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Time scale of random sequential adsorption
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A simple multiscale approach to the diffusion-driven adsorption from a solution to a solid surface is pre-
sented. The model combines two important features of the adsorption process: (i) The kinetics of the chemical
reaction between adsorbing molecules and the surface and (ii) geometrical constraints on the surface made by
molecules which are already adsorbed. The process (i) is modeled in a diffusion-driven context, i.e., the
conditional probability of adsorbing a molecule provided that the molecule hits the surface is related to the
macroscopic surface reaction rate. The geometrical constraint (ii) is modeled using random sequential adsorp-
tion (RSA), which is the sequential addition of molecules at random positions on a surface; one attempt to
attach a molecule is made per one RSA simulation time step. By coupling RSA with the diffusion of molecules
in the solution above the surface the RSA simulation time step is related to the real physical time. The method
is illustrated on a model of chemisorption of reactive polymers to a virus surface.
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Random sequential adsorption (RSA) is a classical model
of irreversible adsorption (e.g., chemisorption) [1]. Given a
sequence of times #;, k=1,2,3,..., an attempt is made to
attach one object (e.g., a molecule) to the surface at each
time point 7=1;. If the attempt is successful (i.e., if there is
enough space on the surface to place the molecule), the ob-
ject is irreversibly adsorbed. It cannot further move or leave
the structure and it covers part of the surface, preventing
other objects from adsorbing in its neighborhood (e.g., by
steric shielding in the molecular context) [1,2].

In the simplest form, RSA processes are formulated as
attempting to place one object per RSA time step, expressing
the simulation time in units equal to the number of RSA time
steps k rather than in real physical time #;,. Such an approach
is useful to compute the maximal (jamming) coverage of the
surface. To apply RSA models to dynamical problems, it is
necessary to relate the time of the RSA simulation k and the
real time #,. This is a goal of this paper. We consider that the
adsorbing objects are molecules which can covalently attach
to the binding sites on the surface. We couple the RSA model
with processes in the solution above the surface to study the
irreversible adsorption of molecules in real time. The time
(tx—1;_;) between the subsequent attempts to place a mol-
ecule is in general a nonconstant function of k£ which de-
pends on the kinetics of the chemical reaction between the
adsorbing molecules and the surface, and on the stochastic
reaction-diffusion processes in the solution above the sur-
face. We illustrate our method with an example of the chemi-
sorption of reactive polymers to a virus surface [3,4]. Finally,
we show that the stochastic simulation in the solution can be
substituted by a suitable deterministic partial differential
equation which decreases the computational intensity of the
algorithm. We show that it is possible to get the values of #;
without doing extensive additional stochastic simulations.

We consider a three-dimensional cuboid domain
L, X L,X L. in which molecules diffuse (see Fig. 1). The side
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z=0 of area L, X L, is assumed to be adsorbing, i.e., contain-
ing binding sites to which molecules can covalently attach.
Our goal is to couple RSA on the side z=0 with stochastic
reaction-diffusion processes in the solution above the adsorb-
ing surface. Since those molecules which are far from the
surface will have little influence on the adsorption process, it
is a waste of resources to compute their trajectories. We will
therefore carefully truncate our computational domain to that
which is effectively influenced by the reactive boundary at
z=0, which we denote by z<<L(r). Note that L(z) is not fixed
but a function of time—the formula for it will be derived
later. Suppose that there are N(¢) diffusing molecules in the
cuboid domain L, X L, X L(z). Let us denote the z coordinate
of the center of mass of the ith molecule by z,(¢). Choosing a
time step Az, we compute z;(z+Ar) from z;(2), i=1,...,N(1),
by

2t + Ar) = z,(1) + V2D, Até;, (1)

where §; is a normally distributed random variable with zero
mean and unit variance and D, is the diffusion constant of the
ith molecule. Equation (1) states that the ith diffusing mol-
ecule can be viewed effectively as a point at position z,()
above the surface; its three-dimensional structure will be
taken into account later when we consider the adsorption of
molecules to the surface. In principle, we should model the
behavior of molecules as three-dimensional random walks in
the cuboid domain L, X L, X L(7), i.e., there should be equa-
tions analogous to Eq. (1) for the x and y coordinates, too.
However, we can often assume that L(¢) > L, in applications.
Choosing the time step Az large enough that a molecule trav-
els over distances comparable to L, during one time step, we

Ly

adsorbing
surface

z=0 z=L(t) z=L,

FIG. 1. Three-dimensional cuboid domain.
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FIG. 2. A schematic diagram of RSA.

can assume that the molecules are effectively well-mixed in
the x and y directions on this time scale. Consequently, the x
and y coordinates of molecules do not have to be simulated.
If the original adsorbing surface is large, one often models
by RSA only a representative part of it, i.e., a square
L, X L, which contains a relatively large number of binding
sites, but still satisfies L,<<L(z). The diffusion of molecules
(1) is coupled with other processes in the solution and on the
surface as follows.

CHEMICAL REACTIONS IN THE SOLUTION

Our illustrative example is the polymer coating of viruses
[3,4]. In this case, the polymer molecules have reactive
groups which can covalently bind to the surface. The reactive
groups also hydrolyze in solution. Assuming that there is one
reactive group per polymer molecule (such a polymer is
called semitelechelic), we have effectively one chemical re-
action in the solution—a removal of the reactive polymers
from the solution with rate \ [5]. Assuming that NAr<<1, the
stochastic modeling of the process in the solution is straight-
forward. At each time step, the ith molecule moves according
to Eq. (1). We then generate a random number r; uniformly
distributed in the interval [0, 1]. If r;<\At, we remove the
molecule from the system. More complicated reaction
mechanisms in the solution can be treated using stochastic
simulation algorithms which have been proposed for
reaction-diffusion processes in the literature [6-8]. In our
case, we treat diffusion using the discretized version of the
Langevin (Smoluchowski) equation (1). Consequently, we
can follow Andrews and Bray [6] to introduce higher-order
reactions to the system.

ADSORPTION TO THE SURFACE

The surface L, X L, at z=0 is assumed to be adsorbing.
We use a simple version of the RSA model from [4] which
postulates that the binding sites on the surface lie on a rect-
angular lattice—see Fig. 2. We assume that the polymer ra-
dius is of the same order as the distance between neighboring
binding sites 4, i.e., a “wiggling tail” of a polymer which is
bound to a lattice site prevents the binding of another poly-
mer to the neighboring lattice sites through steric shielding.
In this paper, we consider a solution of polymers which ad-
sorb as ‘“crosses” [4]—see Fig. 2. Binding a polymer to a
lattice site prevents the binding of another polymer to this
lattice site and to its four nearest neighbors. We assume that
the “wiggling tails” can overlap. Therefore, our illustrative
model of adsorption is the classical RSA with nearest neigh-
bor exclusion [1]. Such a RSA model can be simulated on its
own as shown in [4]. In this paper, we simulate it together
with the z variables of molecules in the solution (1) to get the
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RSA evolution in real physical time. Whenever a molecule
hits the boundary z=0, it is adsorbed with some probability,
and reflected otherwise. This partially adsorbing boundary
condition is implemented in the RSA context using the fol-
lowing two steps (a) and (b).

(a) If z(t+Ar) computed by Eq. (1) is negative then,
with probability PyArz, we attempt one step of the RSA
algorithm with the ith molecule. If the ith molecule is ad-
sorbed, we remove it from the solution. Otherwise, we put
7(t+Af)=—z,(1) = \V2D;At§,.

(b) If z;(t+Ar) computed by Eq. (1) is positive then, with
probability exp[—z;(£)z;(t+Af)/ (D;Af)]PVA?, we attempt one
step of the RSA algorithm with the ith molecule. If the ith
molecule is adsorbed, we remove it from the solution.

Here, P is a positive constant which can be related to the
rate constant of the chemical reaction between the binding
sites on the virus surface and the reactive groups on the
polymer [9]. This relation depends on the stochastic model of
diffusion and for Eq. (1) is given later—see formula (6).
Conditions (a) and (b) state that only the fraction PVAf of
molecules which hit the boundary have a chance to create a
chemical bond (provided that there is no steric shielding).
Obviously, if z,(+A¢) computed by Eq. (1) is negative, a
molecule has hit the boundary. This case is incorporated in
(a). However, Andrews and Bray [6] argue that there is a
chance that a molecule hit the boundary during the finite
time step At even if z;(r+Az) computed by Eq. (1) is positive;
that is, during the time interval [7,7+A¢] the molecule might
have crossed to z; negative and then crossed back to z; posi-
tive again. They found that the probability that the molecule
hit the boundary z=0 at least once during the time step A7 is
expl—z;(t)z,(t+ A1)/ (D;A1)] for z(1)=0, z;(t+At)=0. This
formula is used in (b).

NUMERICAL RESULTS

It is important to note that the boundary conditions (a) and
(b) can be used for any RSA algorithm and for any set of
reactions in the solution. To apply it to the virus coating
problem, we have to specify some details of the model. First
of all, it can be estimated that the average distance between
the binding sites is about 1 nm [3], i.e., we put h=1 nm. We
choose L,=100 nm. Therefore, there are about 10 000 bind-
ing sites on the adsorbing side z=0. We use RSA on a 100
X 100 lattice with the nearest neighbor exclusion, which is a
special case of the model from [4]. We consider a monodis-
perse solution of semitelechelic 50 kDa polymers, i.e.,
D;=D, where D=5X 10" mm?s~! [10]. The rate of hy-
drolysis of the reactive groups on polymers can be estimated
from data in [5] as A=1.3X107* s~'. We choose P=1 s~'/2.
Since we simulate the behavior of polymer molecules in so-
lution only along the z direction, we express the concentra-
tion of polymer c(z,) in numbers of polymer molecules per
volume L,XL,X[1 mm] where L,=10"* mm is fixed. A
typical experiment starts with a uniform concentration of re-
active polymers. Considering that the initial concentration of
50 kDa polymer is 0.1 g/1, we obtain the initial condition
co=1.2X 10* molecules per mm of the height above the sur-
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face (let us note that the units of the “one-dimensional” con-
centration c(z,¢) are molecules/mm because L, is considered
fixed). Next, we have to specify L(r) (see Fig. 1), i.e., we
want to find the region of the space which is effectively
influenced by the boundary condition at z=0. To that end, we
note that the concentration ¢(z,7) satisfies the partial differ-
ential equation

dc Do"zc N 2)

—=D— —\\c.

ot 9z*
Now any partially reacting boundary will have less impact
on the spatial profile of c¢(z,#) than perfect adsorption at
z=0. Thus we may find an upper bound for the region of
influence of the boundary by solving Eq. (2) subject to

¢(0,6)=0, lim c¢(z,t) = ¢y exp[— \t], (3)

7—00

for te[0,%), and the initial condition c¢(z,0)=c,, for
z€[0,). The solution of Egs. (2) and (3) is

z
c(z,t) = cy exp[— )\t]erf(ﬁ), (4)
0ExP 2\Dt
where erf(-) denotes the error function. Defining
w=erf"1(0.99) =1.821 we set
L(1) = 20\D1. (5)

Then ¢(L(z),t)=0.99¢, exp[—\t], so that the concentration of
the reactive polymer at point z=L(7) at time 7 is equal to 99%
of the polymer concentration at points which are “infinitely
far” from the adsorbing boundary. In particular, we can as-
sume that the adsorbing boundary effectively influences the
polymer concentration only at heights z € [0,L(r)] above the
boundary and we can approximate c(z,7)~ ¢, exp[—Az] for
z>L(t). Formula (5) specifies the computational domain as
L, X L,XL(t) at each time (see Fig. 1).

The results of the stochastic simulation of the solution
above the surface are shown in Fig. 3 as gray histograms. To
simulate the behavior of N(r) reactive polymers, we consider
only their z positions. We use At=1072 s and we update the z
positions of molecules during one time step according to Eq.
(1). At each time step, we also generate a uniformly distrib-
uted random number r; and we remove the ith molecule from
the system if r;<<NAz. We work in the one-dimensional do-
main [0,L(r)] where L(r) is given by Eq. (5). The RSA
boundary condition at z=0 is implemented using (a) and (b)
described above. The right boundary increases during one
time step by AL(r)=L(t+At)—L(z). During each time step,
we have to put on average m(f)=c, exp[—\7]AL(f) molecules
into the interval [L(¢),L(t+A¢)]. This is done as follows. We
put |m(r)] molecules at random positions in the interval
[L(t),L(t+At)], where |-] denotes the integer part. Moreover,
we generate random number r,, uniformly distributed in
[0,1] and we add one molecule at a random position in the
interval [L(¢),L(t+At)] if ry,<m(t)—|m(¢)]. This will ensure
that we put on average m(f) molecules to the interval
[L(t),L(t+Ar)] during one time step.
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FIG. 3. Concentration of polymer molecules in the solution
above the adsorbing surface z=0 at times 20 and 80 min.

Introducing the moving boundary decreases the computa-
tional intensity of the model. Initially we simulate a rela-
tively small region with a high concentration of reactive
polymers. The simulated region increases with time but the
concentration of reactive molecules decreases with rate .
Using Eq. (4), it can be computed that the maximal number
of simulated polymers in solution is achieved at time
t,=(2\)"'=64 min (and is about 8 X 10°> molecules for our
parameter values).

The number of polymers adsorbed to the RSA surface at
z=0 as a function of real physical time is shown in Fig. 4.
Since the polymer solution is assumed to be monodisperse,
we can run the RSA algorithm first and record the times
ky,ky,ks,... (expressed in numbers of the RSA time steps) of
successful attempts to place the polymer on the RSA lattice.
Then the stochastic simulation of the reaction-diffusion pro-
cesses in the solution can use k;,k,,ks,... as its input. We
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FIG. 4. Number of polymer molecules adsorbed to the RSA
lattice as a function of the real physical time.
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will shortly consider another approach to the problem, re-
placing the stochastic simulation of the solution by the con-
tinuum limit (2) with a suitable Robin boundary condition.
To enable a direct comparison of the two approaches, we use
the same sequence k;,k,,ks,... in ten realizations of the full
stochastic model of adsorption; the results are shown as gray
solid lines in Fig. 4.

RSA-PDE APPROACH

Moving the right boundary L(¢) is one way to decrease the
computational intensity of the problem. Another possibility
is to use the deterministic equation (2) together with a Robin
boundary condition

dc 2P
—(0,1) = agsa(t) ==c(0,1) (6)
0z VD

at the adsorbing boundary z=0. Here, the fraction 2P/\D
corresponds to the rate of the chemical reaction between the
adsorbing boundary and the diffusing molecules in the
solution—see [9] for the derivation of this formula and fur-
ther discussion. Factor agga(?) € {0, 1} provides the coupling
between the RSA model and Eq. (2). To find the value of
apsa(f), we estimate the number of attempts to place the
polymer on the RSA lattice by

k() = U ZPch(O,t)dt , (7)
0o N

where |-] denotes the integer part [9]. We start with
agsa(®)=1 and we solve Egs. (2) and (6) numerically. When-
ever k(f) increases by 1, we attempt one step of the RSA. If
the attempt is successful, we put agga(f)=1. If the attempt to
place the molecule is not successful, we put agga()=0. Thus
agsa(?) has only two values, 0 and 1, and changes at com-
puted time points depending on the output of the RSA simu-
lation. We call this procedure the RSA-PDE approach. It also
leads to the sequence of real physical times T oty s Ty s of
successful attempts to place the polymer on the RSA lattice.
The numerical solution of Eq. (2) with the Robin boundary
condition (6) at z=0 is presented in Fig. 3 as the solid line
for comparison. We also plot the number of adsorbed poly-
mers as a function of the real time as the dashed line in Fig.
4. To enable the direct comparison, we run the RSA algo-
rithm first and we record the times of successful attempts to
place the polymer on the lattice. We obtain the sequence
ky.ky,ks,... of times expressed in number of RSA time steps.
This sequence is used in both the stochastic model (10 real-
izations plotted in Fig. 4 as gray solid lines) and the RSA-
PDE approach (dashed line in Fig. 4). The comparison of the
results obtained by the full stochastic model and by the RSA-
PDE model is excellent.
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Formulas (6) and (7) can also be used to estimate the
characteristic time scale T of the RSA algorithm (in the real
physical time). Let K be the average number of RSA time
steps which are needed for adsorption of one half of the final
(jamming) number of polymers to the surface. Then K is the
characteristic time scale of the RSA algorithm expressed in
the number of RSA time steps. The number K is proportional
to the total number of lattice sites L2/A>. Tt can be estimated
from the kinetic properties of the particular RSA algorithm
[11]. In our case, we have K~ L?/(3h?). Knowing K, we can
estimate T as follows. Using formula (6), we see that ¢(0,?)
is of the order (cy/2P) VT provided that we approximate «
as 1. Consequently, formula (7) implies that

2P\D (7

\

K= c(0,7)dt = covﬁ.
Vr Jo

Solving for 7, we obtain that the time scale of the RSA can
be approximated as
K> L

" D 9Dt

Using our parameter values D=5X 107 mm?s~!, ¢,=1.2
% 10* molecules per mm, L,=10"* mm, and ~#=10"° mm, we
compute 7= 26 min. Comparing with Fig. 4, we see that we
obtained a reasonable estimate of the RSA time scale. The
computed number T is larger than the time when half of the
final number of polymers is adsorbed because we approxi-
mated « as 1 during the computation of this time scale. If we
want to get the precise relation between the RSA time and
the physical time, we have to follow the stochastic algorithm
described above, or the less computationally intensive RSA-
PDE approach.

CONCLUSION

We have presented a method to perform RSA simulation
in real physical time. The key part of the method is the
boundary conditions (a) and (b) which can be coupled with
any reaction-diffusion model in the solution and any RSA
algorithm. We illustrated this fact on a simple model of the
polymer coating of viruses. Moreover, we showed that the
RSA algorithm can be coupled with Eq. (2) using the Robin
boundary condition (6) to get comparable results. The Robin
boundary condition (6) is also not restricted to our illustra-
tive example. It can be used for the coupling of any RSA
model with the PDE model of the reaction-diffusion pro-
cesses in the solution above the adsorbing surface.
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