
Model for dynamical coherence in thin films of self-propelled microorganisms

Igor S. Aranson,1 Andrey Sokolov,1,2 John O. Kessler,3 and Raymond E. Goldstein3,4,5,6

1Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
2Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, USA

3Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
4Program in Applied Mathematics, University of Arizona, Tucson, Arizona 85721, USA

5BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
6Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

Wilberforce Road, Cambridge CB3 0WA, United Kingdom
�Received 7 August 2006; published 2 April 2007�

Concentrated bacterial suspensions spontaneously develop transient spatiotemporal patterns of coherent
locomotion whose correlation lengths greatly exceed the size of individual organisms. Continuum models have
indicated that a state of uniform swimming order is linearly unstable at finite wavelengths, but have not
addressed the nonlinear dynamics of the coherent state, with its biological implications for mixing, transport,
and intercellular communication. We investigate a specific model incorporating hydrodynamic interactions in
thin-film geometries and show by numerical studies that it displays large scale persistently recurring vortices,
as actually observed.
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Recent experiments �1–4� have shown that swimming
bacteria in concentrated suspensions exhibit an intriguing dy-
namics that, were it not at such low Reynolds numbers Re,
might be labeled “turbulent.” This new state, dubbed the
“Zooming BioNematic” �5�, is characterized by transient, re-
curring swirls and jets with lifetimes of several seconds and
correlation lengths ranging from a few tens of microns �in
thin films containing either E. coli �1� or B. subtilis �4�� to
several hundred microns �in sessile or pendant drops with B.
subtilis �3��. Driven entirely by the input of mechanical en-
ergy at the smallest scales, through rotation of the helical
flagella by motors in the cell wall, these dynamics display a
transfer of energy from small scales to large. Such flows in
confined geometries are important for fundamental and tech-
nological reasons, from understanding coherent motion in
groups of interacting objects �flocks, schools, herds �6–8��,
to microfluidic devices �9�, to highly concentrated popula-
tions of bacteria acting as über-organisms �10�.

Various theoretical models �11–13� have suggested that a
state of true long-range order of swimming orientation, sug-
gested by pioneering phenomenology �6,7� and later work
�8�, is linearly unstable if the long-range interactions be-
tween particles are taken into account. The fate of the system
beyond that instability has not been well studied within the
context of those models. On the other hand, a proposed �3�
analogy with sedimenting suspensions, in which transient
and recurring vortices and jets are commonly observed, sug-
gested that the structures seen in experiment might arise
purely from hydrodynamic interactions. Such interactions
appear to underlie as well behavior of sperm cells �14� and E.
coli �15� near surfaces. Direct numerical simulations �16� of
ensembles of self-propelled particles, whose interactions are
given solely by the hydrodynamic flow fields they generate,
confirm this notion, showing large-scale swirls beyond a
critical volume fraction. Yet, while clearly identifying the
significance of hydrodynamic interactions, these studies have
not yet provided a clear picture of the mechanisms of scale
selection and the nature of the transition from random mo-

tion at low concentration of swimmers to collective motion
at higher concentrations.

Motivated in particular by recent experiments on thin
films of bacterial suspensions with controllable density �4�,
we study here the nonlinear dynamics of a continuum model
describing self-propelled particles. The model is formulated
in terms of a two-dimensional master equation for the prob-
ability density P�r ,�� of finding bacteria at a particular ori-
entational angle � at position r= �x ,y�, derived from micro-
scopic interaction rules. As we know, purely steric
interactions align slender objects �17�, a process which has
received considerable attention within theoretical biology
�18� and physics �19�. Our work also relates to the problem
of collective dynamic orientational order in suspensions of
biological filaments and motor proteins moving along them
�19–21�. The master equation links the scale of individual
bacteria to the macroscopic scale of collective motion, de-
scribed by continuum coarse-grained equations for local bac-
terial density and orientation. The system is supplemented by
the Navier-Stokes equations for the fluid with forcing due to
swimming of oriented bacteria. In the nonlinear regime, the
model reveals a scale selection mechanism associated with
deflection of bacterial swimming by the shear flow, and is in
qualitative agreement with experiment �4�.

We model the bacteria as polar rods of length l, diameter
d0, subject to two rules: �i� bacteria swim at velocity v0 with
respect to the fluid in the direction of their unit orientation
vector n= �cos � , sin ��; �ii� in a collision of two bacteria
with the angles �1,2 the pair swims off in the direction of the
average orientation �̄= ��1+�2� /2 from a location r̄= �r1
+r2� /2, the average of their immediate post-collisional loca-
tions. By analogy with the physics of granular matter, we call
this a fully inelastic collision, and it arises from the quadru-
pole velocity field of swimmers �16�. It is readily seen in
experiment �Fig. 1�. Bacteria are also subject to rotational
and translational diffusion due to tumbling and small-scale
hydrodynamic flows, and are advected by the fluid. The mas-
ter equation is �19�
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The second and third terms on the left-hand side of Eq. �1�
account for the hydrodynamic advection of bacteria and their
rotation by the flow, whose vorticity is �= ��yvx−�xvy�ẑ.
The first two terms in the right-hand side of Eq. �1� describe
angular and translational diffusion of rods with the diffusion
tensor Dij = �D�ninj +D���ij −ninj��. Dij are known in poly-
mer physics: D� =kBTe /	�, D�=kBTe /	�, and Dr=4kBTe /	r,
where 	� ,	� ,	r are corresponding drag coefficients. For rod-
like molecules, they are 	� =2�
sl / ln�l /d0�, 	�=2	�, and 	r

	�
sl
3 /3 ln�l /d0�, where 
s is shear viscosity and Te is ef-

fective temperature �23�. The effective temperature Te is un-
derstood here to arise from small-scale hydrodynamic flows
and bacterial tumbling, and can exceed considerably the ther-
modynamic temperature. The last term in Eq. �1� describes
the coupling to strain rate tensor E �Exy =�xvy +�yvx� �21,24�.
Our further analysis shows that while this term has some
quantitative effect, e.g., on the instability threshold, it does
not change the qualitative conclusions. Thus for simplicity
we set the coupling constant �=0 and neglect contribution of
E.

The nonlinear term of Eq. �1� describes short-range binary
interactions of rods. The two � functions in the collision
integral describe “annihilation” of a particle with the angle
�1 and “creation” of particle with the angle �̄. The interac-
tion kernel W is localized in space, and for the sake of sim-
plicity we neglect the anisotropy of the kernel which is es-
sential for self-organization of microtubules �19�. Kernel
anisotropy will generate higher-order terms in the coarse-
grained equations which do not affect behavior on a qualita-
tive level �19�. We set W= �g /b2��exp�−�r1−r2�2 /b2� with
b
 l and g the interaction cross section. This form implies
that only nearby bacteria interact effectively.

We introduce the coarse-grained density ��r�=�−�
� d�P

and orientation �= �1/2���−�
� d�n�r�P. As shown earlier

�19�, the spatially homogeneous limit of Eq. �1� exhibits on-

set of an oriented state above the critical density �c
= �Dr /g� / �4/�−1�. Near this threshold, Eq. �1� can be sim-
plified significantly by means of a standard bifurcation
analysis, yielding a pair of coupled equations for � and �.
Also near threshold, P depends slowly on the variable r, so
we keep only leading terms in the expansion in spatial gra-
dients of the Fourier expansion of Eq. �1� in �, truncated at
second order. With rescalings r→r / l, t→Drt, and �
→g� /Dr, we obtain �19�

�t� + � · ��v� = D0�
2� − v0�� · � , �2�

�t� + v · �� +
1

2
� � � = ��� − 1��

− A0���2� + D1�
2� + D2�� · � −

v0

4�
�� . �3�

Equation �2� describes advection of the bacteria by hydrody-
namic velocity v and diffusive spreading with the diffusion
coefficient D0. Here D1= �D� +D� /2� /2Drl

2, D2= �D�

−D�� /2Drl
2. In the rigid rods limit D1=5/192, D2=1/96

�19�. For small density � and for the case of pure thermal
diffusion of particles, the diffusion coefficients obey D0
= �D� +D�� /2Drl

2. In the present context, this connection is
not clear, especially for larger densities due to diffusive-type
contributions from the collision integral in Eq. �1�. In experi-
ments, there are no significant density fluctuations observed,
so we treat D0�D1,2 as an independent parameter in order
to suppress density variations. In Eq. �3� the first term on the
right-hand side describes the orientation instability, with �
=0.276, A0=2.81 for fully inelastic particles�19�. Terms pro-
portional to v0 arise from bacterial swimming with respect to
the fluid.

The in-plane fluid velocity v obeys the Navier-Stokes
equation with forcing due to bacterial swimming

�tv + v · �v = 
�2v − �p − �v + �� , �4�

with � ·v=0 by incompressibility. In Eq. �4�, 
=
0 /Drl
2,

where 
0 is the fluid kinematic viscosity, p is the pressure,
and ��, with �
v0, models the forcing due to bacterial
swimming. While our experiments, along with earlier ones
�1�, are performed in the free-hanging film geometry, the
surfactant accumulated on both surfaces of the fluid film play
the role of semiflexible walls, resulting in a nontrivial veloc-
ity profile across the film. The forcing term in Eq. �4� is
formally different from that for the self-propelled particles
proposed in Ref. �11�, where the force is represented by the

FIG. 1. �Color online� Se-
quence of experimental images il-
lustrating an “inelastic collision”
between swimming Bacillus subti-
lis in a thin film. Colliding bacte-
ria �highlighted� swimming from
left to right begin misaligned in
�a�, reorient during collision �b�,
and swim off parallel afterwards
�c�. See Movie 1 in �22�.
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divergence of certain three-dimensional stress tensor �ij, but
integration of that stress tensor over the film’s cross section
produces a contribution 
� due to boundary effects. The
damping term �v is generated by the thin film surface elas-
ticity resulting in the partial slip condition for the velocity on
the surface of the film.

To eliminate the pressure and satisfy continuity we intro-
duce the stream function �, with vx=�y�, vy =−�x�, and �
=�2�. Then Eq. �4� yields

�t� + v · �� = 
�2� − �� + ���y�x − �x�y� . �5�

Equations �2�, �3�, and �5� form a closed system. For flows
with vanishingly small Reynolds numbers �as we deal with�
the advection term v ·�� can be neglected relative to the
viscous dissipation 
�2�, but we keep it since a similar term
is included in Eq. �6�. While Re for individual swimming
bacteria is exceedingly small, for the collective flows Re can
grow significantly. To simplify the analysis we consider the
constant density approximation �=�0 valid for a large D0
values. Then Eq. �3� yields

�t� + v · �� +
� � �

2
= ��� − 1�� − A0���2� + D1�

2�

+ D2�� · � . �6�

Equations �3�, �4�, or �5� have a steady-state solution corre-
sponding to a homogeneous stream of bacteria in a certain
direction �e.g., along x�: �x=�0= ����−1� /A0�1/2, �y =vy =0,
p=const, vx=V=��0 /�. The most unstable modes in the
problem are longitudinal, and we examine stability of this
state with perturbations of the form �� ,��
exp��t+ ikx�,
where � is the growth rate and k is the modulation wave
number. Linearization of Eqs. �3� and �5� shows that the
equation for �x splits off, with a growth rate having a strictly
negative real part, �=−ikV−2�0

2− �D1+D2�k2, while �y, �
are coupled:

��y = − ikV�y −
1

2
��0 − D1k2�y , �7�

�� = − ikV� − 
k2� − �� − ik��y . �8�

They yield the two growth rates �:

�1,2 =
1

2
�− �D1 + 
�k2 − � − 2ikV

± ���D1 − 
�k2 − ��2 − 2ik�0�� . �9�

The instability occurs if the product ��0 exceeds a critical
value, whose value can be deduced by examining the limit
k→0. An expansion in powers of k of Re��� yields Re���

��2�0

2��3 −D1
�k2+O�k4�. Clearly, there is a long-wave in-

stability if ���0�2��3D1. The threshold density for this in-
stability �p always exceed critical density of the orientation
transition �c=1/�. However, �p−�c is small due to relative
smallness of the diffusion D1	0.026. Since V=��0 /� is the
collective steady-state swimming velocity, we can re-express
the instability criterion simply as V�Vd, whereVd=��D1.
Moreover, since �

 /d2, where d is the film thickness, we

find Vd=�
D1 /d. The selected wave number km can be ob-
tained in the limit of large collective swimming speed V.
Expanding Eq. �9� for ��0�1 we obtain

Re��� 	
1

2
�− �D1 + 
�k2 − � + ��k��0�� + ¯ . �10�

Then from Eq. �10� one finds �for �D1+
�k2���

km
3/2 = ��0�/4�D1 + 
� . �11�

Since �

v0l /d, where again l is the length of bacteria and
d is the film thickness �here we used expression for the drag
force F

v0l and included the scaling of orientation � with
the film thickness d�, and �0
��−�c, where �c is the critical
density of the orientation instability, we obtain km
�v0l��
−�c�1/2 /d
2�1/3. Thus the typical length scale of the instabil-
ity, L
1/km
d1/3, increases with the film thickness, in
qualitative agreement with the collection of available experi-
ments and numerical computations �16�.

We have conducted numerical studies of the full system
�2�, �3�, and �5� over a range of densities �, with periodic
boundary conditions. A typical flow pattern and distribution
of orientation vectors ��� is shown in Fig. 2. Remarkably,
over the entire computational domain the correlation be-
tween the fields � and v is close to zero, in agreement with
experiment �4�. However, there is always local correlation
between � and v through Eq. �5�.

The following quantities were evaluated: the typical hy-
drodynamic velocity v̄=��v2�− �v�2, and the velocity corre-
lation function K�r�,

K�r� =� dr��
0

2�

d��v�r�� · v�r + r��� �12�

averaged over the polar angle �. The correlation length L was
extracted from K�r� by a fit to an exponential decay K�r�

exp�−r /L�+const. The results are shown in Fig. 3. The
emerging picture of the transition has a strong resemblance
to a second order phase transition: the typical velocity v̄

��−�c, and the correlation length diverges at �→�c, con-
sistent with the prediction of Eq. �11�.

FIG. 2. �Color online� Representative flow patterns obtained by
solution of Eqs. �2�, �3�, �5� for �0=3.8, D0=50, 
=3, v0=0.2, �
=3, �=0.5 in the periodic domain of 200�200 units. Red color
corresponds to maximum of ���, and blue to �� � =0. Arrows depict
the flow velocity v field. �a� no noise; �b� noise level S=1.2
�10−5. See also Movie 2 and 3 �22�.

MODEL FOR DYNAMICAL COHERENCE IN THIN FILMS… PHYSICAL REVIEW E 75, 040901�R� �2007�

RAPID COMMUNICATIONS

040901-3



In order to include effect of fluctuation, we added
to the orientation equation �3� a random force ��x ,y , t�,
with correlation ���x ,y , t��*�x� ,y� , t���=2S��x−x����y−y��
���t− t��, where S is the noise amplitude. Results for various
noise strengths are shown in Fig. 3, where even a relatively
small noise �S=1.2�10−7� smears the transition and re-
moves the divergence of the correlation length. For strong

enough noise �S
10−5�, one observes only a gradual in-
crease of the correlation length with the density, in agree-
ment with experiment in thin film �4�.

We have proposed a model for the large-scale flows gen-
erated by ensembles of swimming bacteria in thin films, and
shown that the onset of coherence is attributed to the collec-
tive hydrodynamic interaction between individual objects. In
identifying a nontrivial mechanism setting the scale of emer-
gent patterns, provides an alternative approach to the de-
scription of active hydrodynamic systems �21�. Experimental
studies of the dependence of coherent structure scales on
lateral boundaries and of the mixing and transport within the
collective state are keenly needed. While the equations of
motion are derived from simple interaction rules dictated by
experiments, additional experimental studies and simple
swimmers simulations �16� are required to validate the
model �e.g., the values of � and ��.
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FIG. 3. �Color online� Typical hydrodynamic velocity v̄ �upper
panel� and velocity correlation length L vs density for three differ-
ent levels of noise S and for parameters of Fig. 2.
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