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The phenomenon of length-scale competition in soliton-bearing equations perturbed by spatially dependent
terms �A. Sánchez and A. R. Bishop, SIAM Rev. 40, 579 �1998�� is analyzed from a general viewpoint. We
show that the perturbation gives rise to an effective potential for solitons, which consists of wells and barriers.
We calculate the effect of these potential features on the solitons, establishing a direct relationship between the
maxima, minima, and curvature of the potential with soliton deformations. When the typical wavelength of the
perturbation is of the order of the soliton width, these deformations are seen to correspond to the excitation of
shape modes and can lead to the dissipation of the soliton kinetic energy and, further, to the impossibility of
soliton propagation. Thus, we demonstrate that the mechanism for length-scale competition is related to
changes in the dynamics of the internal modes. We study different examples where the perturbation is intro-
duced parametrically and nonparametrically to make it clear that our results apply to a wide class of equations.

DOI: 10.1103/PhysRevE.75.036611 PACS number�s�: 05.45.Yv, 02.30.Hq, 02.30.Jr, 02.60.�x

I. INTRODUCTION

Soliton-bearing partial differential equations have been a
very successful, widely applicable family of models for more
than 40 years �1,2�. One of the most important of these mod-
els is the nonlinear Klein-Gordon equation, very relevant in
many different contexts, ranging from particle physics �3�
through biomolecules �4,5� to superconducting devices �6� or
structural phase transitions �7�. On the other hand, the non-
linear Klein-Gordon equation is a paradigm of partial differ-
ential equations supporting topological soliton �8� solutions,
this being the chief reason for such a general applicability. In
this context, a very important issue is whether the topologi-
cal soliton solutions of these model equations are robust
when subjected to perturbations, which are unavoidable
when modeling actual systems or problems �9�.

Among the types of perturbations to be considered, a
prominent case is that of disorder or spatial inhomogeneities,
described by nonautonomous terms dependent on the spatial
coordinates �10�. Such perturbations are ubiquitous in appli-
cations, as most real systems unavoidably deviate from the
perfect homogeneous situation that corresponds to the unper-
turbed equation. Generally speaking, topological solitons are
much more stable against perturbations �8,10� than other
types of excitations, mostly because the conservation of an
associated quantity called topogical charge prevents their de-
struction. However, they are sensitive to perturbations of a
typical length scale when this scale matches that of the natu-

ral width of the solitons, a phenomenon that has been termed
length-scale competition �11–14�. Specifically, it was ob-
served that topological solitons, also referred to as kinks, did
not propagate in a spatially periodic potential of wavelength
of the order of the kink width, whereas propagation was
possible in potentials of smaller and larger wavelengths: In
these two cases the soliton was simply unaffected by the
potential or else behaved as a rigid particle moving on an
effective periodic potential, respectively. In spite of the fact
that several works have subsequently been devoted to under-
stand this problem �15–26�, we still lack a clear insight into
it; indeed, most of the studies used only numerical simula-
tions, and no simple analytical results were available.

The aim of the present paper is to contribute to this prob-
lem by means of an analytical study of the equation

�tt − �xx + �1 + � cos�kx��
�U

��
= 0, �1�

which we carry out with a collective coordinate technique
�11� that allows for a drastic reduction of the number of
degrees of freedom involved in the problem, while keeping a
very good agreement with the numerical simulations �24�. In
addition, we will also investigate kink stability in the related
problem

�tt − �xx +
�U

��
= F�x� , �2�

where F�x� are suitably chosen functions such that the sta-
bility problem can be solved exactly. In carrying out this
parallel study, we will find connections between both prob-*Electronic address: jorge@ivic.ve
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lems that will provide a good basis to address the mecha-
nisms underlying length-scale competition while, on the
other hand, supporting the generality of our ideas and in-
tepretation. Indeed, the main point we want to make in this
paper is that length-scale competition is originated by the
coupling between soliton deformations and perturbation fea-
tures, such as the maxima, minima, and curvature of the
corresponding effective potential. In order to present these
results in detail, the paper is organized as follows: In Sec. II,
we describe the collective coordinate approach to the peri-
odically modulated nonlinear Klein-Gordon equation �1�. By
analyzing the equilibrium points of the corresponding effec-
tive potential, we will be able to find the region related to
length-scale competition. We will then proceed with Eq. �2�
in Sec. III, where we will consider three different choices for
F�x� in order to shed more light on this problem; specifically,
we will show how solitons are affected by the perturbation in
terms of excitation of shape modes. Finally, Sec. IV collects
our results and their corresponding discussion.

II. COLLECTIVE COORDINATE APPROACH FOR THE
PERIODICALLY MODULATED EQUATION

A. Collective coordinate equations

Collective coordinate techniques are a family of perturba-
tive approximations to soliton-bearing partial differential
equations whose main aim is to perform a reduction of de-
grees of freedom such that the problem is cast in the form of
ordinary differential equations �6,10,11�. Typically, but not
necessarily, this is accomplished by focusing on the effect of
the perturbation on magnitudes characterizing the soliton so-
lution of interest, such as the position of its center or its
width.

The specific problem �1� was considered in �24�. That
work is the only one to our knowledge where length-scale
competition has been studied in terms of collective coordi-
nates. The procedure begins by proposing the following an-
satz:

��x,t� = �k��x − X�t��/l�t�� , �3�

where �k stands for the unperturbed one-soliton solution.
The key idea of the technique is to derive equations for the
two functions X�t� and l�t� that represent, respectively, the
center and the width of the kink. Underlying this is the hy-
pothesis that the effect of the perturbation is mainly to
change these two quantities, without appreciably distorting
the general shape of the kink solution. This, of course, must
be checked a posteriori by numerical simulations of the full
partial differential equation. The next step is now to use the
Lagrangian approach developed in �25� to find the equations
for the two collective coordinates. By introducing the ansatz
�3� in the Lagrangian for Eq. �1�, we find

L =
M0l0

2l
Ẋ2 +

�M0l0

2l
l̇2 − V�X,l� , �4�

where

V�X,l� =
M0

2
� l0

l
+

l

l0
� +

�

k
cos�kX�W�kl� . �5�

The constants M0 and l0 represent the soliton “mass” and
natural width, and their specific values depend on the func-
tion U��� considered. Particularly relevant instances of the
nonlinear Klein-Gordon equation are the sine-Gordon equa-
tion, corresponding to U���=1−cos �, and the �4 equation,
given by U= �1−�2�2 /4. The former is a fully integrable
model in the absence of perturbations, with N-soliton solu-
tions for all N, whereas the latter is nonintegrable and pos-
sesses only one-soliton �or anti-soliton� solutions. It is then
important to consider both examples in order to detect any
difference between them arising from the rare property of
exact integrability. For the sine-Gordon equation, M0=8,
l0=1, and �=�2 /12, and the soliton solution is given by

��x,t� = 4 arctan�exp�x − X�t��/l�t�� , �6�

leading to �24�

W�y� =
2�y2

sinh��y

2
� , �7�

in Eq. �5�. On the other hand, for the �4 equation,
M0=4/3	2, l0=	2, �= ��2−6� /12, and

W�y� =
�y2�y2 + 4�

24 sinh��y

2
� . �8�

Once we have the Lagrangian �4�, we can immediately
obtain the corresponding Euler-Lagrange equations for the
two variables X and l, finding

Ṗ = � sin�kX�W�kl� , �9�

Q̇ = −
1

2M0l0
�P2 +

Q2

�
� +

M0l0

2
� 1

l2 −
1

l0
2� − � cos�kX�W��kl� ,

�10�

with

P =
M0l0Ẋ

l
, Q =

�M0l0l̇

l
. �11�

In �24�, these equations were integrated numerically, and it
was found that, in accordance with the numerical simulations
of the full equation �1�, there is a regime in which the dy-
namics of P and Q corresponds to a situation in which the
motion of the kink in the full partial differential equation is
stopped. For both the sine-Gordon and �4 equations, this
regime takes place for an interval of wavelengths centered
around �=2� /k=3—i.e., for values of the perturbation
wavelength close to the natural width of the kink. This
agrees with the previous observations of length-scale compe-
tition �11,14�, but being only numerical information, it did
not provide any insight into the mechanisms responsible for
such a phenomenon. We will now address this question by
analyzing in more depth the collective coordinate equations.
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B. Analysis of the collective coordinate equations

We begin by looking for the equilibrium points of the
system �9� and �10�. We will carry out the calculation for the
sine-Gordon case, but the procedure applies straightfor-
wardly to the �4 equation with equally good results. These

are computed by imposing Ẋ=0 and l̇=0, which leads to

� sin�kX�W�kl� = 0, �12�

M0l0

2
� 1

l2 −
1

l0
2� − � cos�kX�W��kl� = 0. �13�

From these expressions we find that stable equilibria are
given by

Xs =
�2n + 1��

k
, �14�

M0l0

2
� 1

ls
2 −

1

l0
2� = 2��kls


�

2
kls − 2 tanh��kls

2
�

sinh��kls

2
�tanh��kls

2
�� ,

�15�

and unstable ones correspond to

Xu =
2n�

k
, �16�

M0l0

2
� 1

lu
2 −

1

l0
2� = − 2��klu


�

2
klu − 2 tanh��klu

2
�

sinh��klu

2
�tanh��klu

2
�� .

�17�

From these expressions we can already extract some infor-
mation about the equilibria. The values ls and lu obtained
from them are plotted in Fig. 1, which has been obtained for
�=0.7, as in the study of �24�. First, it is evident that in the
limit k→�—i.e., vanishing perturbation wavelength—the

values for the width at equilibria go to the natural width l0.
Second, it can be seen that there is a critical value kc such
that for k=kc, lu= ls= l0. Above that value, k�kc, we find that
lu� l0 and ls� l0, whereas in the other case, k	kc, the situ-
ation is reversed, lu	 l0 and ls	 l0.

To go beyond these first results and to study the behavior
of these equilibria as a function of k in more detail, we can
parametrize the values for ls and, correspondingly, ks in
terms of a parameter z,

ls�z� =
l0

	1 −
4��l0z

M0 � 2 tanh��z

2
� −

�

2
z

sinh��z

2
�tanh��z

2
�


, �18�

ks =
z

ls�z�
, �19�

and the same can be done for lu and ku,

lu�z� =
l0

	1 +
4��l0z

M0 � 2 tanh��z

2
� −

�

2
z

sinh��z

2
�tanh��z

2
�


, �20�

ku =
z

lu�z�
, �21�

where the parameter z� �0,��. With these expressions, one
can analyze the dependence of the values of l for the equi-
libria on k, finding that there is an extremum for certain km.
This extremum turns out to be a maximum for lu and a mini-
mum for ls, as is depicted in Fig. 1. This is a very important
result indeed: the maximum for the unstable case is obtained
for

km = ku�zm� = zm/lu�zm� , �22�

with zm�2�2+	2� /�, which implies very good agreement
with the simulation results for the range of wavelengths in
which length-scale competition is observed: This value cor-
responds to km=1.9—i.e., �=3.3—values for which the
simulations in �24� showed the clearest evidence of length-
scale competition with the kink being trapped by the poten-
tial very rapidly.

Another important quantity is the second derivative of the
effective potential V�X , l� along the X direction, evaluated at
the equilibrium points. The absolute value of this derivative,
�C�, yields a measure of the “curvature” of the potential on
which the kink is moving and is given by

�C� =
2��lx

2k3

sinh��lxk

2
� , �23�

where the subscript x stands for u or s, depending on the type
of point one is looking at. The dependence of this magnitude

0 2 4 6 8 10
k

0.8

1

1.2

1.4

1.6

1.8

2

l
s

l
u

FIG. 1. Width values for stable and unstable equilibria as a
function of k for the collective coordinate approximation to the
perturbed equation �1� with sine-Gordon potential. The perturbation
parameter is �=0.7.
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on k is shown in Fig. 2. This plot is in agreement with the
fact that one can easily show that when either k→� or
k→0, �C�→0. On the other hand, the curvature has a maxi-
mum for a value of k that is approximately given by
zm�6/�, corresponding to km=1.6, �=3.9. This means that
in the length-scale competition region of wavelengths, the
kink is moving on a curved potential, whereas outside of this
region, the effective potential is almost flat, for both small
and large k. The relevance of this quantity for understanding
length-scale competition will be made clear after the next
section.

III. SPATIALLY DEPENDENT FORCING TERMS

After considering the case of the spatially periodic poten-
tial, we now turn our attention to Eq. �2�, where the term
F�x� represents a constant, spatially dependent force acting
on the system and can have one or more zeros. As we will
see below, although this is a different problem, in which the
perturbation enters additively, the phenomenology will allow
us to shed light on the results of the preceding section.

Much as in the previous case, the system can be studied
applying a collective coordinate technique �6,18,26,27� to
Eq. �2� with the ansatz �6�; one can show that zeros of F�x�
represent equilibrium positions for the kink center of mass.
Indeed, following the ideas in �6,28�, it can be shown that,

restricting ourselves for simplicity to the case l̇=0 �i.e., one
collective coordinate only�, the effective force acting on the
kink center is

Fef f�X� 
 �
−�

�

dxF�x�
��k

�x
� x − X

l
� , �24�

which for smooth choices of F�x� leads to the above conclu-
sion �see also �27� for an argument based on energetic con-
siderations�. On the other hand, the stability condition for the
equilibria, F�x*�=0, is given by

� �F

�x
�

x*

� 0. �25�

In the following, we will consider several examples for F�x�,
for either the sine-Gordon or the �4 equations, such that the
exact kink solution of the perturbed equation can be obtained
and the stability problem can be solved exactly. These ex-
amples show what one can expect of other topological
soliton-bearing equations, where exact solutions are not
available, such as that studied in Sec. II.

A. Case I

Let us consider the sine-Gordon equation, and let us
choose

FI�x� =
2�B2 − 1�sinh�Bx�

cosh2�Bx�
, �26�

which has a unique zero at x*=0. This point is an equilibrium
point for the kink center of mass; for B2�1 �B2	1�, the
equilibrium is stable �unstable�. The exact solution for the
kink located at the equilibrium point is

��x� = 4 arctan�exp�Bx�� . �27�

Stability analysis leads to the following eigenvalue prob-
lem:

L̂f�x� = rf�x� , �28�

where L̂�−�x
2+ �1−2 cosh−2�Bx�� and r=−�2, while f�x� are

the soliton modes describing small oscillations around the
kink of the form f�x�exp��t�. Generally speaking, perturba-
tion problems for soliton bearing equations should be studied
by means of this operator technique �10�, insofar as the
eigenfunctions and eigenvalues allow one to compute the
complete dynamics of the kink, since they form a complete
basis for the space of solutions of the equation. However, in
most cases this approach requires an exact shape of the per-
turbed kink and, in addition, one should be able to solve the
eigenvalue problem, two steps that render the problem in-
tractable. Therefore, the interest of the examples we discuss
here is that for these specific choices, we can go through both
stages of the process exactly, obtaining a great deal of infor-
mation about the kink behavior. For the case under consid-
eration here, we find that the eigenvalues of the discrete
spectrum are given by �17,26� �see also �29–31� for addi-
tional results and information on this type of problem�

rn = B2�L + 2Ln − n2� − 1, �29�

with L�L+1�=2/B2. The integer part of L represents the
number of eigenvalues in the discrete spectrum, correspond-
ing to the soliton modes. This includes the translation �Gold-
stone� mode r0 that arises from the breaking of the spatial
invariance and �possibly� several internal modes rn with
n�0 corresponding to the rest of the discrete spectrum. The
continuum spectrum represents extended deformations of the
soliton and can thus be identified with radiation.

Let us consider first the case B2	1 �for B=1 the pertur-
bation vanishes and we recover the spectrum of the unper-

0 2 4 6 8 10
k

0

1

2

3

4

|C
|

stable
unstable

FIG. 2. Curvature of the potential at the stable and unstable
equilibria as a function of k for the collective coordinate approxi-
mation to the perturbed equation �1� with sine-Gordon potential.
The perturbation parameter is �=0.7.
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turbed sine-Gordon equation, with the discrete spectrum con-
sisting only of the translation mode with zero eigenvalue�.
For these values of B, one can show, by means of a number
of different methods, that the kink is in an equilibrium posi-
tion of the potential, but its stability depends on the specific
value of B. For 1 /3	B2	1, the translational mode is un-
stable, meaning that the kink is placed on a “hill” and there-
fore that small perturbations can make the kink move away
from equilibrium. In this situation there are no internal
modes. The first one appears when 1/6	B2	1/3: In this
interval, there is an internal mode besides the translation one.
For even lower values of B2, further internal modes can be
activated. When B2	2/ �L*�L*+1��, with L*= �5+	17� /2,
the first internal mode becomes unstable. This instability in
turn leads to destabilization of the whole kink solution, in the
form of a “solitonic reaction” of the type 1 kink→1
antikink+2 kinks, which preserves the topological charge.

The connection of these results to the preceding section
can be made clear by the following considerations: We can
obtain information about the width by noting from Eq. �27�
that the kink width is given l=B−1. This means that when the
kink is inside the potential well, its width is reduced. On the
other hand, when the kink is on the “hill” of a potential
barrier, its width is increased. We then see that as the param-
eter B decreases, the kink width increases along with the
number of activated internal modes, placing the kink in a
situation closer to length-scale competition.

The case B2�1 is also interesting, corresponding to the
situation when the kink is inside a potential well. As we have
just seen, the kink width is reduced, but in addition, a very
surprising fact is found: namely, that the translational mode
does not exist anymore, which suggests that the motion of
the kink center inside the potential well is difficult; i.e., the
kink is literally trapped in the potential well. For more details
about this case we refer the reader to �26�.

B. Case II

As our second example, we discuss now a more compli-
cated situation. Let us consider the �4 equation and

FII�x� =
1

2
A tanh�Bx���1 + �2 cosh−2�Bx�� . �30�

Note that for A=1 and B=1/2, the perturbation vanishes and
one recovers the usual, unperturbed �4 equation. In this sec-
tion, we use for convenience the �4 potential written with an
extra factor of 1 /2—i.e., U= �1−�2�2 /8. Depending on the
values of the parameters, FII can have either one or three
zeros. In view of this, this force is a very suitable model for
testing the pitchfork bifurcation phenomena in soliton dy-
namics, where changing the parameters we can have a situ-
ation with one equilibrium position transformed in another
with three equilibria. Here, we will concentrate on the choice
�1=A2−1 and �2= �4B2−A2�, for which the exact kink solu-
tion is very simple: ��x�=A tanh�Bx� �18�.

To analyze the stability, we again have an eigenvalue
problem given by Eq. �28� with

L̂ = − �x + �3

2
A2 −

1

2
−

3A2

2
cosh−2�Bx��, r = − �2,

�31�

whose eigenvalues turn out to be

rn = −
1

2
+ B2�L + 2Ln − n2� , �32�

with L�L+1�=3A2 /2B2. Following the same lines as in the
previous case, we conclude that if A2�1 and 4B2	1, FII has
three zeros that correspond to three equilibrium positions:
one unstable equilibrium point at x=0 and two stable equi-
libria at x= ±d, with

d =
1

B
arccosh�	A2 − 4B2

A2 − 1
� . �33�

An interesting phenomenon occurs when 2d, the distance
between the stable equilibrium points, is much less than the
kink width. In this case, the translational mode is stable,
which means that the kink does not feel the barrier created
by the unstable equilibrium position.

When A2	1 and 4B2�1, we have a different situation:
although F�x� has three zeros, the equilibrium at x=0 is now
stable and the two additional zeros would correspond to un-
stable equilibria, once again in the particle picture arising
from the one-collective-variable calculation. However, as be-
fore, if the distance between zeros is much less than the kink
width, the translational mode changes its stability and be-
comes unstable. This implies that the kink is not trapped by
the potential well created by the FII�x� at x=0.

C. Case III

Finally, let us analyze a third problem where we build a
periodic perturbation by using Eq. �30� as a repeating struc-
ture, in the situation with three zeros �A2�1, 4B2	1�. The
periodic forcing can be defined as FIII=FII�x+2nd�, for
�2n−1�d�x� �2n+1�d, with n=0, ±1, ±2, . . . . When d is
much less than the kink width, based on the discussion in the
preceding subsection, we can conclude that the kink will
move in an almost flat potential. On the other hand, if we
construct the periodic potential with the same amplitude but
with a distance between zeros much larger than the kink
width, the curvature of the effective potential will also be
small.

IV. DISCUSSION AND CONCLUSIONS

Having considered the three cases in the preceding sec-
tion, we can benefit from the lessons learned from them and
apply them to the problem we are dealing with: namely, the
parametrical perturbation of Sec. II. As we showed there, the
effective potential where the kink moves in the collective
coordinate picture is almost flat for large and small values of
the wavelength of the perturbation. On the other hand, the
curvature of this potential has a maximum in the interval of
parameters for which localization of the kink has been nu-
merically observed �11,14,24�. In general, the kink moves in
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an effective periodic potential with wells and barriers. When
the kink is inside a potential well, its width is reduced,
whereas the opposite takes place when the kink is on a hill
created by the perturbation. Once again, these changes of the
kink size are larger in the interval of perturbation wave-
lengths where localization takes place.

Let us now compare the above results with the outcome of
our second study about perturbations given by external inho-
mogeneous fields. If we have an external inhomogeneous
perturbation that creates a potential well for the kink, the
kink width is reduced as expected. On the other hand, we
have shown that, if the external perturbation generates an
unstable equilibrium position, the kink width is increased
along with the number of activated internal modes. All these
insights provide an accurate and complete picture of the
length-scale competition phenomenon: The initial kinetic en-
ergy of the kink is transferred to the activated internal modes
that generate large deformations of the kink shape, prevent-
ing the kink from propagating freely. The kink can also be
trapped in a potential well, where even the translational
mode cannot be activated; this phenomenon occurs simulta-
neously with the reduction of the kink width. Finally, we
have shown that when the inhomogeneous external fields
create several equilibrium positions, we can observe a phe-
nomenon very reminiscent of length-scale competition. If the
distance between the equilibrium positions is much less than
the unperturbed kink width, then the kink does not feel the
potential barriers and wells, and the kink moves in an almost
flat potential; the same situation applies to the case when the
distance between equilibrium positions is very large.

All the above considerations allow us to establish a sce-
nario for the length-scale competition phenomenon by carry-
ing over the analysis of the exactly solvable cases �Sec. III�
to the parametric perturbation of Sec. II. This problem can
not be treated directly with the operator approach because
the shape of the kink is unknown in the presence of the
perturbation. However, the overall behavior is basically the
same: Indeed, both stable and unstable equilibria govern the
dynamics because they are potential wells or hills, and lead
to a reduction or enlargement of the kink width which in turn
yields unstable internal modes and consequently unstabilize

the kink solution. This must take place in the region where
the stable width is different from the rest of the kink width—
i.e., in the region 1.5
k
4 �wavelengths 4.2���1.6�; cf.
Fig. 1 and the values for km and lm in Sec. II. This region
corresponds to the largest curvatures of the effective poten-
tial �cf. Fig. 2� and therefore to the deepest potential wells, as
was the case in the first problem studied in Sec. III. We are
thus led to the conclusion that length-scale competition origi-
nates in the instability of the internal modes induced by the
perturbation that become unstable in the parameter region
mentioned above. This proposed scenario is in full agree-
ment with the simulation results as well as with the numeri-
cal integration of the collective coordinate equations: Thus,
Fig. 1 of �24� shows the stopping of the kink center coordi-
nate X�t� in the collective coordinate equations for k=3,
whereas Fig. 2 of �24� shows that, in the numerical simula-
tion of the full partial differential equation, there is a range of
k values in which the kink is trapped, due to the energy
transfer from the kink motion to the internal modes excited
by the potential.

Finally, a general conclusion of this work is the confirma-
tion of the accuracy of the collective coordinate technique to
describe nonlinear wave propagation under different types of
perturbation. In this particular study we are presenting here,
we have shown that, for the periodic case, this approach
yields an effective dynamical system for the collective vari-
ables X and l, whose equilibrium point structure is a clue to
understanding the modification of the kink dynamics by the
perturbation. We believe that this viewpoint of dynamical
systems can be fruitful in many other problems where soli-
tons play a role and can be accurately described by collective
coordinates.
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