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The available numerical algorithms for trend removal require a direct subjective intervention in choosing
critical parameters. In this paper an algorithm is presented, which needs no initial subjective assumptions.
Monotone trends are approximated by piecewise linear curves obtained by dividing into subintervals the signal
values interval, not the time interval. The slope of each linear segment of the estimated trend is proportional to
the average one-step displacement of the signal values included into the corresponding subinterval. The evalu-
ation of the trend removal is performed on statistical ensembles of artificial time series with the random
component given by realizations of autoregressive of order one stochastic processes or by fractional Brownian
motions. The accuracy of the algorithm is compared with that of two well-tested methods: polynomial fitting
and a nonparametric method based on moving average. For stationary noise the results of the algorithm are
slightly better, but for nonstationary noise the preliminary results indicate that the polynomial fitting has the
best accuracy. As a verification on a real time series, the time periods with monotone variation of global
average temperature over the last 1800 years are established. The removal of a nonmonotone trend is also
briefly discussed.
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I. INTRODUCTION

In many practical situations processing experimental ob-
servations of superposed phenomena having different time
scales is needed. Statistical methods can be used to separate
these components from the global signal. For example, trend
removal is performed by different methods from the simpler
ones �least-squares fit of a parametric family of functions or
smoothing by moving average� to more complex as discrete
differencing �1� or wavelet analysis �2�. More sophisticated
methods should be used only if their results are significantly
better than the results of the simpler ones. A common draw-
back of the available methods is a direct subjective interven-
tion in choosing critical characteristics such as functional
form of the trend, number of averagings or differentiations of
the signal, length of the averaging interval, type of the basis
functions, etc.

In this paper a trend removal algorithm, which needs no
initial assumptions, is proposed. It is based on a statistical
method, which approximates the trend by a piecewise linear
curve obtained by dividing into subintervals the signal values
interval, not the time interval. The slope of each linear seg-
ment of the estimated trend is proportional to the average
one-step displacement of the signal values included into the
corresponding subinterval, therefore the method is referred
to as average conditional displacement �ACD�. Here only the
case of the monotone trend is considered. The extension of
the ACD method to a nonmonotone trend is discussed in the
last section and will be presented in a separate future paper.

In practice there are situations when the trend monotony
is specially required, for example, ascertainment of the time
periods with monotone variation of the global atmospheric
temperature, problem discussed in Sec. V. But even when the
trend monotony is not significant, the initial separation of a
monotone component from the global nonmonotone trend
may be useful. Even if initially there is no indication that a
persistent phenomenon has a contribution to the generation

of the time series, however, rendering evident a significant
monotone component is a reason to test the existence of such
a phenomenon. Obviously, the main interest in real applica-
tions is to estimate the whole trend, including the turning
points.

As a rule, the trend removal methods do not take into
account whether the estimated trend is or is not monotone.
The exceptions are the methods in which the trend is explic-
itly looked for as a monotone function, usually a linear, ex-
ponential, or logarithmic function. The weakness of this ap-
proach consists in the limited number of available monotone
functional forms. If an enrichment of the functional forms is
attempted, for example, using polynomials of order greater
than one, then the monotony property is lost. From this point
of view, the advantage of the ACD method is that it can
describe a much richer set of monotone trends as piecewise
linear functions. Furthermore, if the ACD method does not
succeed to remove a monotone trend, this is useful informa-
tion to characterize the time series properties because it
shows that no monotone component could be associated to
that series.

Besides the request that the estimated trend should be
monotone, another essential feature of the ACD method is its
capacity to support the development of an automatic algo-
rithm. The automatic choice of the values of the ACD pa-
rameters is performed by means of a numerical estimation of
the standard deviation of the signal random component. The
quality of the estimated standard deviation and the accuracy
of the automatic ACD algorithm are tested on artificial sig-
nals with stationary noises of type AR�1� �autoregressive of
order one�.

Even without a thorough analysis, the ACD method is
also applied on signals with nonstationary noise. Such sig-
nals occur in detrended fluctuation analysis �DFA� �3�, ex-
tensively used for the detection of long-range correlations in
time series with deterministic trend and stationary 1/ f noise.
A detailed analysis of DFA and a review of its applications
are presented in �4�. The initial signal is summed up, result-
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ing in a secondary one with nonstationary noise. An essential
step in DFA is the repeated removal of polynomial trends by
means of the least-squares method from the secondary signal
and DFA could be significantly improved if the trends were
removed by means of an automatic algorithm like the exten-
sion of the ACD method for the nonmonotone trend.

Since ACD is a method which does not develop any of the
trend removal methods used at present, there is no obvious
term of comparison for its performance evaluation. Therefore
I have chosen two reference methods based on secondary
criteria. The first one is the polynomial fitting with different
degrees used in DFA. The second one is “the jump process”
presented in �5� which has some similarities with the method
used in the ACD algorithm to dampen the fluctuations. Thus
I have chosen for comparison one representative from each
of the two major types of trend removal methods �parametric
and nonparametric� extensively reviewed in �5�. The perfor-
mance of the ACD algorithm is slightly better than that of the
reference methods, but its main quality is the possibility to
apply it automatically, without any subjective intervention.

In the next section I describe the ACD algorithm. Then, in
Sec. III I present the types of artificial time series used to
analyze the ACD algorithm and an estimation of the magni-
tude order of the standard deviation of a stationary noise
superposed on a monotone trend. Section IV contains the
analysis of the ACD parameters and the description of the
automatic algorithm associated with the ACD method. The
performance comparison of the ACD algorithm with the
polynomial fit and the jump process is made in Sec. V, where
I also analyze the variation of the global temperature anoma-
lies over the last 1800 years. In Sec. VI nonmonotone trends
and short time series are analyzed. In the last section I sum-
marize the results and briefly discuss the extension of the
ACD method to a nonmonotone trend.

II. ACD METHOD

Consider a time series �xn�, with 1�n�N, generated by
the stochastic process

Xn = fn + Zn, �1�

where �Zn� is a discrete stochastic process with �Zn�=0 and
fn are the values of the trend f�t� at the moments
tn= �n−1��t, �t being the sampling interval. The time takes
values within the finite interval t� �0,1�. We assume that Zn

does not depend on the trend values fn and f�t� has a slow
and monotone variation and a vanishing temporal average

f̄ =N−1	n=1
N fn=0.

If the stochastic process �Zn� is stationary, then a math-
ematical justification of the ACD method can be given. We
denote by pz�z� the probability distribution of Zn and by
px�x ,n� that of Xn, which depends explicitly on the time in-
dex n because �Xn� is a nonstationary process. According to
Eq. �1�, the two distributions are identical with the exception
of a translation by fn, i.e., px�x ,n�= pz�x− fn�. The infinitesi-
mal interval about a given real number � is denoted by I�

= ��−�� /2 ,�+�� /2�. The average number of values of the
time series �xn� lying within I� is given by �N����, with

�N�� = 	
n=1

N

pz�� − fn� . �2�

We define the average one-step displacement with the ini-
tial value in the neighborhood of �

g����� =
1

�N��
	
n=1

N−1

pz�� − fn���Xn
Xn � I�� , �3�

where �Xn=Xn+1−Xn. Using the conditional probability den-
sity for successive values of the stationary stochastic process
�Zn� denoted by pz�z� 
z��, we can write

��Xn
Xn � I�� = ���
−�

+�

�x − ��pz�x − fn+1
� − fn�dx ,

where relation px�x ,n+1 
� ,n�= pz�x− fn+1 
�− fn� is used.
From the simple change of variables z=x− fn+1 and from the
definition of the conditional probability and the consistency
condition for the joint probability density pz�z� ,z��

pz�� − fn� = �
−�

+�

pz�z,� − fn�dz ,

it follows that Eq. �3� becomes

g��� =
1

�N��
	
n=1

N−1

�fn+1 − fn�pz�� − fn� + ���� . �4�

The first term is the average of the one-step variation of the
trend within the neighborhood of �. A similar relation is ob-
tained if the final value is included in I�.

The second term in Eq. �4�

���� =
1

�N��
	
n=1

N−1 �
−�

+�

�z + fn − ��pz�z,� − fn�dz �5�

measures the difference between g��� and the trend average
slope. Let us investigate when this term vanishes. If the trend
variation at one time step is much smaller than that of the
noise �
f��tn��t 
 ��Z for all n�, then the sum can be approxi-
mated by an integral. If, in addition, the trend is linear f�t�
=at+b and we make the change of variable �=�− f�t�, then
we obtain

���� =
a

�N���t
�

�−f1

�−fN

d��
−�

+�

�z − ��pz�z,��dz .

Consider that the noise Zn has the symmetry property pz�z�
= pz�−z� and pz�z� ,z��= pz�−z� ,−z��. It follows that for �
= �f1+ fN� /2 the term ���� vanishes and its value increases
when � approaches the extreme values of the time series. If
the noise is moderately asymmetric, then ���� vanishes for a
different � but close to �f1+ fN� /2.

Under the conditions of the previous paragraph, since
fn+1− fn=a�t, from Eqs. �4� and �2� it follows that g���
=a�t, i.e., we find the exact slope of the linear trend. In the
general case of nonlinear trends, g��� /�t is only an approxi-
mation of the trend slope f��t�. The trend F�t� estimated by
the ACD method is calculated from the requirement that its

CĂLIN VAMOŞ PHYSICAL REVIEW E 75, 036705 �2007�

036705-2



derivative expressed with respect to the function values �not
to the argument� should be proportional to the average one-
step displacement

g��� = F��F−1�����t . �6�

This relation holds only if F�t� is invertible, i.e., if g��� pre-
serves the same sign over all its domain of definition.

Our goal is to find the numerical quantity corresponding
to the theoretical one defined in Eq. �3� using the values of a
time series �xn� obtained as a realization of the stochastic
process �Xn�. The infinitesimal intervals I� must be replaced
with finite ones. We divide the domain of the time series
values into disjoint intervals Is= ��s ,�s+1�, s=1,2 , . . . ,S, so
that any value xn is contained into an interval Is. Denote by
Ns the number of values xn lying within Is corresponding to
the theoretical quantity �N�� defined in Eq. �2�. The intervals
Is can be chosen in many ways. The simplest solution is to
use homogeneous intervals, i.e., the values of Ns should dif-
fer from each other by a unit at the most. Then the total
number of intervals S is the single parameter describing the
distribution of the series values. For the final form of the
ACD algorithm we use a distribution into nonhomogeneous
intervals described in Appendix B.

The one-step variation of the time series is �xn=xn+1−xn.
For a given s, we compute the sample average of �xn under
the condition that the initial or final values should be in-
cluded into the interval Is

ĝs =
1

2Ns
� 	

xn�Is

�xn + 	
xn+1�Is

�xn
 , �7�

which corresponds to the definition in Eq. �3�. If all the val-
ues ĝs have the same sign, then we can use them to deter-
mine a numerical approximation of the trend by a piecewise

linear curve denoted F̂�t� and corresponding to the theoreti-
cal one in Eq. �6�. Since the initial f1 and the final fN values
of the trend are unknown, we use instead the extreme values
of the time series �xn�.

The domain of definition t� �0,T� of the function F̂�t� is
different from that of the real trend f�t�. Therefore the nu-
merical values of the estimated trend are obtained either by

translation F̂n= F̂��	+n��t�, or by scaling F̂n= F̂�nT /N�. The
optimal estimated trend is given by the requirement that the

difference �xn− F̂n� should have a minimum standard
deviation.

If the fluctuations described by �� causes the quantities ĝs

to have different signs, then the estimated trend F̂n cannot be
determined and the fluctuations are smoothed by means of a
moving average. Therefore the numerical algorithm of trend
removal using the ACD method consists of a succession of
trend extractions and moving average smoothings. Denote by
�xn

�i�� the time series obtained after a succession of i extrac-
tions and smoothings. Initially xn

�0�=xn. First, at each step i,

we try to remove an estimated monotone trend F̂n
�i�

xn
�i+1� = xn

�i� − F̂n
�i�. �8�

If ĝs does not have the same sign �F̂n
�i�=0 for all n�, then

�xn
�i+1�� is computed by moving averaging. After i steps, the

estimated trend is the sum of the removed components

F̂n = 	
i

F̂n
�i� �9�

and the estimated random component is

ẑn = xn − F̂n. �10�

The time series processing is interrupted when the standard
deviation of the residual �xn

�i�� is 
 times smaller than that of
the initial series �
 is a given positive real number�, or if the
standard deviation of �xn

�i+1�� is larger than that of the previ-

ous step �xn
�i��, or if by adding the component �F̂n

�i+1�� the

estimated trend �F̂n� is not monotone.
For the interior values two-sided moving averages are

performed over an interval of length 2K+1. If n�K �n�N
−K�, then the average is taken over the first n+K �the last
N−n+K+1� values. This asymmetric average forces the val-
ues near the time series boundaries to follow the variations
of the interior values. The initial averages are performed on
small intervals such that the trend should be deformed as
little as possible. For the first smoothing we use K=1. If the
quantities ĝs do not acquire the same sign, then K is gradu-
ally increased by a unit for each new smoothing up to a
maximum value Kf and then the next smoothings are com-
puted keeping the same value for K. In this way a compro-
mise is made between the computing efficiency and the re-
quirement that the trend should not be distorted when the
noise is small.

A numerical problem of the ACD algorithm described
above is the possibility that some values ĝs

�i� could be very
close to zero and then the segments of the estimated trend in
the corresponding intervals Is would be almost parallel to the
time axis. In such a case the estimated trend would be arti-
ficially deformed and its length would be much longer than
the length of the initial series �T�1�. In order to eliminate
this possibility we impose the additional condition that the
absolute value of the slope ĝs

�i� should have an inferior
bound. Denote by ns

min �ns
max� the time step when the signal

takes for the first time �the last time� a value in the interval
Is. The difference 
ns=ns

min−ns
max is the number of time

steps during which the time series takes all the values in Is.
Then we choose the minimum value of the estimated trend
slope as 
ĝs

�i�
� ��s+1−�s� /
ns.
Since the ACD algorithm is rather complex, it is affected

by many error sources. First, there is the theoretical error
given by Eq. �5� which is larger when the trend nonlinearity
is greater, the time step is larger, and the coordinate � is
closer to the extreme values of the time series. Then, the
numerical implementation induces other errors such as the
replacement of the infinitesimal intervals I� with the finite
ones Is, the use of the extreme values of the time series
instead of those of the real trend, and the trend distortion by
moving average. In spite of the error diversity, the evaluation
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presented in Secs. V and VI shows that the final error of the
ACD algorithm is not larger than the errors of the usual trend
estimation methods. This result could be explained by the
fact that the errors of the successive estimations of the trend

components F̂n
�i� compensate each other.

III. ARTIFICIAL TIME SERIES

The ACD algorithm performance is analyzed using statis-
tical ensembles of time series with as various as possible
characteristics. We generate the time series according to Eq.
�1� superposing realizations of a given stochastic process
�Zn� on a monotone trend. Since in Sec. V the ACD algo-
rithm is compared with the polynomial fit, we do not analyze
the algorithm for a polynomial trend, but for f�t�= t / �a− t�,
t� �0,1�, with a�1. If the trend were of the same functional
form as the function used in the least-squares-fit method,
then the ACD method would be disadvantaged. We choose
this functional form because its slope f��t�=a / �a− t�2 has a
nonhomogeneous distribution with its extreme values near
the boundaries of the definition domain: the minimum at t
=0 and the maximum at t=1. It is more difficult to remove
such a trend than one with the maximum slope in the interior
of the definition domain because numerical algorithms are
more difficult to implement near the boundaries of the time
series. In our case the ratio between the maximum and the
minimum slope is f��1� / f��0�= �1−1/a�−2. We give to the
parameter a values within the interval a� �1.1,2.0�, so that
the ratio of the extreme values of the slope varies between
121 and 4. The resolution of the time series is varied with
one order of magnitude choosing the number of values N
within the interval N� �100,1000�.

The majority of the numerical tests are performed on sig-
nals with a stationary random component �zn� so that they
obey the theoretical considerations in Sec. II. We numeri-
cally generate realizations of a stationary stochastic process
�Zn� of type AR�1� �autoregressive of order one� defined by
Zn=�Zn−1+Gn, where 0���1 and �Gn� is a Gaussian noise
with null mean and standard deviation �G. The properties of

the AR�1� stochastic process are well-known �6�. Its prob-
ability distribution is Gaussian with null mean and standard
deviation �Z

2 =�G
2 �1−�2�−1. When the value of the parameter

� increases, the successive values of the noise become more
correlated. In the numerical tests � takes values within the
interval �� �0,0.99�, white noise being obtained for �=0.
By means of the noise standard deviation �Z we control the
ratio between the variation due to the noise and that due to
the trend. In order to generate signals of both types, the val-
ues of �Z are chosen within the interval �Z� �0.1,10�. Fig-
ure 1�a� contains two signals with AR�1� noise, one domi-
nated by noise, the other by trend.

Taking into account the intention that the extension of the
ACD method for a nonmonotone trend should be used in
DFA, I have chosen for preliminary tests a 1 / f noise, i.e.,
�ZnZn+h��h�, where 0���1. Such stationary time series
with unit standard deviation are generated applying the nu-
merical method in �7� for a spatially correlated noise on a
one-dimensional time lattice. An important step in DFA is the
polynomial trend removal from a series obtained by sum-
ming up the initial one yn=	k=1

n xk, which is a nonstationary
fractional Brownian motion. Figure 1�b� shows two signals
�yn� obtained by summing up a time series �xn� with a 1/ f�

noise with �=0.4. Although the theory presented in Sec. II
does not hold for nonstationary noise, we remove the trend
replacing in Eqs. �7�–�10� xn and zn with yn and 	k=1

n zk,
respectively.

In time series processing a critical parameter is the ratio
of the overall trend variation to the amplitude of noise fluc-
tuations quantitatively expressed as

�0 = � f/�Z, �11�

where � f is the trend standard deviation and �Z is the noise
standard deviation. Figure 2 shows the dependence of �0 on
the noise standard deviation �Z for the extreme values of the
trend parameter a. The global variation of �0 ranges over
three magnitude orders providing a sufficient diversity of the
time series characteristics on which the ACD algorithm is
tested. The signals in Fig. 1�a� correspond to the two possible
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FIG. 1. Examples of signals used to analyze the performance of the ACD method. The noise is superposed on the trend f�t�= t / �a− t�,
t� �0,1� represented with a thin line. The values of the trend parameter are a=2 �thick line� and a=1.1 �point markers�. �a� Stationary AR�1�
noise with �=0.9 and �Z=1. �b� Nonstationary noise given by a realization of a fractional Brownian motion obtained by summing up a 1/ f�

noise with �=0.4.
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cases: �0�1 for a=1.1 when the signal is dominated by
trend and �0�1 for a=2.0 when the signal is dominated by
noise. Thus a time series with AR�1� noise is characterized
by four parameters: the series length N �related to the reso-
lution of the series�, the trend parameter a, the parameter �
describing the correlation between the successive terms of
the noise, and the noise standard deviation �Z.

In building an automatic algorithm for time series pro-
cessing it is useful to have a simple criterion to estimate the
order of magnitude of the noise standard deviation �Z using
only the values of the original series �xn�. The random com-
ponent �zn� is actually one of the unknown quantities which
has to be determined by numerical processing. Denote by
�mxn=xm+n−xn the variation of order m�N of the time series
�xn�. According to the justification given in Appendix A, a
workable estimation of the magnitude order of �Z is given by

�Z
est =

1
�2

�̂��m0
xn� , �12�

where �̂�·� is the sample standard deviation and m0 is the
smallest integer number m�N /2 for which

��m0+1xn� � ��m0
xn� , �13�

where �·� is the usual quadratic norm. I have tested the accu-
racy of the estimation �12� on 1000 time series with AR�1�
noise, each of them with parameters N, a, �, and �Z ran-
domly chosen within their maximum range of variation. In
Fig. 3 a remarkable correlation between the actual value of
�Z and the estimated one from Eq. �12� is noticeable. Only
for �Z�1 there are some estimated values almost one order
of magnitude greater than the real value. A percentage of
2.8% time series for which there is no value m0 satisfying
Eq. �13� is missing from the figure. Such situations occur
when the noise standard deviation is very small �see Appen-
dix A� and then we consider �Z

est=0. In the next section we
describe a method to obtain a nonvanishing estimation even
in these cases. In Appendix A we also prove that estimation

�12� is meaningful even if the trend is not monotone, such
that it can be applied without additional restrictions on an
arbitrary signal.

IV. ACD PARAMETERS

In order to apply the ACD method there are two things to
be done: �1� establish the values of two parameters �the
maximum value 
 of the ratio between the initial signal stan-
dard deviation and the final residual standard deviation and
the maximum value Kf of the semilength of the averaging
interval�; and �2� distribute the signal values into disjoint
intervals Is. In this section we show how these tasks can be
automatically accomplished.

First we analyze the influence of the parameter 
 on the
ACD performance. Since no criterion to choose the values of
the other parameter Nf has been established, its values are
chosen randomly according to a homogeneous probability
distribution over its variation range. The parameter Nf con-
trols the speed of the damping of the signal fluctuations by
the moving average. Its value is calculated from the value of
the semilength Kf of the averaging interval �Nf =2Kf +1�
which takes values in the interval Kf /N� �0.01,0.1�. For the
shortest signals �N=100� the minimum value of Kf is Kf =1.

In this stage of the analysis we use homogeneous intervals
Is, such that they are completely described by a single pa-
rameter, i.e., the total number of intervals S. The minimum
value of this parameter is Smin=2, and the maximum one
Smax= �N /Nmin�, where �·� is the integer part function and
Nmin=14 is the minimum number of the signal values neces-
sary to recognize a Gaussian white noise, which is deter-
mined in Appendix A. In the end we shall introduce a non-
homogeneous distribution of the data values.

The optimum value of the parameter 
 is found by means
of the estimation �12� of the noise standard deviation. It is
known that the sample mean of a random variable with a
Gaussian distribution has the standard deviation �Nr times
smaller than that of the random variable, where Nr is the
number of realizations. Considering that the reduction by
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FIG. 2. Average ratio of the trend standard deviation to the noise
standard deviation in terms of standard deviation of the noise for
the maximum value �a=1.1� and the minimum one �a=2.0� of the
trend parameter for time series with AR�1� noise.
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FIG. 3. Correlation between the standard deviation of an AR�1�
noise superposed on a monotone trend and the estimated standard
deviation of the noise.
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�Nr times of the standard deviation is a measure of the maxi-
mum effectiveness which a statistical method can have, we
assume that in the case of the ACD method the standard
deviation of the final residual can be at best �Z /�N as well.
Then we assume that the optimum value of 
 is


opt =
�N�̂x

�Z
est , �14�

where �̂x is the sample standard deviation of the original
signal. As noticed in the previous section, there are situations
when Eq. �12� does not allow the determination of �Z

est and
then 
opt cannot be calculated. Since such situations occur if
�Z is small with respect to the variation due to the trend, then
first the trend is removed from the time series �xn� and the
estimation �12� is applied to the residual obtained. The trend
removal is performed by means of the ACD algorithm with
S=Smax homogeneous intervals and Kf =0.1N. If the trend
removal is not possible, then we apply Eq. �12� to the differ-
ence between the initial signal and its moving average
performed with Kf =0.01N. In this way, we always obtain
a value �Z

est by means of which 
opt in Eq. �14� can be
calculated.

Figure 4 shows the dependence of the accuracy of the
ACD method on the three ACD parameters. We evaluate the
accuracy of the trend removal by means of the index

� = �F̂n − fn�/�fn� . �15�

The smaller �, the more alike the original and the estimated
trends are. If the method ACD does not succeed to remove

the trend �F̂n=0�, then �=1. Therefore ��1 means that the
estimated trend differs more from the real one than a vanish-
ing trend and the estimated trend removal would cause a
distortion of the information contained by the signal. In such
cases the trend removal is not recommended �8� and in Sec.
V we describe a method to recognize such situations. The
results in Fig. 4 are obtained for statistical ensembles of time
series with lengths N=100 and 1000 and with trend param-
eters a=1.1 and 2.0. The number of time series in a statistical
ensemble has a value between 300 and 3000, such that for
each type of time series the standard error for the average
evaluation index ��� is smaller than 5%.

Figure 4�a� shows the average evaluation index ��� with
respect to the parameter 
 for random values of the param-
eters Kf and S. The time series have the random component
either stationary of type AR�1� with �Z=1 and �=0.9 �con-
tinuous lines� or a nonstationary fractional Brownian motion
with �=1.4 �dashed lines�. For 
�
opt the average index ���
reaches a stationary value in all cases, this kind of behavior
showing that the value given by Eq. �14� assures the retrieval
of all available information from the original signal. As a
rule, for 
�
opt, ��� decreases for increasing 
, showing the
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FIG. 4. Dependence of the average evaluation index of the ACD algorithm on the ACD parameters. The time series are characterized by
different values of their length N and of the parameter a in the trend formula f�t�= t / �a− t�, t� �0,1�. The couple �N ,a� takes the values
�100,2.0� �asterisk marker ��, �100,1.1� �cross marker ��, �1000,2.0� �circle marker ��, and �1000,1.1� �square marker ��. In panels �a�, �c�,
and �d� the random component of the signals is a stationary AR�1� noise with �Z=1 and �=0.9 �continuous lines� and a nonstationary
fractional Brownian motion with �=1.4 �dashed lines�. In panel �b� the random component is a stationary AR�1� noise with �Z=0.1 and
�=0.9 �continuous lines�, and �=0 �dashed lines�. �a� and �b� The variable parameter is the maximum value 
 of the ratio between the
standard deviation of the initial signal and that of the final residual, while the other two ACD parameters have random values. A log-log scale
is used. �c� The variable parameter is the maximum value Kf of the semilength of the averaging interval while 
=
opt and S takes random
values. A log-linear scale is used. �d� The evaluation index � for S homogeneous intervals divided to the evaluation index �* obtained using
nonhomogeneous intervals in terms of the ratio rS= �S−Smin� / �Smax−Smin� while 
=
opt and Kf =0.1N. A standard error for ��� smaller than
5% is obtained with statistical ensembles containing 500 �a�, 3000 �b�, and 300 ��c� and �d�� time series.
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importance of a right choice of 
opt, because if 
 has too
small a value, then the trend is not completely removed. The
only situation in which, for 
�
opt, ��� increases for increas-
ing 
 is for time series with N=100 and a=2.0 �asterisk
marker�. For such time series, for greater 
 the trend removal
leads to worse results, i.e., decreasing the standard deviation
of the final residual, the estimated trend becomes more and
more different from the real one. This behavior is due to the
fact that when the signal is dominated by noise and its reso-
lution is low, the estimated trend follows the noise fluctua-
tions, not the trend. As seen in Fig. 4�a� �signals with the
same characteristics as the ones previously discussed but
with N=1000 and marked with open circles�, increasing the
signal resolution can render accessible the information on the
trend. These results show that the optimum value of the pa-
rameter 
 is correctly given by Eq. �14�.

Equation �14� implies a special procedure to calculate �Z
est

when �Z has small values. The validity of this procedure is
verified in Fig. 4�b� for time series with AR�1� noise with the
minimum standard deviation �Z=0.1. In all cases the average
evaluation index ��� reaches a stationary value for 
=
opt

after significant decreases. This behavior is in accordance
with the fact that when the noise is small, the trend can be
easily removed. Another observation is that the results de-
pend on the parameter �, i.e., on the correlation between
successive values of noise. For �Z�1 the results are similar
with those previously discussed for signals dominated by
noise and we do not present them here.

With the optimum value of the first parameter given by
Eq. �14�, we go on to analyze the parameter Kf controlling
efficiency of the moving averaging in the ACD method while
the data values are distributed into a random number S of
homogeneous intervals. The larger Kf is, the longer the av-
eraging intervals and the more strongly damped the noise
fluctuations are, but at the same time the more distorted the
trend is. Figure 4�c� contains the results for signals with
AR�1� noise with �Z=1 and �=0.9 �continuous lines� and
with nonstationary fractional Brownian motion with �=1.4
�dashed lines�. Over the entire variation range of Kf the av-
erage evaluation index ��� has approximately the same value.
Also for other values of �Z and � the behavior of ��� is
similar, therefore we could choose for Kf an arbitrary value.
However, the number of averagings decreases with almost
two orders of magnitude when Kf varies and to save com-
puting time we use its maximum value Kf =0.1N.

Finally we analyze the optimal distribution of the data
values into intervals Is, using for 
 and Kf the optimum val-
ues determined above. When we distribute the time series
values into disjoint intervals Is, we have to take into account
two opposite requests. If the noise fluctuations are much
smaller than the trend variation, then it is recommended to
use a large number of intervals Is in order to describe the
trend shape as accurately as possible. On the contrary, if the
noise fluctuations are much larger, then it is better to use a
smaller number of intervals Is, each of them containing more
signal values so that the noise fluctuations may be smoothed
as much as possible in the average slope given by Eq. �7�.
Therefore we distribute the signal values into a number of
disjoint intervals inversely proportional with the estimated

standard deviation of the noise �Z
est given by Eq. �12�,

Sest = �xmax − xmin�/�Z
est, �16�

where xmax and xmin are, respectively, the maximum and the
minimum value of the time series �xn�. If the value obtained
from Eq. �16� is smaller than Smin �larger than Smax
= �N /Nmin��, then we impose Sest=Smin�Sest=Smax�. Since, as a
rule, N is not exactly divisible by Sest, the distribution of the
series values into Sest homogeneous intervals is performed so
that the number of values Ns for different s may differ at
most with a unit.

The distribution of the signal values into Sest homoge-
neous intervals must be corrected in order to take into ac-
count some numerical characteristics of the ACD algorithm.
In Appendix B we describe an algorithm of splitting and
merging the homogeneous intervals, in the end resulting S*

nonhomogeneous intervals. The ACD method with nonho-
mogeneous intervals cannot be evaluated as easy as that for
homogeneous ones. The values of the series �xn� can be dis-
tributed into a given number of intervals in many ways. In an
exhaustive analysis, the algorithm described in Appendix B
should be compared with all the possible distributions of the
signal values for all the allowed values of S. However, we
are satisfied with an automatic algorithm having an accuracy
comparable with that of the simplest nonautomatic form of
the ACD method. Therefore we use as a reference in our
comparisons the ACD method with homogeneous intervals
of signal values. Figure 4�d� presents the average of the
quantity ln�� /�*�, where � is the evaluation index in Eq. �15�
obtained for different numbers S of homogeneous intervals
and �* is the evaluation index for S* nonhomogeneous inter-
vals obtained according to Appendix B. Since the maximum
value Smax= �N /Nmin� of the parameter S depends on the sig-
nal length N, in Fig. 4�d� the ratio rS= �S−Smin� / �Smax

−Smin� is used as an independent variable. The result of a
trend removal is better when the evaluation index � is
smaller and then the positive values of the quantity ln�� /�*�
indicate that the ACD algorithm with S* nonhomogeneous
intervals gives a more correct estimated trend than with ho-
mogeneous intervals.

In Fig. 4�d� one notices that in most of the presented cases
the accuracy of the two forms of the ACD method is approxi-
mately equal and in the rest of the cases the accuracy ob-
tained with nonhomogeneous intervals is better. Only in a
single case �signals with 1/ f noise of length N=1000 and
trend parameter a=1.1� there are values of S for which the
accuracy obtained with homogeneous intervals is signifi-
cantly better. For all the analyzed signals with AR�1� noise
�results not presented here� the ACD algorithm with nonho-
mogeneous intervals have comparable or better accuracy.
From these results we can conclude that although the distri-
bution of the signal values into S* nonhomogeneous intervals
is not the best solution, however, its accuracy is good enough
to be used in the automatic form of the ACD method.

Since the verification of the optimum values of the param-
eters 
 and Kf has been performed using the distribution of
the signal values into homogeneous intervals, it is necessary
to repeat the tests using nonhomogeneous intervals. The re-
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sults are almost identical to those in Fig. 4 and we do not
present them here.

Thus we have obtained an automatic form of the ACD
method for monotone trend removal theoretically and nu-
merically substantiated for time series with stationary noise
which can be useful as well if the noise is nonstationary.
Figure 5 shows the average evaluation index for the final
automatic form of the ACD algorithm with nonhomogeneous
intervals applied to the artificial time series discussed in Sec.
III, with different lengths N. In all the cases, when N in-
creases, the accuracy of the trend removal is improving. For
signals with large noise and small slope ��Z=10 and a=2.0�
for all the values of N, ����10 showing that the estimated
trend follows more the noise in the signal than the real trend.
Increasing the trend slope �a=1.1� or decreasing the noise
��Z=1�, the evaluation index reaches the usefulness limit
����1. For the rest of the time series, even for those with
1/ f noise, we obtain ����1, indicating that they allow an
efficient trend removal by means of the ACD algorithm.

On a standard 3 GHz Pentium 4 PC processing a time
series with N=1000 required 0.4 CPU seconds for AR�1�
noise and 0.8 CPU seconds for 1 / f noise. The maximum
number of partial estimated trend components was 4, and it
was not significantly influenced by the series length or noise
type. The number of the moving averagings increases di-
rectly proportional to the series length. For N=1000, on av-
erage, 80 smoothings were needed and the maximum number
of smoothings was 140.

V. EVALUATION OF THE ACD ALGORITHM

The evaluation of the ACD method is performed by com-
parison with two trend removal methods used at present, one
parametrical, the other nonparametrical. The trend is re-

moved from time series of the same type as those described
in Sec. III. The comparison of the accuracy of different
methods is realized by means of the quantity ln�� /�ACD�,
where � is the evaluation index in Eq. �15� of the method to
be compared with and �ACD is the evaluation index of the
automatic ACD algorithm. We use the logarithm of the quan-
tity � /�ACD because this way the cases when ���ACD are
better visualized. The result of a trend removal is better when
the evaluation index is smaller and then the positive values
of the quantity ln�� /�ACD� indicate that the ACD method
gives a more accurate estimation of the trend than the refer-
ence method.

Figure 6 shows the results of the comparison with the
polynomial fit of degrees from 1 to 10. First we notice that
the polynomial fitting does not dispose of a parameter
equivalent to 
 of the ACD algorithm, i.e., the polynomial
trend is estimated by a single step and there is no possibility
to control the magnitude of the final residual. In addition let
us remind that if the signal is dominated by noise, then, as
the degree of the polynomial increases, the number of coef-
ficients to be determined by least-squares fit increases too
and they are more strongly affected by the random compo-
nent of the signal. Therefore the accuracy of the polynomial
fit for noise dominated signals decreases with the polynomial
degree. Reversely, if the signal is dominated by trend varia-
tion, a greater polynomial degree implies an improvement of
the trend extraction results.

Since �ACD does not depend on the polynomial degree, the
curves plotted in Fig. 6 describe the dependence of the quan-
tity ln �poly on the polynomial degree, but translated with a
constant −ln �ACD, different for each type of time series.
Hence comparing Figs. 6�b� and 6�c� one can see that, as
expected, the polynomial fitting gives better results if the
polynomial has a larger �smaller� degree when the signal is
dominated by trend �noise�. This contradictory behavior
makes very difficult an automatic choice of the optimum
value of the polynomial degree for all the possible types of
time series.

From the first three panels of Fig. 6, it is difficult to draw
a definite conclusion regarding the relation between the ACD
accuracy and that of the polynomial fit. For �Z=1 �continu-
ous lines in Fig. 6�a��, the ACD algorithm has better perfor-
mance for short time series �N=100�, when the fitted poly-
nomial follows more the noise fluctuations than the trend,
especially for higher polynomial degrees. If the resolution is
increased �N=1000�, then for degrees higher than 3, the two
methods have comparable accuracy. For the signals domi-
nated by trend in Fig. 6�b� ��Z=0.1� the accuracies are com-
parable for low resolution. At high resolution the results of
the two methods are very sensitive to the polynomial degree.
For degrees smaller than 5 the ACD accuracy is significantly
better and for degrees higher than 5 significantly worse. For
the signals dominated by noise in Fig. 6�c� ��Z=10�, the
ACD is better in almost all cases. Although the accuracy of
the ACD algorithm is not significantly better than that of the
polynomial fitting, this comparison indicates that the auto-
matic form of the ACD algorithm has been obtained preserv-
ing performance comparable with that of existing algorithms.

For signals with 1/ f noise �dashed lines in Fig. 6�a��,
except the polynomials with degree 1 or 2, the ACD algo-
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FIG. 5. Dependence of the average evaluation index of the ACD
algorithm on the time series length. The time series differ from each
other by the parameter a in trend formula f�t�= t / �a− t�, t� �0,1�
�continuous lines correspond to a=2.0 and dashed lines to a=1.1�
and by the standard deviation of the AR�1� noise with �=0.9
�marker � corresponds to �Z=10, � to �Z=1, and � to �Z=0.1�.
The signals with 1/ f noise are marked with �. A standard error
smaller than 5% is obtained with statistical ensembles containing
300 time series.

CĂLIN VAMOŞ PHYSICAL REVIEW E 75, 036705 �2007�

036705-8



rithm has worse results. An explanation of this behavior
could be that many times it is difficult to differentiate a non-
stationary noise containing a so-called “stochastic trend”
from a variation due to a deterministic trend. For such sig-
nals the ability of the ACD algorithm to adjust itself to the
signal shape is a drawback since the estimated trend de-
scribes not only the deterministic trend but also the nonsta-
tionary noise.

Finally, Fig. 6�d� shows the fraction of the time series for
which the estimated polynomial trend is not monotone. Ob-
viously, the polynomials of order 1 preserve the monotony,
but for higher orders more than one-half of the estimated
trends are not monotone. It is interesting to remark that the
polynomials of odd degree allow a better identification of the
trend monotony.

The second comparison method is the “jump process” in
�5� and it consists in an iterative weighted averaging

xn
�i+1� = xn

�i� + R�xn−1
�i� − 2xn

�i� + xn+1
�i� � , �17�

where ratio R �0�R�0.5� and iteration parameter M
�i�M� are user-specified constants. At boundaries a sym-
metric extension of data is employed. As in the case of the
polynomial fitting, the averaging in Eq. �17� has opposite
effects on the accuracy of the estimated trend. When the
effect of the averaging is greater �larger values of the param-
eters R and M�, the noise fluctuations are more strongly
smoothed, but at the same time the trend shape is more
distorted.

Figure 7 contains the results of the comparison of the
ACD algorithm with the jump process for different values of
the parameter R and for M =100 fixed. For signals with
AR�1� noise, excepting a few cases with �Z=0.1 in Fig. 7�b�,
the ACD method has better accuracy. For signals with 1/ f
�dashed lines in Fig. 7�a��, although not so bad as for the
polynomial fit, the results of the ACD algorithm continue to
be worse than those of the comparison method. As discussed
above, comparing Figs. 7�b� and 7�c� one notices that, as
expected, the jump process has better results if the averaging
parameter R is smaller �larger� when the signal is dominated
by trend �noise�. From Fig. 7�d�, which shows the fraction of
time series for which the estimated trend is not monotone, it
follows that when R increases, more and more estimated
trends preserve the monotony of the real trend. The fraction
of the nonmonotone estimated trends depends also on the
standard deviation of the noise and on the signal length and
it becomes smaller if we increase the number of iterations M.

From the comparisons discussed above, we conclude that,
on average, the ACD algorithm removes monotone trends
with slightly better accuracy than the other two methods if
the noise is stationary. In the case of nonstationary noise the
accuracy is worse. Nevertheless, the ACD algorithm pre-
serves the advantage of its automatic form. In addition, the
ACD algorithm removes only monotone trend, not non-
monotone trend as the existing algorithms do. To illustrate
these special characteristics we estimate by means of the
three algorithms the monotone trend of a real time series
from paleoclimatology. Figure 8�a� shows the global mean
annual temperature anomalies during the period A.D. 200–
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FIG. 6. Comparison of the ACD accuracy with that of the polynomial fit in terms of the polynomial degree q. The time series are
characterized by different values of their length N and of the parameter a in the trend formula f�t�= t / �a− t�, t� �0,1�. The couple �N ,a�
takes the values �100,2.0� �asterisk marker ��, �100,1.1� �cross marker ��, �1000,2.0� �circle marker ��, and �1000,1.1� �square marker ��.
�a� The random component is a stationary AR�1� noise with �Z=1 and �=0.9 �continuous lines� and a nonstationary fractional Brownian
motion with �=1.4 �dashed lines�. �b� The random component is a stationary AR�1� noise with �Z=0.1 and �=0.9 �continuous lines� and
�=0 �dashed lines�. �c� The random component is a stationary AR�1� noise with �Z=10 and �=0.9 �continuous lines� and �=0 �dashed
lines�. �d�. The random component is as in panel �a� but the represented quantity is the fraction of the time series for which the polynomial
estimated trend is not monotone. A standard error for ��poly� smaller than 5% is obtained with statistical ensembles containing 200 time
series.
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1995 with respect to the Northern Hemisphere mean annual
temperature over 1856–1980 discussed in �9� and freely ac-
cessible from �10�.

The temperature anomalies series contains N=1796 val-
ues, many of them repeating themselves. In fact there are
only 48 distinct values and the distribution of the time series
values into disjoint intervals used in the ACD algorithm de-
mands that all values should be distinct. To satisfy this re-
quest without distorting the initial signal, we superpose on
the original values numbers randomly generated with a ho-
mogeneous probability distribution on a range 1000 times

smaller than the minimum difference between two distinct
signal values. The ACD algorithm has estimated the trend in
a single removal performed after 129 averagings. The series
values are distributed into S*=31 nonhomogeneous intervals
obtained by splitting Sest=9 homogeneous intervals. The es-
timated standard deviation of the noise is �Z

est=0.056 in com-
parison with the standard deviation of the initial series �̂x
=0.063. In Fig. 8�b� the ACD estimated trend is compared
with those estimated by the other two methods. As it follows
from Fig. 6�d�, most of the estimated trends by nonlinear
polynomial fit are nonmonotone. The linear trend, the only
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FIG. 7. Comparison of the ACD accuracy with that of the jump process in terms of the averaging parameter R for a fixed number of
iterations M =100. The time series are characterized by different values of their length N and of the parameter a in the trend formula f�t�
= t / �a− t�, t� �0,1�. The couple �N ,a� takes the values �100,2.0� �asterisk marker ��, �100,1.1� �cross marker ��, �1000,2.0� �circle marker
��, and �1000,1.1� �square marker ��. �a� The random component is a stationary AR�1� noise with �Z=1 and �=0.9 �continuous lines� and
a nonstationary fractional Brownian motion with �=1.4 �dashed lines�. �b� The random component is a stationary AR�1� noise with �Z

=0.1 and �=0.9 �continuous lines� and �=0 �dashed lines�. �c� The random component is a stationary AR�1� noise with �Z=10 and �
=0.9 �continuous lines� and �=0 �dashed lines�. �d�. The random component is as in panel �a� but the represented quantity is the fraction of
the time series for which the estimated trend is not monotone. A standard error for ��jump� smaller than 5% is obtained with statistical
ensembles containing 200 time series.
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FIG. 8. Global mean annual temperature anomalies during the period A.D. 200–1995 with respect to the Northern Hemisphere mean
annual temperature over 1856–1980 �9� and the trend estimated by means of ACD algorithm �continuous line�. In panel �b� the trends
estimated by means of the linear fit �dashed line� and jump process �dotted line� are also presented.
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polynomial trend which is assuredly monotone, exaggerates
the global variation of the time series and does not provide
any information on the slope variation over the analyzed
interval. In the case of the jump process, the time series must
be averaged until all the nonmonotone variations of the esti-
mated trend are eliminated. For R=0.4, M =329 637 averag-
ings were needed such that the computing time became pro-
hibitive. Besides that, even if the estimated trend has the
same shape as the ACD trend, due to the large number of
averagings, the magnitude of the global temperature varia-
tion is underestimated.

As shown in �8�, it is possible that, when the noise is
large, the trend removal should not be recommended. The
series in Fig. 8�a� is such a case. In order to verify that the

estimated trend �F̂n� is significant, we build surrogate series

x̂n= F̂n+ �̂n. Since the serial dependence of the noise has a
significant influence on the estimated trend quality, we

choose the surrogate series ��̂n� as realizations of an AR�1�
stochastic process. We note that the white noise is obtained
for �=0, so it is implicitly included among the possible sur-
rogate series. From the standard deviation and the autocorre-
lation at one time step of the estimated noise in Eq. �10� we
compute the value of the parameter � used in surrogates
generation. The fraction of the estimated trends for the sur-
rogate series �x̂n� having the same sign of the global variation

as the estimated trend �F̂n� for the original series is a mea-
sure of the probability that the estimated trend should corre-
spond to a real one in the original series. For example, from
the estimated trends for 100 surrogate series of the time se-
ries in Fig. 8�a�, only 58 are decreasing showing that the
association of a trend to the initial climatological series is
hazardous.

Climatologists are interested in the time periods with a
monotone temperature variation associated with geophysical
processes of global scale, as, for example, the global warm-
ing in the last century. I have applied the surrogate series
method described above on the global temperature anomalies
over time intervals measured in centuries, i.e., intervals
�t1 , t2� with

t1 = 200,300, . . . ,1900,

t2 = 300,400, . . . ,1900,1995

and t2� t1. The results are presented in Fig. 9. There are only
three time periods to which we can associate a monotone
trend with a confidence level of 99%. Two of them are re-
lated to the global warming over the last 2 centuries and the
third one corresponds to the 10th century. For 19 time peri-
ods the ACD algorithm did not succeed in associating a
monotone trend to the temperature variation. The rest of the
estimated trends cannot be considered “significant,” a con-
clusion which coincides with that in �9�.

VI. NONMONOTONE TREND

So far we have analyzed only time series with a monotone
trend. In this section we consider time series without trend or

with nonmonotone trend. In these cases, as well, the ACD
evaluated trend is monotone and it may or may not corre-
spond to a monotone component of the actual trend. There-
fore an evaluation of the statistical significance of the esti-
mated trend is needed, either using the surrogate series
method presented in the previous section, or applying a sta-
tistical test for monotone trend detection. In the following we
compare the results of the ACD algorithm with the Mann-
Kendall test �11�.

The Mann-Kendall test is based on the quantity S= P
−M, where P is the number of the pairs xn�xm with n�m
and M is the number of pairs xn�xm with n�m. If �xn� are
independent observations, then for N�10 the random vari-
able

ZMK = ��S − 1�/�S if S � 0

0 if S = 0

�S + 1�/�S if S � 0
�

with �S= �N�N−1��2N+5� /18�1/2 follows a standard normal
distribution. The null hypothesis that there is no monotone
trend is rejected when the computed ZMK value is greater in
absolute value than the critical value z�/2, where � is the
chosen significance level. This test was extended to a serial
dependent time series �12�, but here we restrain ourselves to
the simple original form of the test.

The Mann-Kendall test is used especially in hydrology,
other environmental sciences, and econometrics for short
time series, even containing only several dozens of values. In
order to obtain a complete analysis of the ACD algorithm
performance, we process time series of lengths down to the
inferior limit of validity of the Mann-Kendall test, i.e., N
=10. To make the ACD algorithm applicable to such time
series, we modify it as follows: for N�2Nmin=28, instead of
nonhomogeneous intervals we use S=2 homogeneous inter-
vals to distribute the signal values. According to Appendix
A, in such cases the estimated noise standard deviation has a
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FIG. 9. Time periods �t1 , t2� over which the global average tem-
perature has an increasing �� sign� or decreasing �� sign� trend.
The three bigger signs correspond to significant trends with a con-
fidence level of 99%. The ACD method did not succeed to estimate
a monotone trend for the time periods to which no sign is attached.
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larger error, however, the ACD algorithm can be applied
without any further modifications.

The so-called type I error of a statistical test occurs when
the null hypothesis is rejected although it is true. Figure 10
shows the probability � of type I error occurrence for the
Mann-Kendall test with 5% significance level applied to
AR�1� noise without trend, in terms of the correlation param-
eter �, for different lengths of the time series. The figure also
shows the relative frequency of the monotone trends esti-
mated by means of the ACD algorithm for the same time
series. One notices that the ACD algorithm estimates incor-
rectly a monotone trend much more frequently than it could
occur as a random event. The error of the ACD algorithm
diminishes when the time series length increases, however, it
remains much greater than the probability � of type I error
occurrence for the Mann-Kendall test.

All the trend estimation methods present errors due to the
lack of discrimination between monotone and nonmonotone
trends. As shown in Fig. 6�d� for nonlinear polynomial fit
and Fig. 7�d� for the jump process, these methods estimate
many times a nonmonotone trend when the actual one
is monotone. Being designed to remove the monotone
component of the trend, the ACD algorithm has an opposite
behavior.

The type II error of a statistical test occurs when the null
hypothesis is accepted although it is false. Our null hypoth-
esis is false if the signal contains a monotone trend. To ana-
lyze this kind of situation we introduce a trend composed of
a monotone linear trend and a sinusoid f�t�= p�t+a sin 2�t�,
t� �0,1�, where p and a are positive real parameters. This
formula allows us to make a continuous transition from a
monotone to a nonmonotone trend. When a=a0=1/ �2��
�0.159, the function f�t� has an inflection point at t=0.5
with the tangent parallel to the Ox axis. Therefore if a�a0
the trend is monotone, and if a�a0 it is nonmonotone.

The power of a statistical test is defined as one minus the
probability of type II error. Figure 11 shows the power of the

Mann-Kendall test for time series with �Z=1 and the mono-
tone trend described in the previous paragraph with a=a0
and different values of the parameter p. As expected, the
closest shape to the ideal test power �power vanishing for
p=0 and rapidly increasing up to 1� is obtained for white
noise ��=0� and longer series �N=50�. For correlated noise
the results are worse because the probability of type I error is
much larger than the significance level. Like in Fig. 10, the
relative frequency of the monotone trends estimated by the
ACD algorithm for the same time series is much greater than
the Mann-Kendall test power, reinforcing the previous con-
clusion that the ACD algorithm estimates the monotone com-
ponent of the trend.

In Fig. 12 we give an example of a monotone component
estimated by the ACD algorithm for a nonmonotone trend.
We have used a signal with N=1000 values given by the
nonmonotone trend f�t�= t+2a0 sin 2�t, t� �0,1�, without
superposed noise. One notices that the estimated trend is
significantly different from the “real” monotone component
of the trend, which is a straight line. This example shows that
for a nonmonotone trend one cannot define unequivocally a
monotone component and the ACD monotone estimated
trend is only one of the infinitely existing possibilities.

To evaluate the ACD algorithm results for nonmonotone
trend, the same method as that in Sec. V has been used. The
time series have N=10 and, respectively, N=50 values, in
order to provide information on the ACD performance for
very short time series too. The trend is given by f�t�= t
+a sin 2�t with variable a, such that the trend is continu-
ously modified from a linear one �a=0� to the nonmonotone
one represented in Fig. 12 �a=2a0�. Figure 13�a� shows the
dependence of the average evaluation index of the ACD al-
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FIG. 10. The probability of the type I error for the Mann-
Kendall test with 5% significance level applied to AR�1� noise with
different serial dependence �dashed line�. The continuous line rep-
resents the relative frequency of the monotone estimated trends by
the ACD algorithm for the same time series. For the results of the
ACD algorithm a standard error smaller than 4% is obtained with
statistical ensembles containing 1000 time series.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

p

po
w
er

FIG. 11. The power of the Mann-Kendall test with 5% signifi-
cance level �dashed lines� for time series with different lengths N
obtained by superposing AR�1� noise with �Z=1 on the monotone
trend f�t�= p�t+a0 sin 2�t�, t� �0,1�, in terms of the parameter p.
The continuous line represents the relative frequency of the mono-
tone estimated trends by the ACD algorithm for the same time
series. The couple �N ,�� takes the values �10,0� �asterisk marker ��,
�10,0.9� �cross marker ��, �50,0� �circle marker ��, and �50,0.9�
�square marker ��. For the results of the ACD algorithm a standard
error smaller than 2% is obtained with statistical ensembles contain-
ing 1000 time series.
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gorithm on the parameter a. From these results the same
conclusions as those in Sec. IV in connection with Fig. 5 can
be drawn: the accuracy is improving when N increases or �
decreases and the trend removal is efficient if the signal is
not dominated by noise. Furthermore, the ACD accuracy is
worsening when the contribution of the harmonic component
increases.

Since, as seen in Sec. V, the performance of the polyno-
mial fit increases for smaller degrees, we compare in Fig.
13�b� the ACD accuracy only with the linear fit. For small
values of parameter a the trend is almost linear, such that the
accuracy of the linear fit is better in all the cases. For greater
values of the parameter a and for small noise, the ACD
accuracy becomes better �N=50� or at least comparable
�N=10�. Only for a signal dominated by white noise
��=0 and �Z=1� the results of the linear fit are better in all
the cases. These are the only time series for which the jump
process has a better accuracy than the ACD algorithm �see

Fig. 13�c��. So we can conclude that, also for very short time
series or nonmonotone trend, the ACD accuracy remains
comparable with that of the usual trend estimation methods.
Besides, this result is obtained preserving the automatic fea-
ture of the ACD algorithm.

VII. CONCLUSIONS

The automatic ACD algorithm for monotone trend re-
moval presented in this paper can be applied on a time series
with stationary noise without any preliminary subjective in-
spection of the time series. The analysis of its performance
on artificial signals with AR�1� noise indicates that the
quality of the estimated trend is slightly better than that of
the usual nonautomatic methods. This conclusion is
confirmed by the results obtained for a real time series from
paleoclimatology.

The preliminary tests for nonstationary 1/ f noise show
that the ACD accuracy is worse than that of the polynomial
fit and likely of the parametric methods in general. The ex-
planation is presumably related to the fact that the realiza-
tions of a nonstationary stochastic process are difficult to
differentiate from a signal containing a deterministic trend
component. Then the ability of the ACD method to adjust
itself to the signal shape makes possible the confusion be-
tween the stochastic trend of the nonstationary noise and the
deterministic trend, whereas the parametrical methods which
have less degrees of freedom are less affected by such con-
fusions. Therefore the application of the ACD method to
nonstationary noises needs a special analysis. However, the
possibility to apply automatically the ACD method to a large
number of time series is an advantage which may justify its
utilization in some applications like DFA.

The analysis of the automatic ACD algorithm presented in
this paper should be extended. Further tests should be per-
formed both on different real time series and artificial ones
with greater lengths �N�1000�, other types of stationary
noises, and other functional forms of the monotone trend.
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FIG. 13. �a� Dependence of the average evaluation index of the ACD algorithm on the parameter a in the trend formula f�t�= t
+a sin 2�t, t� �0,1�. The time series are characterized by different values of their length N and the random component of the signals is a
stationary AR�1� noise with standard deviation �Z and different serial dependence �=0.9 �continuous lines� and �=0 �dashed lines�. The
couple �N ,�� takes the values �10,0.1� �asterisk marker ��, �10,1� �cross marker ��, �50,0.1� �circle marker ��, and �50,1� �square marker
��. A standard error smaller than 2% is obtained with statistical ensembles containing 1000 time series. �b� Comparison of the ACD accuracy
with that of the linear fit for the same time series as for panel �a�. �c� Comparison of the ACD accuracy with that of the jump process with
R=0.4 and M =100 for the same time series as for panel �a�.
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Also it is necessary to compare the performance of the ACD
algorithm with other trend removal methods besides the two
algorithms presented here �polynomial fit and jump process�,
in comparison with which the ACD accuracy was proved to
be slightly better.

The extension of the ACD method to nonmonotone trends
can be achieved by applying the ACD method separately to
the increasing, respectively, decreasing part of the signal.
This is possible if the sample average in Eq. �7� is computed
separately for the positive, respectively, negative variations
of the time series values. In this case a unique trend cannot
be determined because the final result depends on the manner
in which the two monotone parts of the estimated trend are
combined. However, the main advantage of the ACD method
is preserved, i.e., the functional form of the estimated trend
need not be imposed and the design of an automatic algo-
rithm for nonmonotone trend removal is possible.

In essence the ACD method tries to use in a more com-
plete way the information available in the transition prob-
ability of a stochastic process. The most elaborate method of
this type is that in nonequilibrium statistical physics, where a
hydrodynamical description of a fluid is obtained by averag-
ing the two-particle distribution function. In �13� it was
shown that a description of hydrodynamical type can be ob-
tained for any corpuscular system using space-time coarse-
grained averages of a kinematic description of the movement
of the component particles. This approach was applied to a
one-dimensional system �14� and then to a time series with
the space coordinate replaced by the values of a share price
�15�. From this point of view, the ACD method is a dis-
cretized form of the space-time coarse-grained averages with
disjoint space averaging intervals and the time averaging in-
terval identical with the signal duration. It is possible to de-
velop the ACD method for a time series with nonmonotone
trends as a more complete hydrodynamical description if
multiple overlapping subintervals are used for both space
and time.

APPENDIX A: ESTIMATION OF NOISE
STANDARD DEVIATION

A justification �not a rigorous proof� of estimation �12� of
the noise standard deviation for a realization �xn� of the sto-
chastic process in Eq. �1� is based on the fact that Zn does not
depend on the trend values fn. Then for N large enough we
have the approximate equality

��mxn�2 � ��mfn�2 + ��mzn�2, �A1�

where �·� is the usual quadratic norm and, as in Sec. III, we

use the notation �mx=xm+n−xn. Using the property f̄ =0, one
can prove that if �fn� is monotone, then for m�N /2 the
sequence ��mfn� is increasing

��m+1fn� � ��mfn� . �A2�

It follows that the left-hand term in Eq. �A1� decreases when
m increases only due to the term ��mzn�2. According to Eq.
�13�, m0 is the number of time steps when the first decrease
of ��mxn�2 takes place, i.e., the value of m for which the

variations of �xn� are dominated by noise. Since we intend to
estimate only the magnitude order of �Z, we neglect in Eq.
�A1� the term due to the trend. If m0 is large enough to
render Zm0+n and Zn independent, then Eq. �A1� becomes

��m0
xn�2 � 2�zn�2. �A3�

Since �Zn�=0, the right-hand term is proportional with the
sample standard deviation of the noise �̂Z. For the left-hand
term it is not rigorously true that it is proportional to the
corresponding standard deviation, but taking into account the
approximations made until now we write Eq. �A3� as estima-
tion �12�. The numerical tests presented in Fig. 3 show that
the obtained estimation is remarkable for an approximation
only of the magnitude order of the noise standard deviation.
The estimation quality remains the same for other functional
forms of the monotone trend �polynomial, exponential, loga-
rithmic, etc.�.

If we want to apply estimation �12� on real signals, we
have to establish what information on the noise standard de-
viation is supplied by this formula if the trend is not mono-
tone. Then Eq. �A2� is not true and the negative variations of
��mxn�2 with respect to m can result from both right-hand
terms in Eq. �A1�. So, even if the signal does not contain
noise, estimation �12� can take for noise the trend oscilla-
tions. Figure 14 shows the results obtained applying Eq. �12�
to a sinusoidal signal f�t�=sin 2��t, t� �0,1�. For ��0.25,
the signal is monotone and coincides with the trend, so that
the noise term in Eq. �A1� vanishes and according to Eq.
�A2� ��mxn� is increasing. Then there is no m0 satisfying Eq.
�13� and it is normal to consider that �Z

est=0. In Fig. 14
�Z

est=0 not only for ��0.25, but also for ���1=0.4. Hence
according to evaluation �12�, a sinusoid containing up to �1
periods is taken for a trend without noise, even if it is not
monotone anymore. Consequently, the estimation �12� is able
to recognize nonmonotone trends as well. For ���2=1, the
estimated standard deviation oscillates about an asymptotic
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value ��
est=1, a larger value than the standard deviation of an

infinite sinusoid ��=1/�2. In other words, a sinusoid con-
taining more than �2 periods is erroneously identified to a
noise with standard deviation ��

est. The interval �� ��1 ,�2�
represents a transition domain between the two dominant
behaviors of evaluation �12�.

Actually we are interested first of all in the ability of
estimation �12� to identify a noise superposed on a nonmono-
tone trend. Therefore, on the sinusoid analyzed above we
superpose a white Gaussian noise with �Z=0.1. In this case
the results strongly depend on the signal resolution. Figure
14 shows the estimations for N=200 and one notices that for
different realizations of the noise, different values of �Z

est for
the same � can be obtained. However, if ���1, all values of
�Z

est are clustered about the real value �Z, and if ���2, most
values cluster about the value ��

est obtained for sinusoid with-
out noise. Hence if the sinusoid without noise is interpreted
as a trend, then the noise standard deviation is correctly es-
timated and when it is interpreted as noise then the whole
signal is considered as noise. If the signal resolution in-
creases �N�200� then the correct value of �Z is obtained for
���2 too. For example, if N=1000, then �Z

est��Z for �
�2. This result proves that Eq. �12� gives a useful estimation
of the order of magnitude of a noise superposed on a non-
monotone trend. A detailed analysis of the extension for non-
monotone trends of estimation �12� will be the subject of a
future paper.

As a first application of Eq. �12� we estimate the mini-
mum number of values Nmin needed lest a Gaussian white
noise should be interpreted as a trend. If the number of val-
ues is very small �N�10�, then there is a significant prob-
ability that no m0 satisfying Eq. �13� should exist and the
noise is interpreted as a trend. For example, for N=4 �the
minimum value of N for which Eq. �13� is meaningful�, out
of 1000 realizations of a Gaussian white noise with unit stan-
dard deviation 35% are not recognized as noise. The largest
value of N for which we still obtain �Z

est=0 in 0.1% cases is
N=12. However, we choose Nmin=14 in order to be sure that
in no case �Z

est=0, and then ��Z
est�=1.105 with �Z

est

� �0.38,2.26�. These results are consistent with the Mann-
Kendall test for monotone trends �11�, which is applicable
only if N�10. The estimation of the noise standard deviation
is strongly improved when N increases. For N=1000 we ob-
tain ��Z

est�=1.015 with �Z
est� �0.935,1.110�. These results are

used in Sec. IV and in Appendix B to distribute the time
series values into disjoint intervals.

In the case of correlated AR�1� noise, the value of m0
increases when � approaches 1. For example, for 1000 time
series with �=0.9, �Z=1 and N=1000, the average value of
m0 is 26.9 and ��Z

est�=0.984 with �Z
est� �0.724,1.365�. The

average value ��Z
est� is as accurate as that for the Gaussian

white noise, but the fluctuations of the individual values are
greater. This behavior is due to the fact that for large values
of � the stochastic trend becomes important enough to be
interpreted in Eq. �12� as a deterministic trend.

APPENDIX B: NONHOMOGENEOUS INTERVALS
OF SIGNAL VALUES

The signals dominated by noise or trend impose different
numerical restrictions on the ACD algorithm and it is advis-
able that the numerical algorithm should adapt itself to the
signal type. Since the parameter �0 defined by Eq. �11� can
be calculated only if we know the signal components, we
have to introduce a new parameter expressed by means of the
values of the initial series

�est = � �̂x

�Z
est − 1� , �B1�

where �̂x is the sample standard deviation of the signal and
�Z

est is given by estimation �12�. If �est�1, then 
�̂x−�Z
est


��Z
est and the noise standard deviation represents the largest

part of the whole signal, i.e., the signal is dominated by
noise. Conversely, if �est�1, then the signal is dominated by
trend.

Equation �16� applied to a signal dominated by noise
��est�1� generates a small number of homogeneous inter-
vals Is, each of them containing a large number of values.
For longer signals, the number of values in Is increases and
the computing time can become prohibitive. For this reason,
when �est�1, we split into two subintervals those intervals
which by splitting generate a larger number of values than
the quantity Nmin defined in Appendix A. For example, con-
sider the interval Is= ��s ,�s+1�. By splitting it, we obtain two
subintervals Is�= ��s ,�s+1� � and Is+1� = ��s+1� ,�s+1�, where �s+1�
= ��s+�s+1� /2. The two subintervals contain in general differ-
ent numbers of values Ns��Ns+1� . If Ns��Nmin and Ns+1�
�Nmin, then the splitting is validated and the number of in-
tervals Is increases by one. If all Sest intervals can be split
generating 2Sest new intervals, then the splitting process is
repeated until at least one of the intervals does not satisfy
anymore the condition that the two subintervals should con-
tain more than Nmin values. In the end we obtain S* nonho-
mogeneous intervales Is containing arbitrary numbers of time
series values.

Applied to a signal dominated by trend ��est�1�, Eq. �16�
generates a large number of homogeneous intervals Is, each
of them with a small number of values inducing large fluc-
tuations of the mean slope in Eq. �7�. Therefore we merge the
intervals with smaller length than �Z

est, �s+1−�s��Z
est. Con-

cretely, the successive intervals Is , Is+1 , . . . , Is+m are joined in
a new interval Is�= ��s ,�s+m+1�, containing Ns�=Ns+Ns+1+ ¯

+Ns+m values if �s+m+1−�s��Z
est and �s+m+2−�s��Z

est. Thus
we obtain S* nonhomogeneous intervals.
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