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We develop a method of solution for recently found integrable system of the reduced Maxwell-Bloch
equations with two components of polarization and with an anisotropic dipole momentum by using the appro-
priate modification of the inverse scattering transform. The method is based on solution of the Riemann-Hilbert
problem with taking into account symmetry properties of corresponding fundamental solutions. We show that
these symmetries lead to some particular forms of the inverse scattering transform equations which may be
used for finding as soliton-type as radiation-type solutions.
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I. INTRODUCTION

The generation and evolution of a few cycle optical pulses
are of permanent interest because of their applications in
various areas of physics, see, review �1�. The integrable re-
duced Maxwell-Bloch �RMB� equations �2� generalized in
Refs. �3–7� have remarkable structural properties. For in-
stance, the solutions of associated linear systems obey the
nontrivial symmetry group. Analogous symmetry group had
been revealed by Mikhailov �8� for the anisotropic Landau-
Lifschitz equations, see also Ref. �9�. We will demonstrate
that in a case of the integrable anisotropic RMB equations
these symmetry properties require suitable modification of
the inverse scattering transform technique.

Following the foregoing papers �3,4� we consider the in-
teraction between an optical wave propagating in z-direction
and an atomic two-level system with a dipole transition �J
=0, �M =1 with J and M denoting the total angular momen-
tum and its z-component, respectively. We assume an aniso-
tropy insofar as two dipole moments dx�dy. Using the uni-
directional approximation �2–4� for the Maxwell equations
we found that the RMB equations take the form

�c�z + �t�Ex = − 2�dxn�tRx,

�c�z + �t�Ey = − 2�dyn�tRy , �1�

�tRx = − �0Ry −
2dy

�
EyRz, �tRy = �0Rx +

2dx

�
ExRz,

�tRz =
2

�
�dyEyRx − dxExRy� . �2�

Here Ex and Ey are the electric field components �Rx ,Ry ,Rz�
is the Bloch vector, c is the velocity of light in the host
medium, �0 is the resonance frequency, and n denotes the
number density of atoms.

Denote

� = �4�dxdyn/�c�z, �0 = �0�t − z/c� , �3�

Ex,y = �2�dxdy/��0�Ex,y , �4�

f =df /dx, where �f �1�,

f± = �f ± f−1�/2, h = f−/�2f+� , �5�

� = f+�0, �6�

E = �Ex + iEy�/�f+, R = �Rx
�f + iRy/�f�/�f+. �7�

Then Eqs. �1� and �2� are

��E = − i�R + ERz� , ��F = i�S + FRz� ,

��Rz =
i

2
�RF − SE� , ��R = − ���E + 2aF� ,

��S = − ���F + 2aE� , �8�

where

F = Ē, S = R̄, Rz = Re Rz. �9�

The rest of the paper is organized as follows. In the next
section the inverse scattering transform technique and the
Riemann-Hilbert problem �RHP� formulation are presented.
In Sec. III a soliton solution is found. In Sec. IV a symme-
trized Fredholm equation solving the regular RHP is derived.

II. THE INVERSE SCATTERING TRANSFORM
TECHNIQUE

System �8� possesses the following Lax pair �4�,

��	 = U	 ª �− i�
2 − 
−2� E
 + F/


− F
 − E/
 i�
2 − 
−2�
�	 , �10�

��	 = V	

ª − w0�
��− i�h�
2 − 
−2�Rz R
 + S/


− S
 − R/
 i�h�
2 − 
−2�Rz
�	 ,

�11�

where*Electronic mail: zabolotskii@iae.nsk.su
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E =
E

h
= F̄, � =

1

2
h�, w0�
� =

q

2�1 + h�
2 + 
−2��
.

�12�

Symmetry properties play a crucial role in developing the
technique used here. Let us list the symmetries of the matrix
functions U�
�, V�
�,

U�1/
� = �1U�− 
��1, V�1/
� = �1V�− 
��1, �13�

U�− 
� = �3U�
��3, V�− 
� = �3V�
��3, �14�

U�− 
̄� = �1U�
��1, V�− 
̄� = �1V�
��1, �15�

U�1/
̄� = U�
�, V�1/
̄� = V�
� , �16�

here �1 and �3 are standard Pauli matrices.
Define the group of transforms of a complex plane con-

sisting in the identity transform I and in elements, acting as
follows:

ug1
�
� =

1


̄
, ug2

�
� = − 
, ug3
�
� = −

1


̄
. �17�

Transforms �I ,ug1
,ug2

,ug3
	 forming an Abelian group S of

substitutions include the parity transform ug2
, the substitution

ug2
and the combined transform ug3

, g3=g1g2.
Define this group G as an automorphism group that acts

on the set of fundamental solutions ��� ,� ;
� of Eqs. �10�
and �11� in the following manner:

g:���,�;
� → Û�g��„�,�;ug�
�… � ����,�;
�	 . �18�

Group G also consists in the elements: �I ,g1 ,g2 ,g3	, gk

=gk
−1, gi=gjgk, i� j�k, acting as follows:

Û�g1�� = �„�,�;ug1
�
�… , �19�

Û�g2�� = �3�„�,�;ug2
�
�…�3, �20�

Û�g3�� = �3�„�,�;ug3
�
�…�3. �21�

Taking into account symmetry properties �19�–�21� we find
that transforms of the scattering coefficients a�� ;
�, b�� ;
�,
see below Eq. �34�, under action of elements of substitution
group S are

a„�;ug1
�
�… = a��;
�, b„�;ug1

�
�… = b��;
� , �22�

a„�;ug2
�
�… = a��;
�, b„�;ug2

�
�… = − b��;
� , �23�

a„�;ug3
�
�… = a��;
�, b„�;ug3

�
�… = − b��;
� . �24�

Symmetry properties of the coefficient c�� ;
1�
= 
b�� ;
1� /�
a�� ;
�

=
1

where 
1 is the simple zero of
a�� ;
� are the following:

c„�;ug1
�
1�… = −

1


̄1
2
c��;
1� , �25�

c„�;ug2
�
1�… = c��;
1� , �26�

c„�;ug3
�
1�… = −

1


̄1
2
c��;
1� . �27�

Let all zeros 
0k, k=1,2 , . . . ,n, of a�� ;
� are nondegen-
erate, i.e., 

0k
�1 as well as 

0k
�0, �. Symmetry proper-
ties �19�–�24� mean that poles 
0k, 
2k=
0k

−1, 
3k=−
0k,

4k=−
0k

−1 are equivalent points in the complex plane, see
below.

We consider here finite supported solutions decreasing in
the infinities: E�� ,��→0 as �→ ±�. Pulses propagate over
the trivial background

E��,�� � 0. �28�

The “boundary” conditions are

Rx��,0� = � = ± 1, R��,0� = S��,0� = 0. �29�

We suppose the initial data of the Cauchy problem E�� ,0�,
F�� ,0�, for Eq. �10� to be sufficiently smooth and to de-
crease sufficiently as �→ ±�.

Introduce the matrix-valued functions,

	−� = ���,�̃��, 	+� = ��̃�,��� , �30�

here ��=���� ,� ;
�, �̃�= �̃��� ,� ;
� , . . . are the columns. Let
these functions have an asymptotic behavior

	±���;
� → exp�− i��
���3�, � → ± � , �31�

here Im 
2=0, ��
�=
2−
−2.
Let the Jost functions—fundamental solutions of �10�—

possess the following forms:

	− = �e�−i�−+i�0��3��,e�i�−−i�0��3�̃�� ª ��,�̃� ,

	+ = �e−i�+�3�̃�,ei�+�3��� ª ��̃,�� , �32�

here, �0 is a real function of � and �± are the real functions
of � and � such that

lim
�→−�

�−��,�� = 0, lim
�→�

�+��,�� = 0. �33�

�0���, �±�� ,�� do not depend on 
, see below.
The completeness relationship of the eigenfunctions is

given by

	− = 	+T, T = �a�
� − b�
̄�

b�
� a�
̄�
� , �34�

where 
 belong to contour �= �
 :Re 
=0� Im 
=0	, see
Fig. 1. T is a scattering matrix.

Evolution of scattering data can be found in a standard
manner by using linear system �11� for boundary conditions
�29�,

a��;
� = a�0;
�, b��;
� = b�0;
�exp�2i�h�w0�
���
��� ,

�35�
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0n��� = 
0n�0� ,

c��;
0n� = c�0;
0n�exp�2i�h�w0�
0n���
0n��� . �36�

Define the matrix functions,

M��;
� ª ��e�i�−−i�0��3+i��,�̃e�−i�−+i�0��3−i��� , �37�

N��;
� ª ��̃e−i�+�3+i��,�ei�+�3−i��� , �38�

having the asymptotics

M��;
� = I, � → − �, N��;
� = I, � → � , �39�

where I is the unite matrix.
Substitute expression �37� for M1 in system �10� and in-

tegrating resulting equations with taking into account the
boundary conditions �39� yield

M1��;
� = �1

0
� + �

−�

�

G�� − s,
�Q�s;
�M1�s;
�ds ,

�40�

where

Q��;
�

= � i���− �
F + E
−1�e2i�−−2i�0

− �
F + E
−1�e−2i�−+2i�0 − i���−
� ,

�41�

G��;
� = �1 0

0 e2i��
�� ����� , �42�

���� is the theta function. Analogous equations may be found
for M2, N1, N1.

Let the domains Dj
±, j=1, . . . ,4 which boundaries are de-

picted in Fig. 1, be defined by

D1
+ = �Im 
 � 0 � Re 
 � 0 � l0 � 


 � 1	 ,

D1
− = �Im 
 � 0 � Re 
 � 0 � l0 � 


 � 1	 ,

D2
+ = �Im 
 � 0 � Re 
 � 0 � 


 � 1	 ,

D2
− = �Im 
 � 0 � Re 
 � 0 � 


 � 1	 ,

D3
+ = �Im 
 � 0 � Re 
 � 0 � 


 � 1	 ,

D3
− = �Im 
 � 0 � Re 
 � 0 � 


 � 1	 ,

D4
+ = �Im 
 � 0 � Re 
 � 0 � l0 � 


 � 1	 ,

D4
− = �Im 
 � 0 � Re 
 � 0 � l0 � 


 � 1	 ,

where l0→�.
Group S is the automorphism group of the regions of

complex plane: D+=D1
+�D2

+�D3
+�D4

+ and D−

=D1
−�D2

−�D3
−�D4

−. Therefore the standard fundamental
domains are D1

+=D+ /S and D1
−=D− /S, respectively. Points


1
±, 
2

±=
1
±−1, 
3

±=−
1
±, 
4

±=−
1
±−1 are equivalent points,

where 
1
±�D1

±, respectively.
Restrict our consideration to 
 lying in the fundamental

domain D1
+. In the limit �→� or 
→ +� we obtain from

Eqs. �40�,

M1��;
� = �1

0
� +

1

2i�
� P−���

�
F + E
−1�e2i�−−2i�0
� + O� 1

�2� ,

�43�

where

P−��� =
1

2
�

−�

�

�E2���� + F2�����d��. �44�

Asymptotics �39� and symmetry condition �15� are valid if

�±��,�� =
1

2
�

±�

�

E���,��F���,��d�� �45�

and

�0��� = �−��,�� − �+��,�� =
1

2
�

−�

�

E���,��F���,��d��.

�46�

Decompositions analogous to �43� may be derived as for
domain D2

+ in the limit 
→ +0 as for domains D3
+, 
→−0

and D4
+, 
→−�. Resulting equations are equivalent to �43�

due to symmetry conditions. Expressions for functions
�±���� ,�0��� remain the same forms �45� and �46�, respec-
tively.

Define

FIG. 1. The complex 
-plane. The inner circle has the unit ra-
dius and the outer circle has the radius l0→�. Domains Dk

± are
placed between the intervals lying on the axis and the quarters of
cycles. Contour �k

− ��k
+� runs along the boundary of domain Dk

−

�Dk
+� in the clockwise �counterclockwise� direction. The equivalent

poles positions are depicted by the bold points.
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���;
� =
b��;
�
a��;
�

, �̃��;
� =
b��;
̄�

a��;
̄�
�47�

and the matrix function,

�+��,�;
� = �M1��,�;
�
a��;
�

,N2� ,

�−��,�;
� = �N2,
M1��,�;
�

a��,
̄�
� , �48�

having the asymptotics

lim

→�

�±��,�;
� = I . �49�

The matrix function �+ is analytical in region D+ and �−
is analytical in region D−. A jump condition may be formu-
lated for a pair of the fundamental domains D1

+, D1
− and a pair

of domains D1
+, D4

− then the jump condition may be expanded
to the whole complex plane. The jump conditions for func-
tions �+�
� and �−�
� restricted to their domains of analy-
ticity D1

+, D1
−, and D1

+, D4
− are, respectively,

�+��,�;
� = �−��,�;
�J+��,�;
�, 
 � D1
+ � D1

−,

�50�

�+��,�;
� = �−��,�;
�J−��,�;
�, 
 � D1
+ � D4

−.

�51�

The 2�2 matrices J± are defined in terms of the spectral
datum �a�
� ,b�
�	 by the following formulas:

J±��,�;
� = �1 ± ���;
��̃��;
� ± �̃��;
�e−2i��
��

���;
�e2i��
�� 1
� .

�52�

Domains Dk
± and contours �k

± running along their respec-
tive boundaries, see Fig. 1, are mapped by group S trans-
forms as follows:

ug1
�D1

±	 = �D2
±	, ug2

�D1
±	 = �D3

±	, ug3
�D1

±	 = �D4
±	 ,

�53�

ug1
��1

±	 = ��2
±	, ug2

��1
±	 = ��3

±	, ug3
��1

±	 = ��4
±	 . �54�

Contours �k
± are mapped with changing the direction of in-

tegration.
Let J jk be the jump matrix for 
�Dj

+�Dk
−, then for the

corresponding equivalent points 
�� we have

J+�
� � J11�
� = J22�1/
̄� = �3J33�− 1/
̄��3 = �3J44�− 
��3,

J−�
� � J14�
� = J23�1/
̄� = �3J32�− 1/
̄��3 = �3J41�− 
��3.

�55�

The RHP must be formulated for functions �+�
� and
�−�
� analytical in regions D+, D− �except in a finite number

of poles�, respectively. Acting by operator Û�gk� on both

sides of jump condition �50� and taking into account map-
ping �53� and �54�, we obtain a jump condition on the bound-
ary Dk

+�Dk
− for functions �+, �− analytical in respective

domains Dk
+, Dk

−. It is easily verified with taking into account
relations �55� that owing to symmetry properties �19�–�24�
the jump conditions appearing for each pair of corresponding
domains Dj

+, Dk
−, j ,k=1,2 ,3 ,4 and the boundaries between

them have the form of Eqs. �50� and �51�.
Then, the matrix-function � for each fixed 
 satisfies the

jump condition which can be written in the common form

�+��,�;
� = �−��,�;
�J+��,�;
�, Im 
 = 0, �56�

�+��,�;
� = �−��,�;
�J−��,�;
�, Re 
 = 0, �57�

where � is �+ for 
�D+, � is �− for 
�D−.
Equations �56� and �57� combined with �49� is known in

the literature �10� as the Riemann-Hilbert problem with ca-
nonical normalization.

Consider functions �±�
� restricted to the corresponded
fundamental domains: 
�D1

±. For a�
��0, applying projec-
tions on the first columns to Eqs. �56� and �57� present the
solution of the RHP in the following form:

�1
−��,�;
� = �1

0
� + P
Ĝ

1

2�i
�

�1
+

���;
�e2i��
��

��2
+��,�;
�

d



 − 

, �58�

where �k
± is the kth column of matrix function �±. The

following symmetry properties make system of equations
closed:

�12
+ ��,�;
� = − �21

− ��,�;
̄�, �22
+ ��,�;
� = �11

− ��,�;
̄� .

�59�

The symmetrization operator

Ĝ = �1 + Ûg1
��1 + Ûg2

� �60�

is introduced on the right-hand side of Eq. �58� to satisfy the
symmetry properties of the fundamental solution. The pro-
jector P
 acts as follows:

P
	�
� = 	�
� − lim

→�

	�
� �61�

is introduced to satisfy the canonical normalization �49�. Pro-
jector P
 obeys the symmetry conditions

Ûgk
P
 = Pugk

�
�. �62�

Using symmetry properties �19�–�21� and �62� one can easily
find that the analogous limit takes place for 
�→0. In this
limit we must take into account that 

 
 �1 in Eq. �71� and

use transform 
�=1/ 
̄.
Rewrite integrals on the right-hand side of Eq. �58� in the

explicit form
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Ĝ
1

2�i
�

�1
+

���,
�e2i��
���2
+��,�;
�

d



 − 


=
1

2�i
��1
+

���,
�e2i��
���2
+��,�;
�d



 − 


− �
�1

+
����,
�e2i��
���2

+��,�;
�d



 − 
−1 �
− �

�1
+
����,
�e2i��
���3�2

+��,�;
�d



 + 
−1 �
+ �

�1
+

���,
�e2i��
���3�2
+��,�;
�d



 + 

� . �63�

Next we extend the Cauchy integrals with integration
along contour �1

+ in the above expression �63� to integration
along contours over all domains of region D+ using symme-
try properties of the fundamental solutions. Group G trans-

formation operators Û�gk� include transforms of substitution
group ugk

and transforms tgk
, see �19�–�21�, acting as follows:

tg1
�V� = V̄, tg1

��� = �̄ , �64�

tg2
�V� = �3V, tg2

��� = � , �65�

tg3
�V� = �3V̄, tg3

��� = �̄ , �66�

here V is an arbitrary complex valued two-component vector
and � is a scalar.

Consider the Cauchy integral

C�
� =
1

2�i
�

�1
+

Q�
�d



 − 

, �67�

here a vector-function Q�
� obeys the symmetry properties

Q�ugk
�
�� = tgk

�Q�
�� . �68�

Using property �68� rewrite the transformed Cauchy inte-

gral Û�gk�C�
� in the following way:

Û�gk�C�
� = tgk
�C�ugk

�
��	

=
1

2�tgk
�i���1

+

tgk
�Q�
��dtgk

�
�

tgk
�
� − tgk

�ugk
�
��

=
1

2�tgk
�i���1

+

Q�ugk
�
��dtgk

�
�

tgk
�
� − tgk

�ugk
�
��

= tgk� 1

2�i
�

�k
+

tgk
�Q����dugk

−1���

ugk

−1��� − ugk
�
� � . �69�

In the last integral in Eq. �69� we change the integration
variable 
 to �=ugk

�
�. It corresponds to mapping of domains
ug1

�D1
+	= �Dk

+	 �53� and mapping of related contours
ug1

��1
+	= ��k

+	 �54� with changing the direction of integration.

Introduce the functions

Q��,�;
� = ���;
��2
+��,�;
�e2i��
��,

Q̃��,�;
� = �̃��;
��1
−��,�;
�e−2i��
�� �70�

obeying the property �68�. Then, repeating the procedure of
the extension of integrals regions presented in �63� and ap-
plying procedure of integral transform �69� to the integrals
on the right-hand side of �63� we rewrite Eq. �58� in the
following forms:

�1
−��,�;
� = �1

0
� +

1

2�i
P
��

�1
+

Q��,�;
�d



 − 


+ �
�2

+

Q��,�;
�d



2�
−1 − 
−1�
+ �

�3
+

Q��,�;
�d



 − 


+ �
�4

+

Q��,�;
�d



2�
−1 − 
−1�� . �71�

Integral equation �71� with condition �59� solve the RHP
�56� and �57� with canonical normalization �49� and solu-
tions are automorphic.

Taking limit 
→� in Eqs. �43� and �71� we find the fol-
lowing relation for coefficients before 1/
:

F��,��e−2i�+��,�� = −
2

�
�

�1
++�2

+
���,
��22

+ ��,�;
�e2i��
��d
,


 → � . �72�

III. THE SIMPLEST NONDEGENERATE SOLUTION

Let us find a solution corresponding to one pole 
1 lying
inside the fundamental domain D1

+. We do not take into ac-
count the contribution of the continuous spectrum. This so-
lution corresponds to the boundary condition Rz�� ,0�=−1.

Residue calculated in a pole 
k�D1
+ in the second integral

on the right-hand side of equality �63� is equal to residue
calculated in the equivalent pole �k=1/
k�D2

+ in the second
integral on the right-hand side of Eq. �71� and so on. Using
this fact and denoting �1�
�=�12

+ �� ,� ;
�, �2�
�
=�22

+ �� ,� ;
� and making residues in 
1, we derive from sys-
tem �58�,

� �2�
̄�

− �1�
̄�
� = �1

0
� +

c1���e2i��
1��


1 − 

��1�
1�

�2�
1�
�

+ c1���e2i��
��� 1


1 − 
−1 −
1


1
���1�
1�

�2�
1�
�

+
�3c1���e2i��
1��


1 + 

��1�
1�

�2�
1�
�

+ �3c1���e2i��
��� 1


1 + 
−1 −
1


1
���1�
1�

�2�
1�
� ,

�73�
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where c1���= 
b�� ;
1� /�
a�� ;
�

=
1
. For solution of system

�73� it is enough to set 
=
1. Alternatively, one can use 

=−
1 or 
1

−1, or −
1
−1. Using symmetry properties �19�–�21�

one obtains the same systems of algebraic equations.
The simplest nondegenerate solution corresponding to one

poles 
1 lying in the fundamental domain D1
+ is found by

using �72�,

F��,��

= −
4e2i�+��,��+���,���1 − Ā��,�� − B��,���

1 − A��,�� − Ā��,�� + A��,��Ā��,�� − B��,��B̄��,��
,

−
�c.c.�


̄1
2

�74�

where

2�+��,�� = �
+�

�


F�t�,��
2dt�,

���,�� = − i��
1��� + 2qw0�
1��� + ln
c1�0�
 + i arg�c1�0�	 ,

Ā��,�� = − f1��,��
8

1
2ei�1

q1p1

�cosh�i Im ���,�� + 2i arg 
1 + ln

1
� .

B��,�� = − if1��,��
8

1
2ei arg 
1

q1p1

�cosh�i Im ���,�� + 2i arg 
1 + i�1 − ln
p1

q1
� ,

f1��,�� = exp�2���,�� − 3i Im ���,��� ,

q1 = 2 Im 
1
2, p1 = 

1�
1

4 − 1�
, �1 = arg�
1�
1
4 − 1�� .

Using 

1
�1 and Im 
1
2�0 one can prove that solution

�74� is nonsingular, i.e., denominator of �74� is positive for
any � and �.

The starting table of symbols, used in Eqs. �10� and �11�,
shows that anisotropy contribution is determined by param-
eter h. In such a table of symbols domain D2=D2

+�D2
− lies

within a circle having the radius h and a center at point 

=0, see Fig. 1. If h→0 then this domain vanishes and term B
disappears in above solution. This physical limit corresponds
to propagation of the circularly polarized light in an isotropic
medium. Solution �74� transforms into soliton having struc-
ture analogous to that of the nonlinear differential Shrödinger
equation �11� up to �-dependence of function �,

F��,�� = −
4e���,��

1 − A1��,��
exp�i�

�

� � 4e���,t��

1 − A1��,t��
�2

dt�� ,

�75�

where

A1��,�� = � 2
1


1
2 − 
1

2�2

e2 Re ���,��.

In a case of degenerate zeros, 

1
=1, arg 
1�0, � /2 so-
lution �74� has a sech-type form as well.

IV. FREDHOLM EQUATION

In this section we derive the symmetrized Fredholm equa-
tion. Define the symmetrized Cauchy-type integrals,

C̃�
� = P
Ĝ
1

2�i
�

��

f�
�d



 − 

, �76�

having zero asymptotic as 
→�, where ��=�± ,�4.
If a density f�
� satisfies the Hölder condition, the func-

tion C̃�
� has the jumps on D1
+�D1

− and on D1
+�D4

− �10�

C̃+�
� − C̃−�
� = f�
�, 
 � �D1
+ � D1

−� � �D1
+ � D1

−� .

�77�

We suppose that C̃�
� , C̃±�
� obey the symmetry properties
�19�–�21�. As a consequence jump condition �77� may be
extended to whole 
-plane in the same manner as used above

C̃+�
� − C̃−�
� = f�
�, 
 � � . �78�

Then f�
� is a boundary value of some function analytical in
regions D+ and D− bounded by the contour �.

Consider a solitonless sector. Let �± be solution of the
jump condition �56�, then the integral Cauchy formulas are
valid,

�−�
� = − P
Ĝ
1

2�i
�

�1
−

�−�
�d



 − 

, 
 � D−, �79�

�+�
� = P
Ĝ
1

2�i
�

�1
+

�+�
�d



 − 

+ �0, 
 � D+, �80�

here �0 is some constant normalization matrix normalized as

→�, see below.

On the contour �, using �56�, we obtain

1

2
�−�
� = − P
Ĝ

1

2�i
�

D1
+�D1

−�D1
+�D4

−

�−�
�d



 − 

, �81�

1

2
�−�
�J�
� = P
Ĝ

1

2�i
�

D1
+�D1

−�D1
+�D4

−

�−�
�J�
�d



 − 

+ �0,

�82�

here and below J�
�=J+�
� if Im 
=0 and J�
�=J−�
� if
Re 
=0.

Multiplying Eq. �81� on J�
�, adding Eqs. �81� and �82�
we obtain the Fredholm integral equation in operator form,

�−�
�J�
�

= P
Ĝ
1

2�i
�

D1
+�D1

−�D1
+�D4

−

�−�
��J�
� − J�
��d



 − 

+ �0.

�83�

Using symmetry properties �19� and �20� we rewrite the
Fredholm equation
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�−�
�J�
� =
1

2�i
P
��

�D1
+�D1

−�D1
+�D4

−���D4
+�D4

−�D1
−�D4

+�

�−�
��J�
� − J�
��d



 − 


+ �
�D2

+�D2
−�D2

+�D3
−���D3

+�D3
−�D2

−�D3
+�

�−�
��J�
� − J�
��d



2�
−1 − 
−1� � + �0. �84�

Symmetry with respect to action of elements gk of group G imposes a set of restrictions to matrix �0. Invariance under
symmetry transform g1 makes this matrix real and the parity conservation related with transform g2 makes the matrix �0
diagonal. Equation �84� may be used to find a radiation solution corresponding to the regular RHP.
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