCOLATION THRESHOLD

A. Background and procedure

Neda et al. [29] performed Monte Carlo simulations of
isotropically oriented sticks in three dimensions and con-
firmed the prediction [28] that as R/L—0, the constant of
proportionality in Eq. (1) is 1. Further, they derived a rela-
tionship between the critical number of high-aspect-ratio
sticks and the stick aspect ratio based on their simulation
results. The variable s was introduced such that

5=q,Ve—1. 9)

Again, g, is the number of fibers per volume at percolation,
ie.,

qp="> (10)

where N, is the number of sticks in the simulation cube at
percolation, and V is the volume of the simulation cube (V
=1 in this case, so ¢g,=N,). They showed that for R/L
<0.06, In(s) varied linearly with In(R/L), or

R
1n(s):a+b1n<—>. (11)
L
Thus s can be immediately written as
R\?
=efl — . 12
o) w

For simulations of sticks of length L=0.15 in a cube of side
1, they state that
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R 0.5764
(z) : (13)

It seems, from the plot of In(s) vs In(R/L) presented in Fig.
1 of their work, that the factor ¢* in Eq. (12) was omitted
from the expression for s given in the text.

The average number of bonds per site B, at percolation
onsite is numerically equal to the total excluded volume [26],
that is,

B.=N,V,.. (14)

Thus if the simulation cube is of unit volume, B, can be
expressed as

B.=1+s. (15)

In this work we performed simulations to investigate the
percolation threshold of systems of randomly distributed
spherocylinders (sticks) of length L=0.15 and outer radius R
[see Fig. 1(b)] within a unit cube. Simulations were per-
formed for values of ¢ equal to 0, 0.2, 0.3, 0.4, 0.5, and 0.6,
respectively. The software package MATLAB [43] was used
for all programming.

For the soft-core limit (r=0) the simulations were per-
formed as follows using the same method employed by Neda
et al. [29]. The coordinates of the center of each stick were
generated uniformly between —(L/2+R) and 1+(L/2+R). In
order to obtain the correct isotropic distribution, each azi-
muthal angle vy in the x-y plane from the x axis was gener-
ated randomly in the interval (0, ) and the polar angle ¢
from the z axis was chosen such that ¢=arcos(1-27), where
7 was a random number in the interval (0,1) [30]. The sticks
were generated one at a time and each new stick was
checked for intersection with those already inside the cube.
Two sticks were considered to be intersecting if the shortest
distance between them (i.e., the shortest distance between
any two points along their lengths, the distance between their
hemispheric end caps, or the shortest distance between an
end cap of one stick and any point on the other) was less than
or equal to 2R. Percolation was defined as being reached
when a cluster was found to span the cube in the z direction.
The number of cylinders inside the cube at percolation N,
was recorded. When only a portion of a cylinder was found
inside the cube at percolation, its contribution to N, was
equal to the ratio of the cylinder volume inside the cube to its
total volume.

For the hard-core simulations (values of #>0), each new
stick was generated as described for the soft-core case, and
checked for intersection with those already inside the cube.
The cores of the sticks were not allowed to intersect, so if the
shortest distance between any new stick and any stick al-
ready in the cube was less than or equal to 2r, the stick was
rejected and a new stick generated. Two sticks were consid-
ered to intersect if the shortest distance between them was
less than or equal to 2R and greater than or equal to 2r.
Sticks were added one at a time in this manner until perco-
lation was reached and the number of sticks within the cube
at percolation, N, was recorded.

One hundred simulations were performed for each com-
bination of R, L, and ¢ considered in the study and the mean
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FIG. 2. In(s) vs In(R/L) for straight fibers (L=0.15).

and standard deviation values of N, were calculated from the
results in each case. Since a unit cube was used in the simu-
lations, g,=N.. The average values of N. were used to cal-
culate s values using Eq. (9). For =0, V,, in Eq. (9) was
calculated using Eq. (3) while Eq. (8) was used for the hard-
core simulations (i.e., >0).

B. Results

Figure 2 shows the plot of In(s) vs In(R/L) for our sys-
tems (L=0.15). A linear relationship was observed between
In(s) and In(R/L) for L/R>30 for all values of r considered.
From this result, the expression for s can be written as

s=cl<§>cz. (16)

The number of fibers per unit volume at percolation is there-
fore given by the general expression

_1+c(RIL)2

W=y

ex

(17)

Table III below shows values of c¢; and ¢, derived from our
simulations. By comparing our value of ¢, for =0 with the
result of Neda er al. [29], we see that our soft-core result is in
excellent agreement with theirs.

Since g, can be expressed in the form of Eq. (17) it is
clear that in the slender rod limit R/L—0, Eq. (5) is valid.

TABLE III. Values of ¢ and ¢, based on simulation results.

t c c

0 5.231 0.569
0.2 4.080 0.537
0.3 3.506 0.517
0.4 2.876 0.488
0.5 2.213 0.451
0.6 1.844 0.443
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FIG. 3. (1+s) vs L/R.

The rate of decay of the quantity (1+s) is, however, very
slow, and the results of the analytical solutions using Eq. (5)
and Eq. (17) differ by 15% for aspect ratios as high as 500. It
is therefore more appropriate to use the analytical solution of
Eq. (17) than the popular approach, which assumes that the
constant of proportionality is 1 for high-aspect-ratio fiber
systems.

Figure 3 is a plot of (1+s) vs aspect ratio for the values of
t considered in this study. The plot shows that our simulation
results are also consistent with the results of Balberg and
Binenbaum [39]. They conjectured that for cylinders of very
large aspect ratio, the number of intersections per fiber B,
[numerically equivalent to (1+s) in our simulations], is
dominated by aspect ratio rather than the parameter #, and in
the limit L/R— 0, B.. is independent of ¢. Our results confirm
that this is the case for the range of aspect ratios typically
found in nanotube reinforced composites (L/R>400) since
the values of B, over this range are within 4% of each other
for the values of ¢ considered in our simulations. Thus based
on this finding, for convenience we will use the values of B,
for the soft shell (¢=0) case for all values of ¢ in the follow-
ing section.

IV. MODELING PERCOLATION IN NANOTUBE-
REINFORCED COMPOSITES USING
THE HARD-CORE APPROACH

The hard-core model is more suitable for modeling elec-
trical percolation in systems where the conducting particles
are not in physical contact and tunneling is the dominant
charge transport mechanism. However, the more convenient
soft-core model is often used, since it has been argued that
for high-aspect-ratio fibers, the error introduced in doing so
is small [41]. In this section we compare results of both
modeling approaches to the problem of percolation in nano-
tubes reinforced composites.

A popular approach to calculating the nanotube volume
fraction at percolation in nanotube reinforced composites is
to use the analytical solution

Veiver
¢C=—‘fjﬂ, (18)

where Vi, is the volume of the average nanotube or nano-
tubes bundle in the composite, and V,, is the excluded vol-
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ume of a nanotube based on a soft-core approach. As previ-
ously discussed, a more accurate soft-core solution is

1+5)Vy
c:( ‘i) fzber’ (19)

where s is calculated from Eq. (16) using the values of ¢; and
¢, for t=0 in Table III.

When using the hard-core approach to model percolation
in systems of high-aspect-ratio fibers of length L and radius
r, the critical fiber volume fraction ¢, is the number of fibers
per unit volume at percolation multiplied by the volume of
the hard core, since the core represents the physical fiber.
Thus

¢c =dqp Vcore ’ (20)

where the volume of the hard core, V., can be written as
43
Veore = TrL + g’iTV' . (21)

Substituting for Egs. (16) and (17) in Equation (18), the fiber
volume fraction at percolation can be written as

_ (1 +S)VCOVE

v (22)

b

In the previous section we showed that for high aspect
ratios, the quantity (1+s) is constant for a given effective
aspect ratio regardless of the value of ¢. The effective aspect
ratio for the hard-core model is that of the fiber including the
soft shell for the hard-core model (i.e., L/R) and the aspect
ratio of the fiber itself (i.e., L/r) for the soft-core model.
Since the typical aspect ratios in nanotube reinforced com-
posites are reported to be in the range of several hundreds to
several thousands [8,41] we can use the same value of (1
+s) for all values of 7 for a given effective aspect ratio. In
this section of the paper we computed (1+s) from the soft
shell (r=0) results of the previous section.

We compare the experimentally derived electrical perco-
lation threshold as reported by Ounaies er al. [8] with solu-
tions obtained using both the soft-core and hard-core models.
The approximate radius » and length of the nanotubes were
reported as 0.7 nm and 3 wm, respectively [8], which yields
an aspect ratio of 4286. Experimental results were compared
with analytical solutions calculated using Eq. (18), first as-
suming that the single nanotubes were uniformly dispersed
within the matrix and then that the nanotubes were arranged
in hexagonally close packed bundles of 7 and 19 nanotubes.
For the analytical solution a bundle was approximated as an
equivalent spherocylinder of length L and radius r equal to
that of the bundle (see Fig. 4).

Table IV shows the results of the soft-core analytical so-
lution using Eq. (18) as reported in the literature [8] along
with the solution using Eq. (19) with the value of s calcu-
lated based on the results of our own soft-core simulations,
as reported in the previous section. Based on experiments,
the percolation threshold was found to be 0.05%. Comparing
this value to the analytical soft-core solution led to the con-
clusion that the single walled carbon nanotubes (SWNTSs)
within the polymer matrix were dispersed in very thin
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Section A-A

FIG. 4. (Color online) Schematic of (a) a bundle of seven nano-
tubes and (b) the equivalent spherocylinder used in calculation
shown encasing the bundle

bundles made up of a few nanotubes since the experimental
result was between the analytical solution for a single tube
and a bundle of seven tubes [8].

For the hard-core analytical approach we consider the
same three scenarios (a single tube and bundles of 7 and 19
tubes), and model the inner core in each case as a spherocyl-
inder having the same dimensions as the single tube and
equivalent bundles used in the soft-core model. Since the
exact tunneling distance is not known, we consider various
values of ¢ and compare the analytical results of Eq. (22) to
the experimental percolation threshold. Figure 5 shows the
analytical solution for percolation threshold for the three sce-
narios for a range of values of 7. The values of ¢ which
correspond to the experimental percolation threshold 0.05%
were found in each case (see vertical dotted lines in Fig. 5)
and used to calculate the soft-shell outer radius and thus the
tunneling distance. These results are presented in Table V.

V. DISCUSSION

It is clear that if the tunneling distance is indeed ~5 nm
or less as suggested by Du et al. [33], the hard-core model

TABLE IV. soft-core analytical solution for percolation thresh-
old for systems of uniformly distributed nanotubes and nanotubes
bundles of length 3 um.
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FIG. 5. Hard-core analytical solution for percolation threshold
vs t for nanotube bundles.

leads us to the same conclusion as the soft-core model,
which is that the nanotubes within the composite in question
are arranged in very thin bundles. In some instances the soft-
core and hard-core models can yield similar results as illus-
trated in the previous section; however, the percolation
threshold of the hard-core model is strongly dependent on
the parameter ¢ and not only on the aspect ratio. Thus the
error introduced in using a soft-core model for nanotube re-
inforced composites can be significant even for very high-
aspect-ratio fibers. The soft-core model is more convenient
to use since it depends only on the geometry and distribution
of the fibers. The hard-core approach is the more accurate
approach to modeling percolation in nanotube reinforced
composites, although the model is more difficult to imple-
ment if the tunneling distance for the material is not known.

VI. CONCLUSIONS AND FUTURE WORK

The relationship between percolation threshold and ex-
cluded volume for systems of both soft-core and hard-core
fibers was investigated using Monte Carlo simulations. In all
cases the percolation threshold was found to be inversely
proportional to excluded volume, with the constant of pro-
portionality being one in the limit R/L— 0. For high-aspect-
ratio fibers, the constant of proportionality was shown to be
dominated by aspect ratio with little variation in the values
obtained with respect to the parameter ¢ for a given aspect
ratio.

TABLE V. soft-core analytical solution for percolation threshold
for systems of uniformly distributed nanotubes and nanotubes
bundles of length 3 um.

No. of Percolation threshold (vol %)

nanotubes Bundle No. nanotubes Bundle R Tunneling distance
per bundle radius » (nm) L/r Eq. (18) Eq. (19) per bundle radius r (nm) t (nm) 2(R-r) (nm)

1 0.7 4286 0.023 0.024 1 0.7 0.67 1.04 0.69

7 2.1 1429 0.070 0.076 7 2.1 039 538 6.57

19 3.5 857 0.116 0.129 19 3.5 0.265 13.21 19.42
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A hard-core modeling approach is more appropriate for
modeling composite materials in which the main charge
transport mechanism is tunneling. In this paper we have ap-
plied this model to nanotube reinforced composites and have
shown that the hard-core model yields results similar to those
obtained using a soft-shell approach, but that the results are
strongly dependent on the tunneling distance.

If the fiber geometry and distribution and the tunneling
distance are known, the hard-core model can be applied to
predict the electrical percolation threshold in a composite
reinforced with high-aspect-ratio fibers. Since it is difficult to
determine the tunneling distance experimentally, a useful ap-
plication of the hard-core modeling technique would be to
determine the likely tunneling distance given the fiber geom-
etry, distribution, and the experimentally derived percolation
threshold. This can be achieved by finding the value of the
parameter ¢ which results in a match between the value of

PHYSICAL REVIEW E 75, 041120 (2007)

experimental percolation threshold obtained and the analyti-
cal solution. Future work will include the use of this ap-
proach to investigate the effect of parameters such as fiber
type, functionalization method, and molecular weight of the
polymer matrix on the tunneling distance in polymer nano-
composites.

Paper II of this work investigates the effect of the inherent
waviness of embedded nanotubes on the onset of percolation
in nanotubes reinforced composites.
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