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Cluster size distribution in percolation theory and fractal Cantor dust
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Results of numerical simulation of cluster size distribution in the site percolation problem are presented.
These results disagree with the theoretical data obtained on the basis of the standard drop model of finite
cluster structure, in particular, they give a different value of exponent £ (In n,~ —s%). Therefore, a more precise
fractal model for describing the structure of clusters in a percolation system is proposed. The consideration is
based on the solution of a kinetic equation for the number of finite clusters. In the framework of the proposed
approach (fractal model together with kinetic equation), a correct value of exponent ¢ is obtained and an
explanation is given to the dependence of this exponent on the fraction of occupied sites p, which was revealed
by numerical simulations. Additionally, a relation is established between the characteristics of cluster size
distribution and fractal dimension of the Cantor dust constructed on the percolation cluster.
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I. INTRODUCTION

Percolation theory has numerous applications in practical
and scientific problems. The typical examples are materials
science [1-3], nanotechnology [4], optics [5], combustion
theory [6], biology [7], social science [8], etc. One of the
most-used problem is site percolation. In this problem, ran-
dom distribution of occupied and empty sites on a lattice is
considered. Main properties of the whole system can be de-
scribed by means of characteristics of this distribution. The
occupied sites on the lattice exhibit a tendency to aggregate
into clusters. The cluster size distribution n,(p) is a main
characteristic of a percolation system. The function ny(p) is a
discrete analog of the distribution function in statistical phys-
ics. Unfortunately, a general analytical solution of this clas-
sical problem is not known even for the two-dimensional
case, and main results were obtained by numerical simula-
tion or on the basis of the scaling hypothesis.

As is known, all nontrivial properties of considered ran-
dom systems are associated with the formation of a percola-
tion cluster (PC), which spans over the whole system. This
cluster arises at the percolation threshold p. The cluster
numbers n(p) are known exactly for s=<10 [9-11]. There-
fore, this problem may be thought as solved for p far from p..
because in this case there is a small amount of large clusters.
However, this problem in the neighborhood of the percola-
tion threshold remains unsolved and is of great interest.

One of the most important and, at the same time, scantily
known parameters in this region is exponent ¢ [12,13]. This
exponent describes the behavior of finite clusters in the vi-
cinity of the percolation threshold depending on cluster size
s

Inn,~—s° s>1. (1)

Also, this exponent determines the behavior of mean pe-
rimeter £, of finite clusters [13,14]:
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According to the drop model of cluster structure, for p
>p. on d-dimensional lattice the following expression {=1
—1/d is known [12,13]. Unfortunately, this expression for
exponent ¢ contradicts to both previous [14] and new results
of numerical simulations reported below. Moreover, the drop
model gives a very rough description for the structure of
large clusters in a percolation system. In this paper we show
that the application of fractal model to the cluster structure
together with a new kinetic approach for the cluster size
distribution allows obtaining a correct expression for expo-
nent { which gives much better conformity with the numeri-
cal data. In addition, the proposed approach allows one to
establish a new relationships between exponent ¢ and non-
trivial fractal properties of the percolation cluster. This rela-
tionships will help us to find the cluster size distribution for
some other problems of the percolation theory.

II. NUMERICAL EXPERIMENT FOR EXPONENT ¢

The cluster size distribution ny(p) is defined as a number
of clusters containing s occupied sites per one lattice site
when the fraction of occupied sites on the lattice is equal to
p. According to the scaling hypothesis [13,15], this distribu-
tion above the percolation threshold can be represented as

ndp)=s""fo(y), y=Pp.—p)s?, fo(0)=1. (3)

At the same time different corrections to this expression
are known [16]:

ny(p) =5~ Tfoy) +s7f1()]. (4)

At fixed p and s>1 for cluster size distribution above
percolation threshold is justified the following functional de-
pendence [12,13,15,17,18]:

n(p) ~ s~" exp[~ const(p)s‘]. (5)

On the basis of expression (5) the magnitude of exponent
can be obtained directly from the data of a usual numerical
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FIG. 1. Cluster size distribution for site percolation on square
lattice 100X 100 in log-log scale (p=0.60, 3 X 107 histories).

experiment for the site percolation problem. For this purpose
we should divide expression (5) by n,(p.) [ny(p.) ~s~7] and
twice take the logarithm of the obtained expression. Then in
coordinates In(s) (abscissa) and In{~In[n,(p)/n,(p.)]} (ordi-
nate) the cluster size distribution will be linear.

We perform a series of Monte Carlo simulations to obtain
the cluster size distribution on a square lattice (p,
=0.59274621 [19]). All simulations were carried out using
the Hoshen-Kopleman algorithm [20]. As can be seen from
Fig. 1, in a definite region of cluster sizes such a linear de-
pendence takes place. The magnitude of exponent { can be
obtained from the slope of this line.

Since a finite lattice was used in the simulations, the size
of the system can influence the results [13,21]. Therefore, we
carried out simulations for six different sizes of the lattice
ranging from 100X 100 up to 2500 X 2500. The cluster size
distribution depends on the lattice size L through variable
518 max~ 1/LP (here D is the fractal dimension of percolation
cluster), because the largest cluster on the lattice contains
Smax ~ LP sites [22]. We took into account this circumstance
and used argument s/LP instead of s. Nevertheless, exponent
{ exhibits a dependence on lattice size L. We found that £
~ [,+const L% to a satisfactory accuracy (Fig. 2). There-
fore, exponent ¢, for an infinitely large system can be found
from this dependence as a point of intersection with the or-
dinate axis (1/L=0). In such a way, exponent ., was found
for different fractions of occupied sites p in the vicinity of
the percolation threshold (Fig. 2). We found that the consid-
ered exponent depends on p: L/ ,-0 50374621 =0.37(6)£0.02
(lp=p.|=0.001), Leel p=0.60=0.40(8) £0.02, Lol po.61
=0.43(3)+0.02. The obtained results contradict the conclu-
sions of the traditional drop model. According to this model
£..=0.5 for square lattice (d=2) and is independent of p.
These contradictions can be resolved within the framework
of the fractal model proposed in this paper.

FIG. 2. Exponent £ vs L™°% according to numerical experiment.
A: p=0.59374621 (p—p.=0.001), ¢: p=0.60, @: p=0.61.

III. FRACTAL MODEL

In Ref. [17] a kinetic approach to the investigation of
cluster size distribution in lattice percolation problems was
proposed. For this distribution, a system of kinetic equations
was obtained which describes the “diffusion” and “drift” of
finite clusters in the space of their sizes when the fraction of
occupied sites undergo infinitesimal growth. It should be
noted that in Refs. [23,24] a similar approach was proposed
for off-lattice percolation problems. In Ref. [17] the men-
tioned system of equations was applied for investigation of
cluster size distribution above the percolation threshold. In
particular, it was shown that most of large finite clusters are
compact in this region. However, the consideration in Ref.
[17] was still based on the drop model of cluster structure.

In this work the same system of kinetic equations for
cluster size distribution [17] will be used. But the structure of
both the finite clusters and percolation cluster will be de-
scribed by fractal models.

Thus, the site problem on the square lattice of N=L sites
is considered. The system of kinetic equations for a number
of finite clusters ny(p) (s=1,2,3,...) in this case has the
following form [17]:

dn,(p) ~9 2

d [gslsz(p)slnsl(p)Sanz(p)]
P

sp+syt+l=s

+2(1=p)¥(s = Dn,_i(p)

0

[, (P)s3ns, ()] + (1 = p)*!
=1

—2sn;
+g(s.p)P(p) (. (6)

Here z is the coordination number of a lattice (for a square
lattice z=4), P(p) is the fraction of sites belonging to the
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percolation cluster, 8s,s, is a mean number of mutual ar-
rangements of all cluster pairs of sizes s; and s, at two sites
neighboring an arbitrary unoccupied site of the considered
lattice when the clusters do not intersect with each other nor
with any third cluster; g(s,p) has the same meaning but for
the pair “percolation cluster-finite cluster.”

Our general assumption allowing the approximate solu-
tion of this equations consists in the following: the change in
the number of finite clusters above the percolation threshold
is determined mainly by the “interaction” of these clusters
with the percolation cluster [17]. It means that for determin-
ing the cluster size distribution, the following approximate
equation will be solved:

d
éﬁz—km@M@mP@% @)
P

with boundary condition [17]

nS|P=Pc =Cs". (8)
Here 7 is the Fisher exponent [13,18], C is a constant inde-
pendent of s. For the density of a percolation cluster, a well
known scaling relation can be used:

P(p) = C,(p~p.)*. )

The main problem consists in the determination of the
form of function g(s,p). In our paper [17] it was shown that
in the vicinity of percolation threshold

g(s.p) = g1(s)g2(p), (10)

where

8P = (p-p)". (11)

In Ref. [17], the governing equation for g;(s) was also
obtained:

dg n [/
= —gy(s)-—, (12)
ds s-7 s—7

with boundary condition
g1|s=00=0° (13)

Here 0= (2;2102)) is the total decrease in the number of
possible allocations of the s cluster in the neighborhood of
PC with increasing the size of the former by 1 (6= const
[17]); n=5-1.

The derivation of Eq. (12) is based on the consideration of
contribution of each site of a finite cluster and the percola-
tion cluster to function g,(s). It is important that the sites
which are enclosed with occupied sites on all sides (i.e.,
internal sites of a cluster) will not contribute to function
21(s).

The key structural parameter in Eq. (12) is Q. It is defined
as the following ratio:
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Q=2 (14)
s
where s, is the number of such cluster sites through which
finite cluster can be joined to PC without mutual overlapping
and intersections.

Let us consider a finite cluster and the percolation cluster
as fractal objects. Let R be the characteristic size of a large
finite cluster (for example, its gyroradius). Then for the num-
ber of sites in this cluster relationship s = A RP is valid [22],
where D is the fractal dimension of the percolation cluster,
A, is a constant. For value s, a similar expression s,
~ A,RP: should be valid where D, is a fractal dimension of
the percolation cluster surface. Then s,~bs’/P (where b
=A,/A?) and for value () in the framework of fractal model
we have

Q = psPI/P1 = pgt-1, (15)

where
< (16)

Then Eq. (12) grades into

dg(s) _ bs'™Y 0
ds s—bs'~ s—bs'™V

(17)

An approximate solution to Eq. (17) with boundary con-
dition (13) follows:

4 w[s*’f-l —bsT + D27 O] (18)

gi(s) = 1

Then for n,(p) from Egs. (7), (8), and (18) we have

sv
ny(p) = const s Texp| — — |, (19)
S¢

where
s |p—p ™7 (20)

is the characteristic size of finite clusters [o=1/(y+8)][17].

From the comparison of relationships (5) and (19) we
conclude that {=4, i.e., exponent { depends on the fractal
properties of the percolation cluster.

At a first sight, fractal dimension D in Eq. (16) should be
defined on the whole surface of the percolation cluster,
namely it is equal to the fractal dimension of the percolation
cluster hull D.=D), [25]. For the latter, the following relation
D,=(v+1)/v is valid [13,25], where v is the critical expo-
nent of the correlation length. Taking into account that D
=(y+B)/v, from Eq. (16) we have {=(v+1)/(y+f). Then
for a 2D system the proposed fractal model gives the value
{=~0.93. This result seems strange: a more precise fractal
model gives a larger discrepancy with a numerical experi-
ment ({=0.4) as compared with the drop model ({=0.5).

The reason for this discrepancy lies in an accurate defini-
tion of value s, [Eq. (14)]. It is a number of such cluster sites
through which a finite cluster can be joined to the percolation
cluster without mutual overlapping and intersections. The ex-
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ternal surface of both a large finite cluster and the percolation
cluster is indented and contains many “cavities” and
“fjords.” The sites inside such fjords should not be taken into
account when calculating s, because inside the fjords may
not be enough space for a large cluster. So, the external sur-
face of an arbitrary finite cluster can be considered as a sim-
ply connected set (continuous line binding the neighboring
sites of surface). However, sites of the both percolation and
finite cluster, which contribute to value s, [i.e., to function
g1(s)], represent a multiply connected set because a certain
fraction of sites is deleted from the continuous surface. Such
a mathematical object is known. It is a Cantor set (or fractal
Cantor dust) [22,26]. It is important that the fractal dimen-
sion of this set is less than 1.

The one-dimensional Cantor dust C can be constructed in
the following way. The initial seed of this set is a unit seg-
ment [0, 1]. This segment is divided into three parts. After
that the middle part is removed. Each of the residual seg-
ments is once again divided into three parts and the middle
of them is put away, etc. After infinite number of such itera-
tions the remaining infinite set of points will be scattered
over the unit segment. This set is called the Cantor dust.
Generally, if a unit segment is divided into three parts, from
which two segments with length /; and /, are left, the fractal
dimension D, of this set will be obtained by solving the
following equation [22]:

PeyDe=1. (21)

So, for example, if /,=[,=1/3 then D.=In2/In 3=0.63.
In the present paper, a two-dimensional problem is consid-
ered. The Cantor set can be generalized to the case of two-
and multidimensional space [26]. Let us consider a set of
points inside a unit square. For all points of this set, both
abscissa x and ordinate y belong to a one-dimensional Cantor
set C. The Cartesian product C X C of the Cantor set on itself
represents the Cantor dust imbedded in two-dimensional
space. The fractal dimension of product of k Cantor sets is
equal to

DC X CX ==+ X C)=kD,(C). (22)

k times

Thus, for exponent { we can write the following expression:
D
=—, 23
(=" 23)

where D is a fractal dimension of the percolation cluster and
D, is fractal dimension of the Cantor set constructed on the
surface of the percolation cluster.

Within this approach it becomes possible to explain the
variation of exponent ¢ with changing fraction of occupied
sites in the vicinity of percolation threshold, which was re-
vealed in numerical experiments. Increasing p results in the
growth of the number of sites on the surface of a percolation
cluster, through which a finite cluster can join the latter, and
consequently leads to an increase of the fractal dimension of
the Cantor set constructed on the considered cluster surface.

PHYSICAL REVIEW E 75, 041118 (2007)

i ,

FIG. 3. Example of fractal Cantor dust constructed on the per-
colation cluster (square lattice 251 X 251, p=0.593). In part (a), the
finite clusters are painted in black color, sites belonging to the sur-
face of percolation cluster are painted in dark gray, internal sites of
the percolation cluster are painted in light gray; in part (b) only the
sites belonging to the surface of percolation cluster are shown; in
part (c) the sites belonging to the considered Cantor set are shown.

As fractal dimension D of the whole percolation cluster re-
mains constant, then, according to Eq. (23), exponent ¢
should also increase.

IV. NUMERICAL EXPERIMENT FOR DETERMINATION
OF FRACTAL DIMENSION OF CANTOR DUST ON
PERCOLATION CLUSTER

The obtained theoretical predictions about the relation be-
tween exponent ¢ and fractal dimension of the Cantor set
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TABLE I. Exponent { obtained for a square lattice using differ-
ent methods: (1) direct calculation of the cluster size distribution,
(2) on the basis of calculation of the fractal dimension of Cantor set,
(3) numerical experiments for density of external surface of a per-
colation cluster in two dimensions [14], (4) from the traditional
drop model.

p 1 2 3 4

059374621  0.37(6)£0.02  038(5)+0.01 040 05
(p=p.=0.001)

0.60 040(8)£0.02  040(3)£0.01 040 05

0.61 043(3)£0.02  042(2)£001 040 05

constructed on the percolation cluster require additional veri-
fication. For this purpose, numerical simulation was per-
formed. First of all, on the basis of the cluster size distribu-
tion for square lattice, the mean size of finite clusters [(s)
=X snyp)/Zn(p)] was calculated in region p—p,=0.001
—0.01. This size is equal to {s)=~ 10. This mean size of clus-
ters was chosen as a basis for calculations of fractal dimen-
sion of Cantor set.

For these calculations, a special computer program was
developed. The algorithm of calculations consists in four
stages: (i) at a given fraction of occupied sites p, random
distribution of occupied and empty sites is generated on the
square lattice, (ii) in the obtained system, a percolation clus-
ter is found and labeled [Fig. 3(a)], (iii) surface sites of the
percolation cluster are found and labeled [Fig. 3(b)], and (iv)
among this surface sites, such sites are found through which
a finite cluster of a given size (s) can be joined to the perco-
lation cluster [Fig. 3(c)].

At the fourth stage, calculations were performed in the
following sequence. At first, a cluster containing (s) sites
with an arbitrary configuration was generated. Further, all
sites belonging to the surface of the percolation cluster were
considered. Each site of the finite cluster was sequentially
placed into all the empty sites adjacent to the surface of PC.
Rotations of the finite cluster about all its sites by angels 90°,
180°, and 270° were also performed. The site of the PC
surface was considered as belonging to Cantor set if there
was at least one configuration which allowed to put the finite
cluster in any empty site adjacent to the considered PC sur-
face site without mutual overlapping. This set is actually the

PHYSICAL REVIEW E 75, 041118 (2007)

fractal Cantor dust and its fractal dimension should appear in
relationships (16) and (23).

The dependence of the density of sites belonging to this
set on the size of area was plotted using the log-log scale.
The fractal dimension of the set is calculated from the slope
of this plot [22]. This fractal dimension does not depend on
the size of a system. Therefore, all calculations were per-
formed for the fixed system size equal to L=501. For each
considered fraction of occupied sites, 1000 samples were
generated and all the characteristics was averaged over these
samples. As expected, the fractal dimension of considered
Cantor dust is less than 1. The results of calculation of this
dimension are the following: D.=0.73+0.01 for p
=0.59374621, D.=0.76(5)+0.01 for p=0.60, D.=0.80
+0.01 for p=0.61. The value of exponent { was calculated
according to Eq. (23) with D=91/48~1.895 [13,22]. Com-
parison of values of exponent { obtained via different meth-
ods is presented in Table I. As can be seen, the proposed
fractal model gives a much better agreement with the out-
come of direct numerical simulations as compared with the
traditional drop model.

V. CONCLUSION

In this paper, the behavior of finite clusters close to the
percolation threshold has been considered on the basis of the
earlier proposed kinetic approach [17]. To describe the struc-
ture of both finite clusters and the percolation cluster, the
fractal model was applied. The proposed approach allowed
us to establish the relation between the characteristics of
cluster size distribution (exponent ¢) and nontrivial fractal
properties of the percolation cluster. In particular, in the
framework of the fractal model the correct value of exponent
{ was obtained and the dependence of this exponent on the
fraction of occupied sites p was explained. We believe that
further development of this approach will result in a better
understanding of structural features of percolating systems
and show a way to solving a number of urgent problems in
the percolation theory.
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