PHYSICAL REVIEW E 75, 036603 (2007)

Parallel-plate metamaterials for cloaking structures
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In this work, we assess theoretically the physical response of metamaterial composite structures that emulate
the behavior of negative-permittivity materials in certain relevant setups. The metamaterials under analysis
consist of metallic parallel-plate implants embedded in a dielectric host in a two-dimensional geometry. Simple
design rules and formulas are presented, fully considering the effect and consequences of excitation of higher-
order diffraction modes at the metamaterial-dielectric interface. Following the ideas of transparency and cloak-
ing developed by us [Alu and Engheta, Phys. Rev. E 72, 016623 (2005)], we demonstrate, analytically and
numerically, that it is possible in this way to design metamaterial cloaks that significantly reduce the total
scattering cross section of a given two-dimensional dielectric obstacle in some frequency band. This effect,
which may be realized in a feasible way, may find interesting applications in electromagnetic cloaking, total
scattering cross section reduction, and noninvasive probing.
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I. INTRODUCTION

In recent works, it has been shown that materials with
negative permittivity [e-negative (ENG) materials] may have
several interesting applications in microwave and optical set-
ups [1-6], and may play an important role in the design of
more compact devices or cavities that overcome the diffrac-
tion limit [7]. In [8] it was also demonstrated that the pecu-
liar plasmonic resonances responsible for such anomalous
properties of ENG materials may be tailored in order to syn-
thesize a dielectric crystal that behaves effectively as a
negative-refraction medium, with simultaneously negative
permittivity and permeability. Other research groups have
exploited the frequency band in which the plasmonic
metamaterials have near-zero relative  permittivity
[e-near-zero (ENZ) materials] to improve the radiation char-
acteristics of antenna setups [9]. ENG or ENZ materials may
be effectively employed also to design covers, as cloaks, that
drastically reduce the total scattering cross section of a given
obstacle, as we showed in [10]. More recently, we also dem-
onstrated that it is possible to squeeze electromagnetic en-
ergy through plasmonic subwavelength narrow channels, and
that this effect may help reduce the reflectance at a sharp
waveguide bend [11].

While these plasmonic materials may be readily available
in nature at the infrared (IR) and optical frequencies (e.g.,
noble metals, polar dielectrics, and some semiconductors
[12]), at microwaves this is not the case (except for the
plasma below its plasma frequency, of which the ionosphere
is an example, having its plasma frequency at microwave
frequencies). However, using the metamaterial concept it is
possible to construct artificial structures that effectively be-
have as ENG materials at microwaves [13-16]. In typical
designs these composite materials consist of regular arrays of
long thin metallic wires that interact with radiation nearly the
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same way as an “ideal” ENG material [15], provided that the
lattice constant is much smaller than the wavelength of op-
eration.

The aim of this paper is to assess the performance of a
specific configuration for synthesizing ENG metamaterials in
a setup of practical interest, and at the same time to validate
the results of [10] using an artificially made metamaterial.
More specifically, following the ideas developed in [10] for
transparency and cloaking, here we investigate whether an
ENG metamaterial cover consisting of conducting implants
at microwave frequencies can be used as a cloak to reduce
the specific scattering of a given obstacle at a given micro-
wave frequency range of interest. In [10], it was demon-
strated that a proper design of an ideal ENG cover near its
plasma resonance may induce transparency, i.e., a dramatic
drop in the total scattering cross section of a moderately
sized object. In that work, however, ENG materials were
assumed to be readily available, which is the case in the IR
and visible range of frequencies, but not at lower frequen-
cies. Here we assess whether the same phenomenon may
occur using a metamaterial composite cover simulating the
behavior of an ENG material.

It is important to note that recently other groups have used
alternative strategies to reduce the specific scattering of a
given object [17-23], using coordinate transformation tech-
niques and other related concepts that require anisotropic
and/or inhomogeneous layers. Also, somehow related with
this work, in [24] the concept of hard and soft surfaces was
applied in order to reduce the blockage width of cylinders
such as struts and masts. It was found that the blockage
width of a metal cylinder may be reduced by adding a suit-
ably designed dielectric cover to it, which is consistent with
some results reported in this paper. However, the geometry
analyzed here is different from the one studied in [24], as
well as our perspective and approach to the problem.

Although the most popular ENG metamaterial structure is
the wire medium [13-15], we study here the design of covers
made of metallic plates [13]. The motivation of our choice is
the simplicity of the parallel-plate medium, which consists of
a set of waveguides below cutoff. This configuration is rela-
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tively easy to assemble in a practical setup and it further
allows relatively uncomplicated numerical and analytical
modeling in the two-dimensional (2D) geometry of interest
here. We show that, when properly designed, such ENG
metamaterials may provide with good approximation the de-
sired electromagnetic response even in complex propagation
scenarios. After a discussion on how the interface effects
(i.e., the transition from the metamaterial section to another
dielectric) can be taken into account and described by effec-
tive medium theory, we present some simple design formulas
to synthesize such artificial ENG metamaterials. Then we
apply these concepts to properly design a metamaterial cover
as a cloak that enables the reduction of the total scattering
cross section of a given dielectric obstacle, as obtained in
[10], and show how the present design is effective for these
purposes.

The paper is organized as follows. In Sec. II, we introduce
the geometry of the parallel-plate medium, discussing how
and under which conditions such a structure can be homog-
enized, and we establish simple design rules for emulating
the response of an ideal ENG slab. In Sec. III, we briefly
review the problem of scattering reduction considered here
and we find under which conditions it is possible to signifi-
cantly reduce the total scattering of a given object by design-
ing a proper ENG cover as a cloak. Then we analyze numeri-
cally the performance of some design examples, showing
how properly designed metamaterial covers may be effective
in reducing the cylinder’s total scattering cross section. Fi-
nally, in Sec. IV we discuss some physical insights and con-
clusions.

In the following, the time variation exp(—iwr) is assumed.

II. CHARACTERIZATION OF PARALLEL-PLATE
£-NEGATIVE METAMATERIALS

A. Parallel-plate medium

More than four decades ago, Rotman [13] proved that a
set of parallel plate waveguides below cutoff can simulate an
electric plasma at microwave frequencies. Several design
techniques were presented in [13], and the concepts were
validated experimentally by coating a slot antenna with an
artificial plasma-coated cylinder. More recently, the same
analogy was explored to simulate the behavior of double-
negative media in metallic waveguides [25,26], by loading
such waveguides below cutoff with magnetic inclusions. In
the following, we briefly discuss the properties and the ho-
mogenization of such waveguide-based metamaterials.

The parallel-plate medium under analysis consists of a set
of parallel metallic waveguides (see Fig. 1). The distance
between the plates is a, and the space between the plates is
filled with a nonmagnetic dielectric with relative permittivity
€4ie;- In this work, we assume that the polarization of the
fields is such that the electric field is always parallel to the
metallic plates (E polarization). As is well known [27], in
each waveguide section the electric field can be decomposed
into electromagnetic modes with propagation constants:

2
a

where ky=w/c is the free-space wave number. For long
wavelengths the fundamental mode, n=1, is dominant. The

PHYSICAL REVIEW E 75, 036603 (2007)

. :

Ediel

FIG. 1. (Color online) Geometry of the parallel-plate medium as
a metamaterial: A periodic set of vanishingly thin metallic plates
filled with a dielectric with permittivity &g

effective permittivity e.; seen by the fundamental mode
(along any direction in the x-y plane) is
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Thus the set of metallic parallel plates below cutoff behaves
as a lossless electric plasma with a Drude-type model. The
effective permittivity of the equivalent medium is negative
below the cutoff frequency of the fundamental mode. The
plasmalike properties can be controlled by changing the per-
mittivity of the dielectric spacer and the distance between the
plates.

The above permittivity model will be proven to be suffi-
ciently accurate for most configurations studied in the
present work. Nevertheless, for the sake of completeness and
rigor, we must point out that the permittivity model (2) is
simplistic and somehow approximate. Indeed, Eq. (2) is only
valid for normal incidence. In fact, consider an electromag-
netic mode with wave vector component k, along the z di-
rection. Such a transverse component of the wave vector
defines the phase shift of the field from waveguide to wave-
guide, and it is different from zero for oblique incidence.
Since the propagation constant y; of the fundamental mode
in the x-y plane directions is independent of k_, the effective
permittivity for an oblique E-polarized wave is given by

(—)2 K
Eeff  ~ %_'_k? a :
- k02 '

€p k(z)

= Egiel — (3)
Hence the effective permittivity seen by the dominant wave-
guide mode depends explicitly on k, as does the equivalent
plasma frequency f,. In particular, f, decreases as k, in-
creases, i.e., the plasmalike properties are somehow weaker
for oblique incidence. The dependence of the effective per-
mittivity on the wave vector is a manifestation of spatial
dispersion [28] which is characteristic of artificial materials
with long inclusions [29].

B. Scattering from a set of waveguides below cutoff
juxtaposed to a magnetodielectric slab

In order to test the applicability of the permittivity model
(3) in a practical setup in which the metamaterial has a finite
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FIG. 2. (Color online) A magnetodielectric slab juxtaposed to
metallic waveguides below cutoff. Panel (a): The plates are adjacent
to the dielectric slab. Panel (b): Gaps of width & are placed at the
interfaces between the plates and the dielectric and free space.

thickness, we analyze in this section the scattering properties
of a system composed of a magnetodielectric slab placed in
cascade with such a set of waveguides below cutoff (which is
desirably supposed to simulate an ENG material as men-
tioned in the previous section). The geometry of the structure
is depicted in Fig. 2(a), where the magnetodielectric slab is
assumed to have relative permittivity & and relative perme-
ability w. The structure is uniform along the x direction and
periodic along the z direction. The width of the dielectric
slab and of the waveguides is d; and d,, respectively.

A TE incident plane wave E™=Ee**"“rii  polarized
with electric field parallel to the metallic plates illuminates
the periodic structure. The incident wave vector is
k"=(0, +ily,k.), where To=Vki-ky if |k|>k, and
Fo=-i \s’ké—ki otherwise. The total electric field is the
superposition of the incident and scattered waves, i.e.,
E=E™+E*. It is clear that the problem is intrinsically two-
dimensional with d/dx=0 and that the electric field is di-
rected along the x direction everywhere, i.e., E=FE u,, satis-
fying the Helmholtz equation:

V. (i VEX> + &,k E, =0, (4)
Moy

where €,(y) and w,(y) are the sectionally constant relative
permittivity and permeability, respectively. The electric field
is continuous in all space, and vanishes at the metallic plates.
At the dielectric interfaces (1/u,)(JE,/dy) is also continu-
ous. The scattered field Ex—EinC, moreover, satisfies Som-
merfeld’s radiation condition at infinity.

Since the structure is periodic along z, the field can be
expanded into Fourier harmonics with propagation constant
k.. For example, inside the dielectric slab the field can be
written as

Ex= E (c:e—l"ny+C;e+l"ny)e+i[kz+(2ﬂ-/a)n]z,

n=—0o

2 2
r,= \/(kZ + —Wn> — &,k (5)
a

where ¢} and ¢, are unknown constants. In the free-space
region the field can be analogously expanded, by taking into
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FIG. 3. (Color online) Amplitude of the reflection coefficient as
a function of the normalized frequency for different configurations,
as indicated schematically in the insets (solid line: Metamaterial
configuration; dashed line: Ideal material response): (a) (Blue
line—dark in gray scale) ENG slab with thickness d,=0.3a. (b)
(Red line—light in gray scale) DPS+ENG pair: d;=d,=1.0q;
£=2.0; €4iq=4.0. (c¢) (Black line) MNG+ENG pair: d;=5.0d,
=5.0a; u=-1/5; e4;=1.0.

account also the radiation condition. On the other hand, in-
side the metallic plates the field can be decomposed into the
waveguide modes described in the previous section. For the
waveguide in the interval 0<z<<a, we can write, for in-
stance,

E,= >, (bhe ™ + b et ) sin(mz> , (6)
a

m=1

where b}, and b, are the unknown coefficients of the expan-
sion, and 7, is given by Eq. (1). Note that outside
0<z<a (unit cell), the field may be obtained from Eq. (6)
using Floquet theorem, i.e., exploiting the periodicity of the
geometry. The unknown constants may be evaluated by im-
posing the boundary conditions at the interfaces between the
different regions. A mode matching technique [27] may be
implemented in order to solve the problem computationally.

As a first example, we investigate the scattering properties
of a nonmagnetic dielectric slab, which we refer to in the
following as double-positive (DPS) material, with £=2.0
juxtaposed to a set of parallel plate waveguides embedded in
a dielectric with e4i=4.0 (i.e., the dielectric material with
£4i=4.0 fills the space between the metallic plates). The
width of the slabs is d;=d,=1.0a, and the direction of propa-
gation of the incoming wave is along the normal direction.
The scattering parameters were computed using the mode
matching technique. The electric field was expanded into 26
modes in each region. In Fig. 3 we depict the amplitude of
the calculated reflection coefficient as a function of the nor-
malized frequency (solid red line, indicated schematically by
the corresponding inset). The corresponding dashed red line
represents the response of an ideal ENG material character-
ized by the permittivity model (3). It is seen that the agree-
ment is in general satisfactory, even though the error for
koa> 1.5 cannot be considered negligible.

036603-3



SILVEIRINHA, ALU, AND ENGHETA

In the second case (blue lines), also plotted in Fig. 3, the
DPS slab is removed and the set of waveguides below cutoff
is left alone in free space. The width of the metamaterial slab
is now reduced to d,=0.3a and the dielectric between the
plates is vacuum with g4, =1.0. It is seen in Fig. 3 that the
deviation between the actual response of the system and the
homogenization model becomes very significant. The per-
mittivity model (3) clearly fails to characterize the set of
parallel plates below cutoff. At a first glance, a possible ex-
planation of this deviation can be attributed to the width of
the waveguides d,, which is small compared to the distance
between the plates a and, consequently, our metamaterial can
hardly be considered a set of parallel plates. The permittivity
model given by (3) assumes indeed propagation in a
metamaterial that is infinite in the longitudinal (i.e., y axis)
direction—a situation that is very different from the one con-
sidered in this case. In other words, since the longitudinal
width of the metamaterial slab is smaller than the period of
the parallel plates, the propagation cannot be accurately de-
scribed by just the dominant evanescent mode, and the effect
of higher order evanescent modes gets more and more im-
portant as this longitudinal width becomes comparable with
the transverse period. It should be noted that in the applica-
tion of interest here, i.e., the design of metamaterial covers to
reduce the scattering from cylindrical objects as proposed in
[10], generally thin layers of metamaterial are required, with
thickness being a fraction of the wavelength of operation,
implying that the contribution of these higher-order modes
will become notably important and should be adequately
taken into account.

In order to further study this issue, we analyzed the re-
sponse of the metamaterial slab when it is paired with a
p-negative (MNG) slab. From [30], we know that the juxta-
position and pairing of ENG and MNG slabs may, under
certain conditions, lead to some unusual features, such as
resonance, complete tunneling, and zero reflection. For nor-
mal incidence, the tunneling conditions that guarantee that
the MNG-ENG pair is transparent to radiation are given as
(assuming negligible losses) [30]

. —_—

dving \’SMNG|MMNG| =dgngV |‘9ENG|/'LENG’ (7a)
|,U«MNG| _ \/MENG ) (7b)
EMNG |8ENG|

In the above formulas, the subscripts indicate if the material
relative parameters €, u, and thickness d refer to either the
ENG or MNG slabs. In the particular case eyng=MENG
=1.0, the tunneling condition is equivalent to

dying = dengleenal, el |€nGl = 1. (8)

We tested if our metamaterial slab can emulate the behavior
of an ideal ENG material in such a tunneling scenario. To
this end, in this third example, we juxtaposed an ideal MNG
slab with permeability u=-1/5 to a set of parallel plates
with g4,=1.0, and we chose the width of the slabs to be
equal to d,=5.0d,=5.0a (for simplicity, in this numerical test
we neglected the MNG material frequency dispersion). Ac-
cording to Eq. (8), this pair should be transparent to radiation
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FIG. 4. (Color online) Virtual interface concept: A plane wave
with polarization parallel to the metallic plates is scattered by the
parallel plate metamaterial (upper panel) in the same way as it
would be scattered by an equivalent ENG material (lower panel)
with interface displaced a distance & from the physical interface.

when the effective permittivity of the metamaterial slab is
e/ €9=—5, or equivalently, using Eq. (3), at the normalized
frequency kypa=1.28. Disappointingly, the amplitude of the
reflection coefficient versus the normalized frequency in this
parallel plate case (solid black line in Fig. 3) shows a flat
variation over the whole band of interest and no window of
tunneling is revealed. The corresponding dashed black line
represents, on the other hand, the response of an ideal ENG
material following Eq. (3), and consistently with Eq. (8), a
sharp dip in the reflection coefficient occurs at kga=1.28.
Thus it is apparent that the set of waveguides below cutoff
does not mimic the behavior of an ENG in this resonant
configuration, at least as long as the permittivity model rep-
resented by Eq. (3) is followed.

What is wrong or incorrect here? Is our model incom-
plete, or are the observed deviations limitations intrinsic to
the metamaterial design in this geometry? In next section we
study a canonical problem that may shed some light on these
issues.

C. Scattering from a semi-infinite set of waveguides below
cutoff

It is clear from the previous section that the permittivity
model given by Eq. (3) is unable to accurately describe the
actual physical response of the metamaterial slab in relevant
configurations. In order to understand such deviation and to
quantify the contribution of the higher-order evanescent
modes, next we study the reflection of plane waves by a set
of semi-infinite waveguides below cutoff.

The geometry is shown in the upper panel of Fig. 4. The
material between the waveguide plates is assumed to be free
space. This canonical problem was studied many years ago
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using the Wiener-Hopf technique [31,32] (see also [27]). It
was proved that the reflection coefficient for E-polarized
waves at the interface can be written as an infinite product:

= — o~ Tpa/m2 In 21‘[ Yn~ 1—‘0 1—‘0 + Fn FO + F—n i (9)
n=1 Ynt IﬂO 1—‘0 - 1—‘n I‘O - F—n

p

where v, is given by Eq. (1) with g4=1, and I',, is defined
as in Eq. (5) with ,=u,=1. Note that for low frequencies
(koa<r) and paraxial incidence (k,<<kg), 7y, and I', are
positive numbers for n=1 and n#0, respectively, while
FO:—iV"ké—kg is purely imaginary. Consequently, by direct
inspection of Eq. (9) it is clear that |p|=1, consistently with
the fact that the incoming wave cannot transfer power to the
set of semi-infinite waveguides below cutoff, as it should
happen at the interface between free space and a semi-
infinite ENG region.

From Eq. (9) it is also apparent that the effects of the
higher-order diffraction modes are expressed by the multipli-
cation factors that involve vy, (with n=2) and I', (with n
#0), together with the leading exponential parcel. If these
terms can be neglected one obtains

=F0_71

= (very low frequencies). (10)
Lo+

P = Pn
Note that p, as defined above is precisely the reflection co-
efficient for an incident plane wave that impinges on an ideal
semi-infinite plasmonic material following the permittivity
model (3) (with g4ig=1). Thus all the parcels that were ne-
glected in Eq. (10) are responsible for the deviation between
the exact results and the effective medium theory. The physi-
cal reason for this inaccuracy is related to the fringe fields at
the interface between the metamaterial (formed by stacks of
waveguides) and free space, where such higher-order modal
contribution is localized. This is also justified by the fact that
the electric field profile of the fundamental mode in the
metamaterial, and at the interface in particular, is periodic
with sin[(7/a)z] distribution at every waveguide section, as
illustrated in the upper panel of Fig. 4. On the other hand, in
the free-space region the amplitude of the fundamental Flo-
quet harmonic is evidently uniform along z. This implies that
the electric field distributions of the fundamental harmonics
at the interface are very different in the two media and, as a
consequence, evanescent modes that are not taken into ac-
count by the homogenization model (3) are necessarily ex-
cited at such interface.

In Fig. 5 we depict the phase of the reflection coefficient
as a function of the normalized frequency for an E-polarized
plane wave incident at =45°. Curve (a) represents the ap-
proximate effective medium results calculated using Eq.
(10), whereas curve (b) represents the exact result calculated
with Eq. (9). It is seen that the agreement is reasonable for
very long wavelengths, but that the phase difference in-
creases with frequency and it can be as large as 75° or more
for kya~ . This may be clearly unacceptable in practical
applications. It is possible to evaluate quantitatively the dif-
ference between the two approaches, as we do in the follow-

ing.
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FIG. 5. (Color online) Phase of the reflection coefficient in a
semi-infinite parallel plate medium for the angle of incidence
0=45°. (a) Homogenization model without virtual interface. (b)
Exact result. (¢) Homogenization model with the virtual interface.
(d) Homogenization model with the virtual interface calculated with
a more accurate formula.

Remembering that I is purely imaginary and that vy, I,,
and I'_, are real for n=1, we find from Eq. (9) that

- r
+ 22 arctan(d)
n=2

2In2

arg p=arg(p;) + [Tola »

_2’% {arctan(%) +arctan<%)} (11)

Using the small argument expansion arctan(x)=x, and the
first order approximations valid for long wavelengths
(kpa<< and |k Ja <),

N _INdat [Tl _[Fola 1

, =2), 12
e w o T 2w 7P U2

it is found that

arg p—arg(p,) 11 In2

5= — 4. (13
27| r,r, “a (13)

Consequently, for long wavelengths we have that
p=pyeo’, (14)

which evaluates the difference in the phase of the reflection
coefficient between the approximate effective medium model
and the exact result. The parameter 6 has units of a length
and it is dependent on both frequency and wave vector, i.e.,
6= 8(kg, k). For relatively small frequencies, it is possible to
write

I —In2
S~ 6(k0=0,kZ=0)%a&

=~ 0.1a, (15)
where we used Eq. (13) in the second identity. Within this
approximation, 6 only depends on the spacing between the
plates. Interestingly enough, Eq. (14) demonstrates that the
phase difference between the exact reflection coefficient and
the result predicted by homogenization theory increases lin-
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early with |T'g| under these assumptions, and it is propor-
tional to 6. Moreover, it is evident from the results of Fig. 5
that this phase difference cannot be neglected unless the fre-
quency is very small. In curves (c¢) and (d) of the same
figure, we depict the results predicted by Eq. (14) using &
calculated with Eq. (15) and with the more accurate formula
(13), respectively. It is seen that the agreement improves sig-
nificantly and that the phase difference is kept small for
koa<2.0. The important question now is whether we can
incorporate the parameter J into our homogenization model.
We investigate this point in the following.

From transmission-line theory it is straightforward to in-
terpret p as expressed in Eq. (14) as if the reflection coeffi-
cient calculated at the plane y=-4 would be measured at the
physical interface y=0. Therefore, for the incoming wave it
looks like the region y>—4 is filled with an ideal ENG ma-
terial following the permittivity model (3). This is illustrated
in the lower panel of Fig. 4. Thus the plane y=-J represents
the virtual interface of the equivalent ENG medium. For an
external observer the ENG medium starts at this virtual in-
terface rather than at the physical interface of the parallel
plate medium. This implies that in the homogenized model
the interface with air is not coincident with the physical in-
terface of the metamaterial and this phenomenon is clearly
related to the fringe fields associated with the higher-order
modes excited at the interface between the parallel-plate me-
dium and the dielectric, as pointed out in a previous para-
graph. Sufficiently close to the end of the parallel plates, i.e.,
in the region —6<<y <0, we can still experience this fringe
field, and that is why heuristically we can justify the exten-
sion of the effective ENG material beyond the physical in-
terface of the parallel plates. At the distance 6 from them,
however, this effect has decayed, and it is not surprising how
this distance is proportional to the period between the plates,
since the fringe fields are less and less concentrated around
the interface when the transverse distance between the plates
increases. As discussed before, in the first approximation we
can take 6=~0.1a, even though strictly speaking the position
of the virtual interface é depends on the frequency and wave
vector. The virtual interface concept has also been used in
previous works for other metamaterial geometries [33-35].

In order to illustrate the application of this idea, we depict
in Fig. 6 the phase of the reflection coefficient as a function
of frequency for different angles of incidence. The solid lines
represent the exact results, and the dashed lines represent the
results calculated using the homogenization model and as-
suming that the equivalent ENG medium is extended to the
virtual interface (using 6=0.1a). As evident from these
plots, the general agreement is quite satisfactory, especially
for normal incidence and for kya <2.0.

To conclude this section, it is appropriate to point out here
that in [13] the fringe field effect was also identified, and it
was attributed to the fact that the terminal impedance of a set
of waveguides radiating into free space is not coincident with
that of the dominant waveguide mode. In order to compen-
sate this mismatch, which is responsible for the inaccuracy
of the homogenization model, the terminal impedance of the
waveguides was adjusted by adding both dielectric and resis-
tive films to the parallel-plate free-space boundary to com-
pensate, respectively, its susceptance and its conductance.
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FIG. 6. Phase of the reflection coefficient for a semi-infinite
parallel plate medium for incidence along #=0°, 45°, 70°, and 85°.
Solid lines: Exact result. Dashed lines: Homogenization model with
virtual interface (using §=~0.1a).

This procedure has however several limitations, and compli-
cates the actual fabrication of the structure. In the next sec-
tion, we propose an alternative and simpler approach that is
based on the virtual interface concept.

D. Virtual interfaces for finite-width metamaterial slabs

From the study of the canonical problem in the previous
section we have learned that for a semi-infinite structure the
physical interface is not coincident with the interface of the
equivalent ENG medium. Can we use this knowledge to
model a finite-width metamaterial slab? Or, in other words,
can we design a metamaterial slab that behaves as ENG at
given boundaries? It is clear that the physical boundaries of
the metamaterial are not coincident with the boundaries of
the equivalent ENG material, and that the virtual interfaces
should also be considered in this finite-slab case. In fact, the
results of the previous section suggest the equivalence shown
in Fig. 7. Thus, in order to design an ENG slab that follows
the permittivity model (3) and has width d using a parallel
plate metamaterial, one should design a parallel-plate system
with actual thickness d—26 and, in addition, add two dielec-
tric gaps of thickness 6=0.1a to the metamaterial on both
ends of the slab. The two dielectric gaps should have the
same permittivity as the dielectric spacer gg4. In this way the
external boundaries of the dielectric gaps become coincident

]

5 d-26 5 d

)

o ; 5
Eéauli Ediel Efd.eli E ENG i
Bememlin. |
| P o ka) |
e |
[} ] ) 1
: : | |
[} 1 1 1

o

]

FIG. 7. (Color online) Equivalence between a metamaterial slab
with proper virtual interfaces and an ENG medium.
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FIG. 8. (Color online) Amplitude of the reflection coefficient as
a function of the normalized frequency for different values of the
metamaterial slab thickness and of the dielectric filling. The
metamaterial slab stands alone in free space. Solid lines: Exact
result. Dashed lines: Homogenization theory results taking into ac-
count the effect of virtual interfaces. For the case with d,=1.0a, the
solid and dashed red lines are practically coincident in the figure.

with the physical interfaces of the equivalent ENG of thick-
ness d. Note that the proposed design rule implies that it is
not possible to design an ENG metamaterial with thickness
smaller than d<26=0.2a. It is worth noting that a smaller
period between the plates makes the homogenization formula
given by Eq. (3) more appropriate, since the distance be-
tween the inclusions is smaller compared to the wavelength,
and in fact the thickness of the required gap becomes shorter.
This is associated, however, with a more negative value of
effective permittivity, as Eq. (3) shows, since the waveguides
are “more” below cutoff.

We now test whether the equivalence suggested in Fig. 7
is correct. To this end, we have calculated the scattering pa-
rameters for the modified structure shown in Fig. 2(b) and
we have compared the results with homogenization theory.
The reflection coefficient data were computed by applying a
mode matching algorithm with 26 expansion functions (per
section), except in the examples that involve MNG slabs, for
which 50 expansion functions (per section) were used to en-
sure numerical convergence in such resonant configuration.
The incoming wave propagates along the normal direction.

In a first example, the metamaterial slab stands alone in
free space (i.e., e=u=1 and d,=0 in Fig. 2). In Fig. 8 the
amplitude of the reflection coefficient is shown for different
metamaterial width and &g values (solid lines), and com-
pared with the results predicted by homogenization theory
including the virtual gaps (dashed lines). Remarkably, the
agreement is very good over all the frequency range. The
only case in which a small difference is noticeable is the one
with d,=0.3a (black lines). For this configuration the width
of the metallic plates is only 0.3a—-26=0.1a, ie., the
waveguides are very short (their length is the same as their
height), and they can arguably be considered metallic strips
rather than waveguides. However, even in such a demanding
scenario it is seen that our homogenization model describes
well the scattering of waves by the structure. Note how the
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FIG. 9. (Color online) Amplitude of the reflection coefficient as
a function of the normalized frequency for different DPS slabs with
thickness d;=1.0a. The effective thickness of the metamaterial slab
is d,=1.0a and the permittivity of the dielectric between the metal-
lic plates is &gjqy=4.0. Solid lines: Full wave numerical result.
Dashed lines: Homogenization theory results taking into account
the effect of virtual interfaces.

role of the gaps is essential for the good agreement, compar-
ing these results with those of Fig. 3.

In the next example, reported in Fig. 9, a nonmagnetic
DPS slab with thickness d;=1.0a and varying permittivity &
is juxtaposed to a set of parallel plates filled with a dielectric
with permittivity e4;,=4.0. The width of the parallel-plate
system (including the two dielectric gaps) is d,=1.0a. It is
seen that the general agreement is very good in all the cases,
even though the effective permittivity of the equivalent
metamaterial becomes greater than zero for frequencies close
to koa ~ .

Next, we assess the performance of the modified metama-
terial slab when it is paired with and ideal MNG slab. It was
seen in the previous section and in Fig. 3 that, when the gaps
were not considered, the tunneling effect could not be ob-
served. Here, we design the metamaterial slab taking into
account also the effect of the virtual interfaces. We have
analyzed three different configurations: w=-1/9 and d,
=9.0d,=9.0a, u=-1/5 and d,=5.0d,=5.0a, and u=-1/2
and d,=2.0d,=2.0a. In all the examples gg4;,;=1 and the per-
mittivity of the MNG slab is also unity. As in the previous
case, the width d, is the sum of the widths of the plates and
of the two dielectric gaps. Figure 10 reports the calculated
reflection characteristics. The solid lines again correspond to
the metamaterial setups, whereas the dashed lines represent
the response of the corresponding ENG material obtained
following the proposed homogenization model. Consistently
with Eq. (8), the reflection characteristic has sharp dips at the
frequencies where the tunneling resonant condition is veri-
fied. The response of the metamaterial slab compares well
with that of the ideal ENG material (especially for the cases
u=-1/9 and u=-1/5), apart from a slight shift in fre-
quency. For the configuration with u=-1/2, the agreement
is worse and the dip is not as sharp. In general, we verified
that the agreement got better when the required effective
permittivity of the equivalent ENG was more negative. This
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FIG. 10. (Color online) Amplitude of the reflection coefficient
as a function of the normalized frequency when the metamaterial
slabs are juxtaposed to different MNG slabs. Solid lines: Full wave
numerical result. Dashed lines: Homogenization theory results tak-
ing into account the effect of virtual interfaces.

is understandable since in these conditions the homogeniza-
tion theory is expected to be more accurate, because the
spacing between the plates is electrically smaller (see also
the discussion of [16] in a more general framework). The
results of Fig. 10 therefore confirm this trend, remembering
that the tunneling effect is observed at the frequency where
the effective permittivity of the metamaterial satisfies
|minalleencl =1 [see Eq. (8)].

The previous examples demonstrate that the modified ho-
mogenized model summarized in Fig. 7 can yield very accu-
rate results, even in extremely demanding scenarios, i.e.,
when the metamaterial slab is paired in a resonant configu-
ration with an MNG slab, or in the case in which the width
of the ENG slab is only a fraction of the spacing between the
plates, or even when the metamaterial slab has effective per-
mittivity close to or greater than zero. Thus, after this thor-
ough analysis we are ready to assess the performance of this
structure in more complicated setups with more practical in-
terest and potential applications.

To conclude this section, we refer that even though the
geometry studied here is intrinsically two-dimensional, some
of these results may be readily extended to the three-
dimensional metamaterial formed by a honeycomb of metal-
lic waveguides with square cross section. Indeed, as pointed
out in [36], when a plane wave with electric field parallel to
the interface illuminates the honeycomb structure the prob-
lem is equivalent to the one studied here (for certain highly
symmetric directions). Thus, for the referred polarization, the
distance from the virtual interface to the honeycomb struc-
ture is again approximately equal to 6=0.1a.

III. REDUCTION OF SCATTERING CROSS SECTION
A. Overview

In [10] it was proven that, under suitable conditions, it is
possible to drastically reduce the scattering cross section of
spherical and cylindrical objects using lossless plasmonic
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covers. As pointed out in [10], this phenomenon can be heu-
ristically understood realizing that an object with permittivity
greater than g, induces a local electric displacement current
that can be antiparallel with the displacement current in-
duced by a (plasmonic) object with permittivity less than &,.
Thus, if the correct volumetric proportions of materials are
put together, the averaged electric displacement current in
the combined system object cover may be made very small
such that the total electric dipolar radiation from the overall
system may become very close to zero. By the same token,
even higher order multipole radiation may be cancelled using
a similar technique, and therefore with this method the total
scattering cross section of moderately sized obstacles with
dimensions in the order of half the wavelength of radiation
may be drastically lowered [37]. Recently, alternative strate-
gies to reduce the scattering from a given object using
metamaterials were proposed in [17-23].

In [10] design formulas that allow the proper dimension-
ing of the cover material for the case of both spherical and
cylindrical objects were derived. Here, we briefly review the
theory for the case of cylindrical obstacles. We assume that
the fields are E-polarized, i.e., the electric field is parallel to
the axis of the cylindrical object. Moreover, all the materials
are assumed nonmagnetic.

To begin with, consider the case where the cross section
of the obstacle is circular with radius R and when the axis of
symmetry is along z. The (relative) permittivity of the ob-
stacle is assumed to be €. We show now that under suitable
conditions it is possible to sensibly reduce the total scattering
cross section of the object by covering it with a concentric
shell with radius R, made of a material with relative permit-
tivity e, under a proper choice of the two parameters of the
cover.

The structure is illuminated by a plane wave that propa-
gates along the x direction, with (normalized) electric field
polarized along z:

=4
inc _ +ikgx _ -|l +il
E7C =0t = >l ‘Jm(kor)e ¢
[=—0
[=+%

= > (2= 8,0 (kor)cos(lg).  (16)
=0

In the above, J; is the J-Bessel function of the first kind and
order [, (r,¢) form a system of polar coordinates attached to
the center of the dielectric rod, and §,,, is the Kronecker
delta. By expanding the fields into cylindrical harmonics, it
is straightforward to prove that the scattered field can be
written as

=40

ES= 2 (2= 8,0)i'cH (kor)cos(lg), (17)
1=0

where H;”:J ;+1Y; is the Hankel function of order /, and the
coefficients ¢; are given by [38]

U;

-—t 18
U +iV, (18)

=
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In the previous equation, k:kov'a and kczko\s’a are the
wave numbers in the dielectric rod and dielectric cover, re-
spectively. As referred above, we assume that the relative
permeability of the two materials is unity: u=pu.=1.

The total scattering cross section per unit length (i.e., total
scattering width) of the combined system is given by

=4

4
= > (2- 80)lerl.
0 7=0

(21)
It can be proven that in the quasistatic limit (k,R.<<1, kR,
<1,kR,.<1) the scattering coefficients have the asymptotic
behavior

c=okgR)Y, 1=12,..., (22)
i.e., the coefficients ¢, are infinitesimal of order (kyR,)?*. On
the other hand, for /=0, we have that

2

Co= _iko[(ec —&)TR? — (e.— )R] + o(koR)*. (23)

Thus, for electrically small obstacles, the terms that contrib-
ute more significantly to the scattering cross section are ¢
(associated with the electric dipole moment of the system)
and ¢, (associated with its magnetic dipole moment). In gen-
eral, both coefficients vanish at the same rate, i.e., (kORC)z, as
the frequency decreases. However, when the materials are
nonmagnetic (u=pu,.=1), it can be proven that ¢, vanishes at
a faster rate, i.e., (kyR,)*, and hence the dominant contribu-
tion to the total scattering width is yielded by the electric
dipole term ¢ alone. This is the case of interest in this work,
when the transverse size of the object is smaller or compa-
rable with about half the wavelength of operation, and the
electric dipolar term is dominant over the other scattering
terms.

As proven in [10], the specific scattering of the combined
system may be made very small in this quasistatic limit if
one designs the cover layer in such a way that the contribu-
tion of ¢(, and consequently the total electric dipole moment
of the covered object, vanishes. From Eq. (23) it is evident
that in the static limit such condition is equivalent to
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Y,(k.R) 0

Y (kR)k ] . 0 (19)
Yl(chc) Jl(kORc) '

YI/ (kCRC)kC/Iu‘C ‘]I/ (kORc)kO//*LO
Y,(k.R) 0

Y] (k Rk ] e, 0 20)
Y (k.R.) Yi(koR,)

[
0=(s— DA+ (e, — DA,, (24)

where A=7R? and A =7(R>—R?) are the areas of the object
and of the cover layer, respectively. Incidentally, it may be
rigorously proven that the above formula is valid not only for
the geometry under study, but also for arbitrarily shaped cy-
lindrical objects or covers, i.e., the condition in this quasi-
static limit for reducing total scattering width is represented
by a condition on the ratio between the physical cross sec-
tions of the objects and of the cover. This is consistent with
the observations made in [10] (see also [39]) that, since the
condition is based on the nonresonant phenomenon of the
integral cancellation of the induced electric dipole moments,
it is little affected by changes in the geometry or small
losses. We note that the condition for reduced scattering
width (24) implies that, when the permittivity of the object is
greater than unity, the required permittivity of the cover
needs to be less than unity, i.e., the cover must be made of a
plasmonic material, consistent with the results of [10]. To
illustrate these concepts we plot in Fig. 11 the total scattering

6.175

FIG. 11. Normalized scattering width Q for a kite-shaped cylin-
drical object (as depicted in the inset) as a function of the normal-
ized radius of the plasmonic cover. The permittivity of the object is
e=3 and the one of the cover is €.=-5 at the design frequency.
Solid line: Incident plane wave propagates along the x direction.
Dashed line: Incident plane wave propagates along the y direction.
The electric field is polarized along z.
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FIG. 12. (Color online) Equivalence between a cylindrical
radial-plate metamaterial shell and an ideal ENG cylindrical shell.
The analogy is valid as long as the electric field is parallel to the
plates, following the results of Sec. II.

width Q for a cylindrical object with kite-shaped cross sec-
tion and area A. For simplicity, the boundary of the cross
section of the cover is nearly parallel to the boundary of the
object (the cover is defined mathematically by the Boolean
subtraction of the object from an enlarged version of the
same object). The area of the cover is A,.. We assumed in the
example that the permittivity of the object is £=3 and that
the permittivity of the cover is e.==5 at the design fre-
quency koVA=0.17. In Fig. 11 we show Q as a function of
the normalized area of the cover. Consistent with Eq. (24), it
is seen that Q has a dramatic drop when (A+A.)/A=1.15,
independent of the direction of the incoming wave.

B. Modeling of the metamaterial cover

In the following we apply the concepts explored in the
previous section to design an equivalent ENG cover based on
the parallel-plate metamaterial configuration. Our previous
results and analogies may suggest the equivalence shown in
Fig. 12, valid as long as the impinging electric field is along
the z direction.

As shown in Fig. 12, the metamaterial shell consists of N
metallic plates placed along the directions ¢,,=(27/N)m,
with m=0,1,...,N—1. The angular spacing between the
plates is therefore A, =27/N. The plates are embedded in a
dielectric with permittivity &g;;. The structure is uniform
along the z direction. Note that there is a gap between the
end of the metallic plates and the dielectric interfaces, which,
according to the results of the previous section, allows the
physical interface of the equivalent ENG shell to coincide
with the physical interface of the dielectric shell. The re-
quired thickness of the gaps will be discussed in more detail
later in this section.

The effective permittivity of the metamaterial cover de-
picted in the left panel of Fig. 12 may be evaluated extending
the result given in Eq. (3) to the case in which the plates are
not parallel with each other, but instead are all positioned
along the radial direction. In this case clearly the distance
between the plates is not constant along the line, but it is a
function of the radial distance r, and it is given in particular
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by a(r)=rA,=r2m/N. On the other hand, the phase shift
between consecutive plates is related to the azimuthal angu-
lar variation of the cylindrical harmonics exp(+il¢), where
[=0,=1,... is the azimuthal wave number. The phase shift is
equal to k,a(r)=2ml/N, where k, is by definition the azi-
muthal component of the wave vector in the metamaterial.
Replacing a and k, in Eq. (3), respectively, by a(r) and k,,
we immediately obtain the following permittivity model for
the ENG metamaterial:

-
Eeff 2

& = €diel (kor)2 (25)
Thus the effective permittivity of the metamaterial shell be-
comes a function of the radial distance, i.e., the medium is
inhomogeneous, as expected, since the distance between the
metallic plates is not kept constant. Also, it is seen from Eq.
(25) that the plasma frequency of the equivalent medium
depends both on the number of implants N and on the azi-
muthal number /. This latter dependence of the effective per-
mittivity on the azimuthal variation of the field is once again
a manifestation of the spatial dispersion of the cover. We
have shown in Sec. II how the effective permittivity of a set
of parallel plates depends on the wave vector component k,
implying that the effective permittivity seen by the external
field depends not only on the frequency but also on the di-
rection of incidence of the impinging field. Here for the
metamaterial shell depicted in Fig. 12 the situation is analo-
gous: Not only does the effective permittivity seen by the
impressed field depend on frequency, but also on the azi-
muthal variation of the field. In other words, incoming
waves with different azimuthal variations “see” a medium
with a different effective permittivity. All these unusual phe-
nomena are a manifestation of strong spatial dispersion,
which is the price we have to pay for using such a relatively
simple (but still very effective) geometry for obtaining an
equivalent ENG material.

Another important aspect is the effect of the fringe fields
and the dimensioning of the dielectric gaps for the virtual
interfaces, particularly due to the sensitivity of the design
and the thin dimensions of the required cover. In Sec. II it
has been established that the thickness of the dielectric gaps
should be approximately equal to 6=0.1a. In this cylindrical
configuration (Fig. 12), since the distance between the plates
is not uniform a=a(r), the required thickness for the dielec-
tric gaps should also depend on the distance from the origin:

21
o(r)=0.1 Wr. (26)

For instance, suppose we want to design an ENG cylindrical
shell in the region R<r<R,. following the permittivity
model (25). The equivalent metamaterial structure should
therefore consist of a dielectric shell with permittivity &y
defined over the region R<r<R,, and of N metallic im-
plants extending in the range R+ &8(R) <r<R.—&R,). This
equivalence is depicted in Fig. 12.
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FIG. 13. (Color online) Geometry under analysis: A dielectric
cylinder covered with a radial-plate metamaterial consisting of con-
ducting implants embedded in a dielectric shell. The unit cell () is
shown.

C. Mode matching solution

Once the “radial-plate” metamaterial shell has been char-
acterized, we are ready to assess its performance in the scat-
tering problem. The idea is to cover a dielectric object with
permittivity & with a properly designed metamaterial shell,
so that the total scattering width of the combined objects is
reduced when compared with the scattering width of the un-
covered cylinder. The geometry of the structure is shown in
Fig. 13. The system is supposed to be illuminated by a plane
wave with electric field polarized along the cylinder axis.

In order to compare the simple effective medium model,
as represented by Eq. (25), with the actual physical behavior
of the metamaterial shell, here we apply a mode matching
technique that solves rigorously the electromagnetic problem
of Fig. 13. Expanding the incident plane wave into cylindri-
cal harmonics (16) of the form

g =il (kor)e'™®, 1=0,+1,£2, ..., (27)
it is sufficient to solve the problem independently for each
generic cylindrical harmonic )", owing to the linearity of
the problem and the superposition principle.

Let ¢ be the total electric field (polarized along z) over the
entire space, induced by the cylindrical harmonic 4,[? €. The
incident field satisfies the Floquet property "(r, p+A,)
=" (r, p)e™™e. Since the implants are uniformly spaced and
directed along the radial direction, the whole structure is also
invariant to a rotation A,=27/N with respect to the axis of
symmetry and, thus, also the total field satisfies the Floquet
condition as well:

Wr.o+A,) = (r, @)ee. (28)

This implies that the electromagnetic field over all space is
determined once the field in the angular sector (of the x-y
plane) Q={(rcos ¢,rsin ¢):0<@p<A,,r>0} is found. In
other words, (), as depicted in Fig. 13, can be regarded as the
unit cell of the system.

From Eq. (28) we can deduce that A, ¢)e™*¢ is periodic
with period A(P=27T/N, and therefore for r> R, the total field
can be expanded into
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+%0

¢= '7”}“0 E bele‘Han (kor)ez(l+nN)qo

n=—00

r>R,., (29)

where b are unknown expansion coefficients. Inside the
dielectric cylinder, we can write as well

+00

=2 ay i (kr)e e,

n=—00

0=r<R, (30)

where k= kO\ e is the wave number inside the dielectric
object and aObJ are unknown coefficients. Similarly, in the
dielectric gaps R<r<R+&8(R) and R.—8(R.) <r<R,, the
field can be expanded into

+00

p= 2 [a¥®] el (Kietr) + DEPIY (ke )JelHnMe,

(31

where the unknowns are a&*?/ and HEP/ (j=1,2), and kg
—ko\’8d1e1M is the wave number in the dielectric host. Finally,
inside the waveguide plate region R+ 8(R) <r<R.—48(R.), ¢
must vanish at ¢=0 and ¢=A, because of the boundary
conditions on the conducting plates. Therefore, in this re-
gion, we have

+00
. [mN
w= 2 [yt L kger) + byEY i kgierr )]SIH(T 6) '

m=1

R+6R) <r<R.-48R,), 0<¢<A, (32)

where a,¢ and 0¥ are the unknown amplitudes. It is worth
noting that in this case, even though the metallic plates de-
limit the propagation region, the variation of the field with r
does not decay exponentially in this region. The reason is
that, since the spacing between the plates is not uniform,
there is no cutoff frequency for an infinitely extended metal-
lic sector.

The unknown coefficients are calculated by matching the
fields at the r=const interfaces. More specifically, imposing
that ¢ and i/ Jr are continuous (we underline again that the
relative permeability is assumed to be unity everywhere) the
expansion coefficients in all the regions may be found nu-
merically using the mode matching algorithm.

The scattering cross section per unit length (i.e., scattering
width) Q of the system is then readily calculated from the
power density scattered by all the incident harmonics divided
by the intensity of the incident Poynting vector. We find

l+oc

=2 Ll B > poy . (33)
0 [=— g=—

Here bi’“’(l) represent the coefficients b in Eq. (29), with
the superscript / to explicitly indicate that these coefficients
are calculated for the cylindrical harmonic ;"

It is interesting to note that if the dielectrics gaps can be
ignored and the fundamental mode [i.e., the mode with m
=1 in Eq. (32)] inside the metallic plate region is sufficient to
accurately describe the wave propagation, then it is straight-
forward to verify that the average field
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satisfies the wave equation

1o op,\ P
;E(r%>_;¢av+k(2)8(r)¢av=07 (35)
where e(r)=¢eq/ € is given by Eq. (25) inside the metama-
terial and by the relative permittivity of the structure in the
remaining regions. In other words, under the previous hy-
pothesis the metamaterial behaves indeed as an effective ma-
terial with permittivity given by Eq. (25). This simple result
further supports the present homogenization model, even
though, following the results of Sec. II, we expect the higher-
order diffraction modes to be non-negligible when a finite
shell is considered, and that they should be properly taken
into account by introducing suitable dielectric gaps as indi-
cated by Eq. (26).

D. Reducing scattering width of dielectric cylinders using an
ENG metamaterial cover

Following the theory for synthesizing and homogenizing
a cylindrical radial-plate metamaterial, we present next a
specific design example for reduction of total scattering
width. We still have to deal with a minor problem. Indeed, in
Sec. IIT A it was assumed that the plasmonic material is uni-
form, while the permittivity of the metamaterial given by Eq.
(25) depends on r. This is not necessarily inconvenient, but it
may make more difficult the design of the cover for the ef-
fect predicted in [10]. However, since the thickness of the
required metamaterial cover shell is generally thin, Eq. (25)
can be approximated by its spatial average over R<r<<R.:

eff _

2
(g) _12
2
el T 2,5,

5 , R<r<R.. (36)
80 kORRC

We will use this formula to design the metamaterial cover.

In our first example, a dielectric cylinder with permittivity
e=3 and radius R is considered. Suppose that we want to
reduce the total scattering width of this cylinder at the nor-
malized frequency koR=0.8 (i.e., when the free-space wave-
length is A;=3.9 X 2R) using a plasmonic material with per-
mittivity e.=-3. As discussed in Sec. III A and in [10], the
dominant contribution to the total scattering cross section
under these conditions is mainly represented by the electric
dipole moment radiation. This contribution may be made
very small by choosing the radius R, of the cover in such a
way that the expression for ¢, as given by Eq. (18), yields
zero at the frequency of interest. Alternatively, we can di-
mension R, so that the total scattering width Q given by Eq.
(21) becomes sufficiently small. We chose this latter alterna-
tive, and found that R.=1.43R is a good value for obtaining
the desired effect. Note that the approximate condition (24)
would yield a different value for R,., since it is accurate only
in the static limit, whereas in this example the wavelength
inside the dielectric object is comparable with its physical
size.
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FIG. 14. (Color online) Normalized scattering width as a func-
tion of the normalized frequency. (@) Cylindrical dielectric object
with permittivity e=3 and radius R, with no cover around it. (b)
Object covered with dielectric shell with £=35.4. (¢) Object cov-
ered with metamaterial (dielectric shell+ 12 implants). (d) Ideal
ENG cover following the Drude model (36).

To dimension the metamaterial cover we use /=0 in Eq.
(36) (since, as noticed above, ¢ is the dominant contribution
to Q), and we solve the equation g/ £ = &, for &4ie. We still
have a degree of freedom for the number of metallic implants
N. This number cannot be too large, since otherwise the re-
quired permittivity &g for the dielectric host gets very large
as well, and this is not recommended for practical reasons
due to the inevitable presence of losses in high-index mate-
rials. On the other hand, the number of implants cannot be
chosen too small, since otherwise the homogenization model
loses its validity.

In the first example, we use N=12, requiring &g4;=35.4.
The thickness of the dielectric gaps is &(R)=0.05R and
S8(R.)=0.07R. Figure 14 reports the total scattering cross sec-
tion per unit length as a function of the normalized fre-
quency. When the dielectric object stands alone in free space
with no cover [curve (a)] the corresponding scattering width
is characterized by a relatively slow growth with frequency,
as it is generally expected. When the object is covered with a
shell of permittivity &4;,;=35.4 without the metallic implants
[curve (b)] the scattering width increases considerably, as
justified by the corresponding increase in the physical cross
section of the object. However, when this same dielectric
shell is loaded with 12 metallic implants [curve (c)], as pro-
posed in Fig. 13, the scattering width dramatically drops at
the design frequency, consistent with the previous theoretical
considerations. For the purpose of comparison, we plot in
curve (d) the scattering width that the object would have
when covered with an ideal ENG material following the
Drude type model (36). It is seen that these two lines follow
qualitatively the same trend, demonstrating how, notwith-
standing the many approximations considered in the homog-
enization process, our formalism and theory are applicable. It
is worth underlining how the results obtained with the
metamaterial shell are even slightly better than those ex-
pected when an ideal plasmonic cover is employed.

If the number of implants is reduced the results remain
exciting, as Fig. 15 and Fig. 16 show, referring respectively
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FIG. 15. (Color online) Similar to Fig. 14, but for eight im-
plants: Normalized scattering width as a function of the normalized
frequency. (a) Cylindrical dielectric object with no cover. (b) Object
covered with a dielectric shell with e=14.1. (¢) Object covered with
metamaterial (dielectric shell+eight implants). (d) ideal ENG cover
following the Drude model (36).

to the case of N=8 and N=4. For N=8 we obtain gy,
=14.1, 8(R)=0.08R, and &(R,)=0.11R, and for N=4 we ob-
tain g4 =1.26, 8(R)=0.16R, and &R.)=0.22R. It is interest-
ing to note that, for design purposes, &4 varies with N2. For
N=8 (Fig. 15) the results are qualitatively similar to those of
the previous example, except that the frequency bandwidth
over which the phenomenon of reduction of scattering occurs
has increased (notice how, as already underlined in the pre-
vious lines, this effect does not rely on any specific reso-
nance between the two utilized materials, and therefore in all
these examples the reduction of scattering cross section has a
relatively smooth variation with frequency). On the other
hand, for N=4 (Fig. 16) some stronger disagreement be-

5

4 s d) ENG cover

b) dielectric

=1

/—‘_/
2
¢) metamaterial
1 cover
a) no cover
0.6 0.8 1 1.2

Normalized frequency, LS
c

FIG. 16. (Color online) Similar to Fig. 14 and Fig. 15, but for
four implants: Normalized scattering width as a function of the
normalized frequency. (a) Object with no cover. (b) Object covered
with dielectric with £=1.26. (¢) Object covered with metamaterial
(dielectric+four implants). (d) Ideal ENG cover following the
Drude model (36).
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FIG. 17. (Color online) The effect of the virtual interface: Nor-
malized scattering width as a function of the normalized frequency.
(@) Cylindrical dielectric object with no cover. (b) Object covered
with a dielectric shell with £=38.8. (c) Object covered with
metamaterial (dielectric shell+12 implants). (d) Ideal ENG cover
following the Drude model (36). (¢) Object covered with metama-
terial with no gaps.

tween the effective permittivity model and the actual
metamaterial design is noticeable. The reason is clearly as-
sociated with the fact that for such a small number of im-
plants, adjacent metallic plates are not nearly parallel to each
other (in this case of N=4 they are even perpendicular to
each other), and so the homogenization model tends to fail
(still the agreement between the curves is fairly good). Also
note that in this case, due to the increased thickness of the
dielectric gaps, the length of the plates is only 0.05R.

In the last example reported in Fig. 17, we consider the
same dielectric object as in the previous cases, but we fix
now the radius of the cover to be R.=1.2R (the thickness is
reduced to less than half with respect to the previous ex-
amples), and we evaluate the required value of permittivity
of the cover for reducing the scattering cross section at the
design frequency. We find that in this case .=—6.9 is a good
choice. Fixing N=12 we get from the previous formulas
£4ie=38.8, 8(R)=0.05R, and &(R.)=0.06R. As seen in Fig.
17, apart from a small shift in frequency, the metamaterial
cover response [curve (c¢)] compares well with the homog-
enization model [curve (d)]. We also show in curve (e) the
response of the metamaterial cover when the cover is the
same as in curve (c), but the dielectric gaps are removed and
the implants start at the physical boundary of the dielectric
region. It is seen that the window of scattering reduction is
not obtained in this case, underlining the relevance and im-
portance of the virtual interface concepts in the design of
such thin metamaterial shells. This further confirms the re-
sults of this work in the design of metamaterials based on the
parallel plate medium configuration.

Owing to the absence of the resonance in this phenom-
enon, as already underlined, we stress here how these results
are not sharply depending on the symmetric shape of the
object or on the geometrical parameters of the design, but
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they may be obtained also after small variations of their val-
ues.

E. Finite-integration-technique numerical solution

In order to further confirm the feasibility of this technique
to reduce the scattering width of cylindrical objects, and to
better underline the physics of the phenomenon, in this sec-
tion we report some full-wave numerical simulations, ob-
tained with a finite-integration-technique commercial soft-
ware [40], of the structure of Fig. 14, i.e., a dielectric
cylinder with e=3 and kyR=0.8, surrounded by a parallel-
plate metamaterial with N=12 and g4, =35.4. These numeri-
cal simulations agree very well with our predictions of Fig.
14 on the reduction of the scattering width at the design
frequency. Here we report the near-field and far-field distri-
butions at this frequency, in order to understand the electro-
magnetic behavior of this setup.

In particular, Fig. 18 shows the electric near-field ampli-
tude for the three cases of (a) the dielectric cylinder sur-
rounded by the cover as designed in Fig. 14, (b) the same
geometry, but with the metallic plates removed, and (c) the
same geometry, but with the metallic plates extended also
inside the virtual interface regions. In the three cases the
structure is excited by a plane wave impinging from the right
of the figure with electric field amplitude equal to 1 V/m. It
is noticeable how the presence of the metallic plates, prop-
erly designed as in Fig. 18(a), drastically reduces the total
perturbation of the plane-wave field from the cylindrical sys-
tem and the field is almost uniform even in the very near
field of the structure. Only inside the cover is a strong per-
turbation of the field around the metallic plates visible, as
expected. It is also evident from this figure how the proper
design of the gaps for the virtual interface is necessary to
obtain the desired scattering reduction. When the gaps are
not present, in fact, as in Fig. 18(c), the perturbation of the
field distribution is much larger in all directions. Also the
absence of the metallic plates, as in Fig. 18(b), shows a
strong perturbation of the impinging field.

Figure 19 shows the power flow distribution for the same
three cases, showing evidently how the plane wave imping-
ing on the properly covered cylinder [Fig. 19(a)] tunnels
through the system as if the object were not present, even in
the very near field of the surface of the cover. The figure
shows also how the anomalous tunneling takes place inside
the cover, where the proper design of the metallic plates in
Fig. 19(a) allows the redirection of the power flow distribu-
tion to mimic the absence of the system. In Fig. 19(b) and
Fig. 19(c) this behavior, as expected, is not achieved and the
plane wave power flow is strongly perturbed by the object
with a relatively large shadow region induced on the back of
the covered cylinder.

Figure 20, finally, shows the far-field radiation patterns
for the three cases. The drastic reduction of radiated power is
noticeable, at every angle and in total, for the case of Fig.
20(a). Consider also that the scale in Fig. 20(a) is much
reduced with respect to the other two cases. Our technique
proves to drastically reduce the total scattering width of the
object in the very near as well as far field.
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FIG. 18. (Color online) Electric field amplitude for the case of
Fig. 14 at the frequency for which kyR=0.8 in the three cases of (a)
with cover designed as in Fig. 14, (b) with the same cover, but
removing the metallic plates, and (c) again with the same cover, but
with metallic plates extended also in the virtual interface.
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FIG. 19. (Color online) Power flow (real part of the Poynting
vector) in the three cases of Fig. 18.

IV. CONCLUSIONS

In this work, we have presented the homogenization and
design of artificial materials that consist of a set of metallic
waveguides below cutoff. We have shown that even in
simple propagation scenarios a dominant mode description
of the artificial medium is insufficient to accurately describe
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FIG. 20. (Color online) Far-field radiation patterns in the three
cases of Fig. 18 [notice how in (a) the scale is different, and much
lower, with respect to the other cases].

the electrodynamics of the structure because of the effect of
higher-order diffraction modes excited at the entrance and/or
exit interface of the metamaterial. It has also been shown that
the physical interface of the structure is not coincident with
the virtual interface of the homogenized model and therefore
it is necessary to introduce dielectric gaps near such inter-
faces to accurately design ENG metamaterials in this con-
figuration. In order to test our design formulas in an interest-
ing propagation scenario, we have investigated analytically
and numerically whether the metamaterial could be em-
ployed as a cover in order to reduce the total scattering cross
section of 2D dielectric objects, following the theoretical re-
sults reported in [10]. It has been demonstrated that, if the
parallel-plate metamaterial shell is properly designed, the
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behavior and effect of the cover are completely consistent
with the theoretical results derived in [10], and in particular
such metamaterial covers may provide scattering reduction
for the combined object-cover system. The generalization of
the results to the case in which the metallic implants are not

PHYSICAL REVIEW E 75, 036603 (2007)

perfectly conducting, but rather are plasmonic themselves
(which is the case when metallic implants are considered at
infrared or optical frequencies), is currently underway. This
may be an exciting extension of the current results at higher
frequencies and it will be the topic of a future publication.
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