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We present an implementation of quantum annealing �QA� via lattice Green’s function Monte Carlo
�GFMC�, focusing on its application to the Ising spin glass in transverse field. In particular, we study whether
or not such a method is more effective than the path-integral Monte Carlo- �PIMC� based QA, as well as
classical simulated annealing �CA�, previously tested on the same optimization problem. We identify the issue
of importance sampling, i.e., the necessity of possessing reasonably good �variational� trial wave functions, as
the key point of the algorithm. We performed GFMC-QA runs using such a Boltzmann-type trial wave
function, finding results for the residual energies that are qualitatively similar to those of CA �but at a much
larger computational cost�, and definitely worse than PIMC-QA. We conclude that, at present, without a serious
effort in constructing reliable importance sampling variational wave functions for a quantum glass, GFMC-QA
is not a true competitor of PIMC-QA.
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I. INTRODUCTION

Quantum annealing �QA� �1,2� is an optimization method
based on the idea of searching for the ground state of some
classical Hamiltonian by adiabatically switching off an ap-
propriate source of quantum fluctuations, in much the same
way as temperature would do in classical thermal annealing
�CA� �3�. The same approach is also known as adiabatic
quantum computation �4� in the quantum information com-
munity.

A very popular QA approach is based on an imaginary-
time quantum Monte Carlo �QMC� implementation, i.e., the
path-integral Monte Carlo �PIMC� approach. A certain suc-
cess in the application of PIMC-QA has been obtained in
most of the cases studied: the folding of off-lattice polymer
models �5,6�, the random Ising model �7,8�, and the random-
field Ising model ground-state search �9�, Lennard-Jones
clusters optimization �10,11�, and the traveling salesman
problem �12�. Nevertheless, a counterexample exists �13�,
where PIMC-QA performs definitely worse than simple CA:
the 3-Boolean-satisfiability �3-SAT� problem �14�, which is a
prototype of a large class of hard combinatorial optimization
problem �the so-called nondeterministic polynomial �NP�
complete class �see Ref. �15���.

In order to understand its features in detail, in a recent
paper �16� we have studied the PIMC-QA performance fo-
cusing our attention on a simple, but highly instructive, toy
problem: the double-well potential. There, we learned a few
possible dangers of the PIMC-QA method: �i� The unavoid-
ably finite temperature T, which provides a thermal lower
limit to the average residual energies �i.e., the energy mini-
mum estimated by QA minus its exact value�. �ii� The severe

sampling difficulties �i.e., ergodicity breaking�, which possi-
bly occur close to a Landau-Zener crossing �3�.

We propose here to investigate a QA algorithm based on a
different QMC technique, as an alternative to PIMC-QA. A
natural choice is provided by Green’s function Monte Carlo
�GFMC�. GFMC is different from PIMC in that it can di-
rectly sample the ground state �i.e., T=0� of a quantum
Hamiltonian, avoiding, in principle, the first of the PIMC
drawbacks. However—contrary to PIMC—GFMC is not a
completely unbiased scheme: It demands the knowledge of a
good approximation to the ground-state wave function to
achieve proper efficiency �17�. So, the result of this compari-
son of GFMC against PIMC is a priori not clear.

A sensible test for this new GFMC-QA algorithm is pro-
vided by the random Ising model, a real optimization prob-
lem already addressed through PIMC-QA, as well as CA, in
the recent past �7,8�. The Hamiltonian of the random Ising
model in transverse field is

H��� = − �
�i,j�

Ji,j�i
z� j

z − ��
i

�i
x = Hcl + Hkin, �1�

where ��i,j� indicates a sum over nearest neighbors, Ji,j are
random nearest-neighbor Ising coupling constants, and �i

z ,�i
x

are Pauli’s matrices on lattice site i. If we denote by �Si	 a
generic spin configuration �where Si= ±1 are the eigenvalues
of the �i

z matrix�, the challenging �classical� function we
want to minimize is just given by the first term in Eq. �1�,
Ecl��Si	�= ��Si	
Hcl
�Si	�, which here plays the role of a poten-
tial energy. The second term in Eq. �1�, Hkin=−��i�i

x, is the
source of quantum fluctuations, which then plays the role of
a kinetic energy. In particular, we will concentrate our efforts
on a representative instance, which has been extensively ana-
lyzed in Refs. �7,8�. This is a two-dimensional �2D� instance,
on a 80�80 square lattice, being the couplings Ji,j drawn
from a flat distribution in �−2,2�. The choice of a 2D case
is motivated by the fact that the Ising glass ground-state
search without a longitudinal magnetic field—is actually a
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polynomial problem �18� in 2D, where very efficient branch
and cut algorithms �see Ref. �19�� are known to find the true
optimal-state energy EGS. This provides for a clear bench-
mark for an annealing study.

The goal is to simulate the imaginary-time evolution de-
fined by Eq. �1� starting from a large value of the transverse
field �, which is then monotonically ramped down to zero in
a certain finite time �. So, � is the annealing parameter of
the simulation. The adiabatic theorem �20� ensures that for
“slow enough” evolution, the exact unperturbed �i.e., �=0�
ground state should be eventually recovered. We note that
the annealing schedule might also have no characteristic time
�—for instance, a power-law decrease of �. Remarkable
convergence theorems �21� have been recently proven for
both PIMC-QA and GFMC-QA, if a power-law annealing
schedule is allowed: nevertheless, the bound on the power-
law exponent decreases as the size of the systems increases
�21�, which might make a truly convergent power-law an-
nealing impracticably slow. We will use here a linear anneal-
ing ��t�=�0�1− t /�� with a finite � to compare directly our
results with previous publications using the same schedule
�7,8�, originally inspired by its being close in spirit to the
actual experimental realization of QA in Ising ferroglasses
�22,23�.

The rest of the paper is organized as follows: In Sec. II we
present the main ideas of a GFMC-based QA approach. In
Sec. III we present the results of our variational studies,
showing the inherent difficulties associated to the selection
of good wave functions for a disordered quantum system. In
Sec. IV we discuss the GFMC-QA results and compare them
with previous PIMC-QA and CA data on the same problem.
Finally, in Sec. V we give some concluding remarks.

II. GREEN’S FUNCTION MONTE CARLO QUANTUM
ANNEALING: IDEAS

Every QA algorithm is based on the iterative solution of
an appropriate quantum dynamics, which for the problem at
hand, is the Schrödinger dynamics associated to the Hamil-
tonian in Eq. �1�. The basic evolution step �from now on �
=1� is

��t + �t� = e−iH���t���t��t� , �2�

which should be iterated during the simulation until the al-
gorithm finally stops when the annealing parameter � is re-
duced to zero. The total number of annealing steps is referred
to as the annealing time of the simulation.

As argued in Ref. �24�, an imaginary-time quantum evo-
lution is �for our optimization purposes� equally good, and
most likely even superior, to the standard real-time evolu-
tion. In practice, it is better to use the imaginary-time evolu-
tion operator, exp�−H���t���t�, instead of exp�−iH���t���t�
in Eq. �2�: the imaginary-time evolution naturally tends to
filter out the corresponding ground state of H���t�� from the
state it is applied to �17,24�. In this sense, the Green’s func-
tion Monte Carlo �GFMC� is just a stochastic technique,
which implements such a form of imaginary-time propaga-
tion �17�. However, the process underlying this iterated
method is not a properly defined Markov chain �25�, and so,

it cannot be immediately simulated by a standard Monte
Carlo approach �26�. In order to solve this problem, the
phase space must be extended: a state is then defined by
means of its position x—the configuration x= �Si	 in the Hil-
bert space of the system—and its weight w—which is essen-
tially related to ��x�—�the pair �x ,w� is often referred to as a
walker.� In practice, to improve convergence and stability,
many walkers are evolved at the same time and then periodi-
cally reconfigured according to a well-defined stochastic pro-
cess called branching �17,25�. The analogy of such a many-
walker GFMC with a genetic-like algorithm is worth noting
�27�. Each walker �x ,w� plays the role of an individual that
propagates �mutates� increasing or decreasing its fitness—
represented by its weight w—with branching favoring the
survival of those with highest fitness �largest w�.

The final, important ingredient that makes the algorithm
work is the so-called importance sampling �26�. It can also
be seen, in the genetic analogy mentioned before, as a way of
proposing mutations that—instead of being equally
probable—are biased by a function which guides the system
towards the most representative configurations. This is ob-
tained by a guess of the exact ground state, the so-called trial
wave function �T�x�. As we see later, a good trial function
can drastically improve the quality of a GFMC simulation
�28�. In the next section we will describe two choices of
�T�x� that we have tested for the Ising case, and the difficul-
ties encountered.

III. VARIATIONAL WAVE FUNCTIONS FOR THE ISING
SPIN GLASS

The first idea that comes to mind is a kind of “mean-field”
�MF� wave function, made up of a product of single-site
factors such as


�T
�MF�� = �

i=1

N � e+hi/2
↑�i + e−hi/2
↓�i


2 cosh�hi�
� , �3�

where �hi	, the local fields in the z direction on each site i,
are variational parameters to be optimized for each given
value of the transverse field �. The optimization of the �hi	
amounts to finding the minimum of the variational energy,
ET

�MF�=−��i,j�Ji,jmimj −��i

1−mi

2, where mi=tanh�hi� are
the local magnetizations �27�. As it turns out, this optimiza-
tion can be easily done only for large enough �, where the
solution with mi=0, representing all spins aligned along the x
direction, is found. This solution survives down to some
value �cr of the transverse field, below which nontrivial
solutions—i.e., with nonvanishing local magnetizations mi
�0—start to appear. Because of the many similarities be-
tween our model in the low-� region and the well-known
Weiss mean-field approach to the classical random Ising
model �29�, we expect the number of local minima to be very
large. In a sense, minimizing ET

�MF� in the glassy phase ��
��cr� is not easier than finding the classical ground state of
the target problem at �=0, even if a continuous set of vari-
ables, mi� �−1,1�, is employed instead of the original dis-
crete one, Si= ±1. A numerical confirmation of this simple
analogy is reported in Ref. �27�.
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A second, quite natural choice of �T is a Boltzmann-type
wave function of the form

�T
�	���Si	� 
 e−�	/2�Ecl��Si	�, �4�

where 	 is the variational parameter to be optimized, and
Ecl��Si	� �see Sec. I� is the classical energy of a given spin
configuration �Si	. Once again, for large � we expect to find
	=0 �i.e., all configurations equally present in �T�, while by
decreasing �, larger and larger values of 	 will favor con-
figurations �Si	 where the classical potential energy Ecl��Si	�
has a local minimum until we get, for �=0, to the asymptotic
limit 	→� �ideally�, required by a wave function that is
perfectly localized in the global minimum �whose energy is
indicated as EGS=N�GS, N being the number of sites�.

To calculate the expectation value of the energy with the
Boltzmann-type choice in Eq. �4�, as a function of the single
parameter 	, we used a standard variational Monte Carlo
�VMC� algorithm �17� with single spin-flip moves. Figure 1
shows �top panel� the optimal value 	opt of 	, which mini-
mizes the variational energy Etot

�Boltz�= ��T
�	� 
H 
�T

�	��, for sev-
eral values of the transverse field �. Surprisingly, 	opt satu-
rates for small � to about 	opt�2, instead of showing the
expected 	opt→ +� behavior. This is clearly an effect of a
severe ergodicity loss of the VMC algorithm, which is not
difficult to understand. For a given 	 the VMC samples the
thermal distribution 
�T

�	��x�
2=e−	Ecl�x�. We are therefore
searching for the effective temperature 1/	, which provides
the best approximation to the wave function of the ground
state of a quantum Ising glass at nonzero �. Now, from clas-
sical spin-glass physics �30� we know that a threshold energy
Eth exists below which the system has a finite complexity,
i.e., it displays an exponentially ��exp N� large number of
metastable minima. Close to this threshold energy, the relax-
ation of any local algorithm towards equilibrium becomes
exceedingly slow �the algorithm gets stuck for a long time in
every visited minimum� and the measured average quantities
are no longer representative of their true thermodynamical
values. Evidently, for �→0, the variational algorithm is not
visiting the regions near the true minimum of the classical
energy, but is wandering in a high-energy band of metastable
states, separated by moderate energy barriers. In such a case,
a small and finite value of 	 allows one to still overcome
such barriers, so as to find slightly more favorable local
minima, while perfect localization �	→ +�� in a wrong ex-
ited state would lead to an average bigger residual energy.

The central and bottom panels in Fig. 1 show the optimal
variational energies �tot

�Boltz�= ��T
�	opt� 
H 
�T

�	opt�� /N, and the
variational residual energy �res

�Boltz�= ��T
�	opt�
Hcl
�T

�	opt�� /N
−�GS corresponding to the optimal 	 shown in the top panel,
for several values of transverse field �. For large � values,
the variational total energy �center panel� is linear in �, as it
should be, since the transverse field kinetic term dominates
in the quantum paramagnetic phase �see Eq. �1��, while the
variational residual energy per site is of order 1. By decreas-
ing �, we notice that the variational residual energy satu-
rates, for small �, to finite nonzero values of order 0.03, in
agreement with the previously noted saturation in the opti-
mal 	opt. A closer inspection shows that the variational re-

sidual energy is actually nonmonotonic for ��0.25, again an
artifact of sampling difficulties. Notice, however, that this
saturation value is definitely below the best �down to �
=0.01� results provided by the mean-field approach intro-
duced above, which is of order 0.035 �shown for comparison
by a dashed horizontal line� �27�. Therefore, with all its pit-
falls, the Boltzmann-type trial wave function in Eq. �4� pro-
vides, at low �, an approximation of the true ground state,
which is marginally better than that obtained by the mean-
field Ansatz, Eq. �3�. Moreover, �T

�	� is also much better be-
haved, and easier to optimize.

FIG. 1. �Color online� �Top� Plot of the optimal 	, 	opt, for the
“Boltzmann� trial wave function �T

�	� defined in Eq. �4�, for several
values of �. The dashed line is the fit employed in Sec. IV. �Center�
Optimal variational energies �tot

�Boltz� corresponding to the 	opt shown
in the top panel, and the GFMC estimate of the total energy per
spin. The inset magnifies the small-� region, where little differences
are noticeable. �Bottom� The variation residual diagonal energy
�res

�Boltz� corresponding to the 	opt shown in the top panel, and two
GFMC estimators of the residual diagonal energy: the mixed and
the Ceperley one �see the text�. The dashed horizontal line repre-
sents the best residual energy ever achieved, for �
0.01, by em-
ploying the mean-field trial wave function in Eq. �3�.
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As a last quality test for the Boltzmann-type trial wave
function, we performed GFMC simulations with importance
sampling in order to estimate the ground-state properties of
the Hamiltonian in Eq. �1�, again for several fixed values of
�. Details can be found in Ref. �27�.

The middle panel of Fig. 1 shows the estimate of the total
energy �per spin� for some given value of �, compared to the
correspondent variational results. The inset allows one to ap-
preciate the differences between the two results in the small
� region. As expected, GFMC allows one to gently improve
the variational findings.

In the bottom panel we plot data regarding the residual
diagonal energy. We report both the mixed estimate
�17,31�—labeled as “mixed”—and the Ceperley estimate
�31�—labeled as “Ceperley”—for this observable as ob-
tained by GFMC simulations. Once again, they are consis-
tently lower than the correspondent variational results, which
are also displayed in the same panel. On the other hand, the
nonmonotonic behavior of the residual energy data for small
��0.25, already noted for the pure variational results,
should ring a bell about the quality of the Boltzmann-type
wave function, and the efficiency of the sampling in that
region.

IV. GFMC QUANTUM ANNEALING

We finally present the results of the GFMC-based QA
approach, where the transverse field � in Eq. �1� is decreased
stepwise during the simulation, while at the same time, the
importance sampling Boltzmann-type wave function is
changed according to the corresponding value of the varia-
tional parameter 	opt���. �Practically, we used for 	��� the
fitting function shown in Fig. 1 �upper panel.��

As a benchmark, we will compare GFMC-QA outcomes
with the path-integral Monte Carlo quantum annealing
�PIMC-QA� and classical simulated annealing �CA� results
described in Refs. �7,8�. We reduce the coupling � in Eq. �1�
at each Monte Carlo step �MCS� in a linear way: we start
from an initial large enough value of the transverse field,
�0=2.5, and then we set �n=�0�1−n /�� during the nth MCS
�0�n��� �32�. � is the total annealing time measured as the
total number of MCS performed by the algorithm. We used
20 walkers, and performed branching at each MCS, because
the low-� region is affected by severe weight instabilities,
which would otherwise make the algorithm completely un-
stable �for the initial, large-� part of the annealing one could
consider branching less often, as weights are well under con-
trol; this makes a negligible difference�. Finally, we made
use of a continuous-time approach, sampling directly the
probability of generating an off-diagonal move according to
a Poisson’s process �31�.

The fact that importance sampling is indeed a crucial in-
gredient is demonstrated, for our case, in Fig. 2, where we
show the data obtained by GFMC-QA without importance
sampling �top curve� compared with the ones obtained with
importance sampling. Quite evidently, the residual energy
obtained without importance sampling is terribly bad. Figure
2 also shows the best residual energy per spin ever reached
during the annealing simulation, for several values of � av-

eraged over ten independent repetitions of the whole anneal-
ing process �due to computer-time limitations, only a single
run is shown for the largest, �
108, annealings�. For com-
parison, the CA and PIMC-QA data obtained in Ref. �7� are
also shown. Notice first that the � axes of the three calcula-
tions are completely unrelated: the GFMC � is measured in
units in which a MCS is just a single spin-flip, while MCS
for the CA and PIMC-QA are intended as sweeps of the
entire lattice of N spins �including all the 20 Trotter slices,
for the PIMC case �7��. For this reason, we also present the
CA and PIMC-QA data in a shifted time axis where � is
multiplied by the number of sites �here N=802, rightmost
curves�. Although the GFMC-QA data are strictly below both
the CA and the PIMC-QA data, on the same per spin time
unit �i.e., compared to the shifted CA and PIMC-QA data�, it
is clear that the GFMC slope is still worse than that of
PIMC-QA, and indeed surprisingly similar to CA. Moreover,
the CPU time needed for a single spin flip in GFMC is much
larger than the corresponding single-spin move in CA or
PIMC-QA �each GFMC move costs of order N operations�.

Let us consider the similarity between the CA and the
GFMC-QA slopes that Fig. 2 suggests. This similarity must
be somehow related to the fact that we have used, as impor-
tance wave function for the GFMC, a Boltzmann-type wave
function, �T�x�
e−�	/2�Ecl�x�, as already observed in Sec. III
�27�. More precisely, it is possible to show that by neglecting
the weights of the walkers �as well as the associated branch-
ing process�, GFMC reduces to a VMC sampling of the
given trial function �33� �here the Boltzmann-type one�. In
other words, a GFMC-QA without weights would be just a
computationally heavy way of doing a classical simulated
annealing with a peculiar form of the temperature annealing

FIG. 2. �Color online� The average best residual energy obtained
by GFMC-QA for the random Ising model instance studied in Refs.
�7,8�, versus the total annealing time �. Upper rhombi: GFMC-QA
results without importance sampling ��T=1�. Lower rhombi:
GFMC-QA results with importance sampling performed by using
the optimal trial wave function �T

�	� of Sec. III. The GFMC time
unit is a single spin flip, while CA and PIMC-QA Monte Carlo time
units are sweeps of the entire lattice �see Ref. �8��. The transverse
field is linearly reduced down to 10−4 in a total annealing time �,
starting from �0=2.5. Previous results obtained by classical simu-
lated annealing �CA� and by path-integral Monte Carlo quantum
annealing �PIMC-QA� �7,8� are shown for comparison.
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schedule 	opt���. �Notice, in passing, that such an optimal
effective temperature never gets too low, since 	opt saturates
to around 	opt�2 for low �.�

Since genuine quantum mechanics enters only through the
weights that the GFMC carries over, quite evidently, such a
weight updating is—in the present disordered case—not suf-
ficiently strong and effective as to make the resulting aver-
ages really different from the underlying thermal Markov
chain.

V. SUMMARY AND CONCLUSIONS

In this paper we have investigated the practical feasibility
of Green’s function Monte Carlo �GFMC� as a tool for per-
forming quantum annealing �QA�. As a natural test case, we
have concentrated our attention on a specific random in-
stance of the two-dimensional Edwards-Anderson Ising
model in transverse field, which was studied in Refs. �7,8�
using PIMC-QA as well as standard thermal classical anneal-
ing �CA�. �A more refined ensemble average would certainly
be needed if we were to assess the general performance
of the algorithm on a typical instance of the problem. A
specific instance comparison with the competing algorithms
�PIMC-QA and CA�, however, turns out to be particularly
instructive in the present case, as it shows in the clearest
fashion the remarkable and unexpected similarity of our
GFMC-QA results with CA.�

We identified the choice of the trial wave function �a nec-
essary ingredient in any GFMC� as the crucial step—as well
as the weak point—of a GFMC based QA �GFMC-QA�. In
particular, we found that the simplest mean-field wave func-
tion �analogous in many respects to the Weiss theory of fer-
romagnetism� is computationally equivalent to the original
problem, and then completely useless. Using, instead, a sim-
pler Boltzmann-type trial function �where the pseudotem-
perature is the only variational parameter�, the resulting
GFMC is feasible, but the corresponding residual energy re-
sults are disappointingly close—in magnitude and in slope,
when considered as a function of the annealing time—to
those found by a standard classical simulated annealing
�which is computationally much cheaper�. We can rationalize
this finding with the inability of the GFMC algorithm, in the
present disordered context, to properly implement the quan-
tum evolution.

Concerning possible improvements in the implementa-
tion, we mention that we have not attempted a systematic
study of alternative annealing schedules such as power laws.
�21� Likewise, we have not experimented with other sam-
plings of the Green’s function �34� �for instance, Metropolis
acceptance�, or using alternative multi-spin-flip Green’s
functions �21�. Nevertheless, even our limited experimenta-
tion with a GFMC-QA algorithm shows that one of the cru-
cial theoretical questions to be addressed is the ability to find
a good trial variational wave function describing well
enough the small-� glassy phase of an Ising spin glass. This
is, quite evidently, a highly nontrivial task. Taking inspiration
from the existing literature on quantum models without dis-
order, one might think of introducing pair correlations into
the trial wave function—for instance, by means of spin-spin
Jastrow factors, either at nearest neighbor or at longer
range—as usually done in the framework of correlated lattice
models �25�, and of electronic structure calculations �17,33�.
Unfortunately, for a quantum spin glass, due to frustration
and disorder, the form of such pair correlations is far from
obvious. Moreover, whenever a large number of variational
parameters in the trial function is required, very advanced
minimization techniques, such as those discussed in Ref.
�35�, are mandatory. These kinds of computational schemes,
however, have been successfully tested only in equilibrium
simulations of ordered systems, while our GFMC-QA should
cope with a nonequilibrium dynamics in a disordered system,
a highly nontrivial step forward.

We conclude that, at present, without a serious effort in
constructing reliable importance sampling variational wave
functions for a quantum glass, GFMC-QA is likely not a true
competitor of PIMC-QA.

ACKNOWLEDGMENTS

This project was sponsored by MIUR through Grant Nos.
FIRB RBAU017S8R004, No. FIRB RBAU01LX5H, PRIN/
COFIN2003, and 2004, and by INFM �“Iniziativa trasversale
calcolo parallelo”�. We acknowledge discussions with
Demian Battaglia, Michele Casula, Saverio Moroni, Sandro
Sorella, Erio Tosatti, and Osvaldo Zagordi. G.E.S. also
thanks H. Nishimori for sending him his recent preprint with
results on several convergence theorems on QA.

�1� Quantum Annealing and Related Optimization Methods, edited
by A. Das and B. K. Chakrabarti, Lecture Notes in Physics
�Springer-Verlag, Berlin, 2005�.

�2� G. E. Santoro and E. Tosatti, J. Phys. A 39, R393 �2006�.
�3� S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Science

220, 671 �1983�.
�4� E. Fahri, J. Goldstone, S. Gutmann, and M. Sipser, e-print

quant-ph/0001106.
�5� Y. H. Lee and B. J. Berne, J. Phys. Chem. A 104, 86 �2000�.
�6� P. Liu and B. J. Berne, J. Chem. Phys. 118, 2999 �2003�.
�7� G. E. Santoro, R. Martoňák, E. Tosatti, and R. Car, Science

295, 2427 �2002�.
�8� R. Martoňák, G. E. Santoro, and E. Tosatti, Phys. Rev. B 66,

094203 �2002�.
�9� M. Sarjala, V. Petäjä, and M. Alava, J. Stat. Mech.: Theory

Exp. �2006� P01008.
�10� Y. H. Lee and B. J. Berne, J. Phys. Chem. A 105, 459 �2001�.
�11� T. Gregor and R. Car, Chem. Phys. Lett. 412, 125 �2005�.
�12� R. Martoňák, G. E. Santoro, and E. Tosatti, Phys. Rev. E 70,

057701 �2004�.
�13� D. A. Battaglia, G. E. Santoro, and E. Tosatti, Phys. Rev. E 71,

066707 �2005�.

QUANTUM ANNEALING OF AN ISING SPIN-GLASS BY… PHYSICAL REVIEW E 75, 036703 �2007�

036703-5



�14� C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimiza-
tion: Algorithms and Complexity �Dover, New York, 1998�.

�15� M. R. Garey and D. S. Johnson, Computers and Intractability
�Freeman, New York, 1979�.

�16� L. Stella, G. E. Santoro, and E. Tosatti, Phys. Rev. B 73,
144302 �2006�.

�17� W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal,
Rev. Mod. Phys.0034-6861 73, 33 �2001�.

�18� F. Barahona, J. Phys. A 15, 3241 �1982�.
�19� C. De Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, and

G. Rinaldi, J. Stat. Phys. 80, 487 �1995�.
�20� A. Messiah, Quantum Mechanics �North-Holland, Amsterdam,

1962�, Vol. 2.
�21� S. Morita and H. Nishimori, J. Phys. A 39, 13903 �2006�.
�22� J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aeppli, Science

284, 779 �1999�.
�23� J. Brooke, T. F. Rosenbaum, and G. Aeppli, Nature �London�

413, 610 �2001�.
�24� L. Stella, G. E. Santoro, and E. Tosatti, Phys. Rev. B 72,

014303 �2005�.
�25� M. Calandra Buonaura and S. Sorella, Phys. Rev. B 57, 11446

�1998�.

�26� M. H. Kalos and P. A. Whitlock, Monte Carlo Methods �Wiley,
New York, 1986�, Vol. 1.

�27� L. Stella and G. E. Santoro, e-print cond-mat/0608420.
�28� In particular, if �T coincides with the actual ground-state wave

function �GS�x�, one can show that statistical fluctuations in
the algorithm vanish exactly. This is the so-called zero vari-
ance property �17�. Note that there is no sign problem �17� for
the Hamiltonian, Eq. �1�.

�29� K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 �1986�.
�30� T. Castellani and A. Cavagna, J. Stat. Mech.: Theory Exp.

� 2005� P05012.
�31� N. Trivedi and D. M. Ceperley, Phys. Rev. B 41, 4552 �1990�.
�32� Actually, the final � is �10−4 and not 0 to prevent severe

weight instabilities. Whenever it was possible to perform an-
nealings with smaller cut-offs on � we checked that the results
obtained are not very sensitive to its value.

�33� B. L. Hammond, W. A. Lester, and P. J. Reynolds, Monte
Carlo Methods in Ab Initio Quantum Chemistry �World Scien-
tific, Singapore, 1994�.

�34� H. Nishimori and J.-I. Inoue, J. Phys. A 31, 5661 �1998�.
�35� S. Sorella, Phys. Rev. B 71, 241103�R� �2005�.

LORENZO STELLA AND GIUSEPPE E. SANTORO PHYSICAL REVIEW E 75, 036703 �2007�

036703-6


