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Role of pressure in nonlinear velocity gradient dynamics in turbulence
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To identify and understand the effect of pressure on turbulence velocity gradient dynamics, we study the
velocity gradient evolution with the inviscid three-dimensional Burgers equation and the restricted Euler
equation (REE). While the REE represents the incompressible limit of turbulence, the Burgers equation is
taken to be the infinite Mach number model for the Navier-Stokes equation wherein the time scale of flow
inertia is very small compared to that of pressure. Analytical fixed-point solutions for the velocity gradient
tensor are obtained in the two cases. The results are compared and contrasted to isolate the role of pressure in
shaping velocity gradient behavior. Of particular interest is the influence of pressure on (i) the strain rate
eigenvalues; (ii) the sign of the intermediate principal strain rate; (iii) the tendency of vorticity to align with the
intermediate principal strain rate; and (iv) the energy cascade direction. Importantly, the study provides valu-
able insight into the velocity gradient dynamics in highly compressible turbulence.
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I. INTRODUCTION

Velocity gradient dynamics hold the key to understanding
many turbulence phenomena such as energy cascade, mate-
rial element deformation, scalar mixing, and intermittency.
The orientation between the vorticity vector and eigendirec-
tions of the strain-rate tensor is crucial as it determines
whether vortices experience stretching or compression. The
magnitude and sign of the strain-rate eigenvalues establish
the nature of the self-straining of the velocity gradients. Vor-
tex stretching and self-straining together dictate the direction
of the energy cascade and the nature of intermittency. The
orientation between the strain-rate eigendirections and scalar
gradient controls the degree of isoscalar surface stretching,
the scalar gradient magnification, and, ultimately, the effi-
ciency of mixing. The velocity gradient dynamics depends
upon the complex interplay between flow inertia, pressure,
and viscous effects. The vortex stretching and self-straining
physics is contained in the nonlinear inertia term, which is
also responsible for wave-number proliferation or spectral
broadening. Inertial effects cause velocity gradients to
sharpen and at high enough Mach number shocks can form.
The effect of pressure is to mitigate the material element
straining and velocity gradient sharpening due to nonlinear
inertia effects. At low Mach numbers, the restraining role of
pressure is crucial for preserving the incompressibility con-
dition. Viscous effects are manifest at high wave numbers
and their role is quite straightforward: they draw kinetic en-
ergy from the flow and convert it into internal energy. On the
other hand, the interplay between inertia and pressure effects
is quite complicated and strongly dependent on the degree of
compressibility. The main difference in the velocity gradient
behavior between compressible and incompressible turbu-
lence stems from the change in the role of pressure and the
consequent modification of the pressure-inertia dynamic.

The objective of our work is to study the role of pressure
in the velocity gradient behavior in turbulent flows. The
Mach number characterizes the ratio of inertial to pressure
effects in a flow. In incompressible (vanishingly small Mach
number) flow, the time scale of pressure is much smaller than
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that of flow inertia. At the other extreme, in an infinite Mach
number flow the time scale of pressure is very large com-
pared to that of flow inertia. It is our plan to examine the
velocity gradient behavior in these two extreme Mach num-
ber regimes to clearly establish the role of pressure. It is also
reasonable to expect that this study will yield valuable in-
sight into the velocity gradient behavior at intermediate
Mach numbers.

Experimental examination of velocity gradient dynamics
is possible only at low Reynolds numbers due to the high
temporal and spatial resolution requirements. Computational
studies that entail solving the full Navier-Stokes equations
exactly at high Reynolds numbers will also be challenging
for the same reasons. We will perform this investigation in
inviscid flow, as viscous effects do not considerably modify
the pressure-inertia interaction. We employ simple inviscid
analytical and computational models that capture the essen-
tial features of the velocity gradient interactions in turbu-
lence at the two limits. As these phenomena are nonlinear by
their very nature, linear analyses such as rapid distortion
theory (RDT) are not very useful. In this study, we analyze
the behavior of velocity gradient dynamics in the inviscid
Burgers and restricted Euler solutions. The restricted Euler
equation is an excellent model of the velocity gradient dy-
namics in incompressible turbulence. In inviscid Burgers tur-
bulence, which is also called pressure-released turbulence,
only the inertial effects are considered and this represents a
reasonable model of Navier-Stokes turbulence in the infinite
Mach number limit.

Restricted Euler equation. Viellefosse [1] was the first to
study velocity gradient evolution in incompressible turbu-
lence using a simple autonomous dynamical system of equa-
tions called the restricted Euler equations (REEs). These
equations are obtained by neglecting the anisotropic pressure
Hessian (H;;=0) in the Euler velocity gradient equations.
Viellefosse [1] also performed approximate but important
asymptotic analysis of restricted Euler equation. Ashurst and
Kerstien [2] demonstrated that the REE accurately captures
many of the strain-rate and vorticity characteristics observed
in direct numerical simulations (DNSs) of isotropic and ho-
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mogeneous shear incompressible turbulence: (i) the strain-
rate tensor exhibits two positive and one negative eigenval-
ues; (ii) the magnitude of the intermediate eigenvalue is
much smaller than that of the others; and (iii) vorticity is
aligned with the intermediate eigenvector. Cantwell [3] de-
veloped more detailed solutions of the restricted Euler equa-
tion and compared the results with isotropic DNS data. In-
variant maps which facilitate the study of velocity gradient
geometry were introduced in this work. Girimaji and Spe-
ziale [4] developed the modified restricted Euler equation
that can be used for flows with nonzero mean velocity gra-
dient. Three different strategies for modeling the viscous ef-
fects have been proposed in the literature. Girimaji and Pope
[5] account for viscous effects using a stochastic diffusion
model. Chertkov et al. [6] propose a model based on La-
grangian tetrad dynamics. Jeong and Girimaji [7] perform a
Lagrangian material deformation analysis and propose a
variable-time-scale viscous relaxation model. Most recently,
Chevillard et al. [8] have significantly enhanced the REE
well beyond its original intent and scope. In a series of ar-
ticles they demonstrate that the enhanced REE can accu-
rately describe the physics of intermittency and predict scal-
ing exponents of structure functions. In summary, for
elementary modeling of many nonlinear velocity gradient in-
teractions, the incompressible REE is quickly becoming
what RDT is to linear turbulence processes.

Burgers equation. There have been numerous studies of
Burgers turbulence, or pressure-released turbulence, in the
literature which examine its relation to Navier-Stokes turbu-
lence. Many aspects of the nonlinear turbulence cascade in
highly compressible flows are well captured by the Burgers
equation. For example, the probability density functions
(PDFs) of velocity and velocity gradients obtained from the
Burgers equations share similarities with those from Navier-
Stokes equations [9,10]. The connection between the Burgers
equation and the Navier-Stokes equation at very high Mach
numbers is also discussed in [11]. Girimaji and Zhou [12]
demonstrate that the triadic interactions in the one-
dimensional (1D) Burgers equation are quite similar to those
in 3D Navier-Stokes turbulence. Thus, despite its simplicity,
the Burgers equation can offer crucial insight into compress-
ible turbulence physics.

In this study, exact fixed-point solutions of both the Bur-
gers and the restricted Euler equations are derived. It is dem-
onstrated that the parametric solution obtained in [3] is one
of the three fixed points of the REE. Numerical computations
are then performed to isolate the stable solutions from the
complete set of fixed points. The stable solutions are then
further investigated for highlighting fixed-point flow physics.
In particular, we are interested in the three main features: (i)
the sign of intermediate principal strain-rate tensor, (ii) the
alignment of vorticity, and (iii) the direction and rate of en-
ergy cascade. The results from the two sets of equations are
compared to isolate the effect of pressure.

The governing velocity gradient equations for Burgers
turbulence and restricted Euler equations are derived in Sec.
II. In Sec. I1I, the fixed-point solutions are obtained and their
properties are discussed. Finally, we present a brief summary
of our findings in Sec. IV.
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II. GOVERNING EQUATIONS

We first derive the velocity gradient evolution equation in
3D Burgers turbulence. The evolution equations for strain-
rate tensor and rotation tensor are then obtained. Finally we
present a brief derivation of the restricted Euler equation for
normalized velocity gradients.

A. Burgers equation

The inviscid 3D Burgers equation, given by

— =0, 1
ot ukﬁxk ( )

is differentiated with respect to x;, leading to

A 0A;; dA;;
—U =LA A =0 or —24+A,A4,.=0. (2
It Uy (9)Ck zkAk] dt ikt kj ( )

where A;; is the velocity gradient tensor,A;;=du;/dx;, and
d/dt represents the Lagrangian derivative. The incompress-
ibility condition is not satisfied as the Burgers equation does
not include the pressure term. As viscous effects are also
neglected, the evolution equation for A;; may diverge in finite
time and therefore these equations are not suitable for nu-
merical computations or fixed-point analysis. In order to
overcome this problem, a normalized velocity gradient ten-
sor (b;) is defined [7],

b,

=7 Wheree=A,A,,. (3)

Ve
The b;; tensor contains all the geometric information of the
velocity gradient tensor (A;;) and is better suited for numeri-
cal computations. The evolution equation of b;; can now be
obtained from Eq. (2),

ob;;
E'L =— \c‘g(bikbkj - bijbmnbmkbkn)' (4)

This equation still contains Ve, which may diverge in finite
time. Since we are interested in the asymptotic behavior of
the velocity gradient tensor such a divergence is not desir-
able. Therefore the evolution of b;; is studied in normalized
time,

’/_
ot' =\eor. (5)
Equation (4) can now be rewritten as

b

O,’_tl,l == (bikbkj - bijbmnbmkbkn) . (6)
This is a simple first-order ordinary differential equation
(ODE) system that can be solved numerically for b;; given
the initial condition. As we are interested in the behavior of
the strain-rate tensor and the vorticity, the velocity gradient
tensor is decomposed into its symmetric part (strain-rate ten-
sor s;;) and its antisymmetric part (rotation tensor w;;). Equa-
tion (6) can now be used to obtain separate evolution equa-
tions for s;; and w;;:

(?Si‘

o 8i{(Dynbibin) = SigSi; = WiWyj» (7)
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e
E/ll = Wij(bmnbmkbkn) - Sikwkj - Wikskj- (8)

Equations (7) and (8) constitute an autonomous system of
ODEs which dictate the velocity gradient dynamics of Bur-
gers turbulence. Exact solutions of these equations cannot be
obtained easily. However, important physical aspects of this
system of equations can be extracted from a fixed-point
analysis. This analysis will be performed in the next section.

B. Restricted Euler equation

The Euler equation for velocity gradients can be written
as [3]

A, 5,
7;[ + Ay — AmkAkm_:;L =H;; )

where H;;=—[8p/ ax;ox;— (p/ dx;0x;) 8/ 3].

In this work, we follow the precedent of Vieillefosse [1],
Cantwell [3], and Girimaji ef al. [5] and neglect the pressure
Hessian (H;;=0) leading to the restricted Euler equations.
Normalization of the velocity gradients and scaling of time
as done with the Burgers equations leads to

b, 1
ﬁ_tllz_ (bikbkj_ g(bmkbkn)éij_bijbmnbmkbkn)- (10)

The corresponding evolution equations for s;; and w;; are
given by

(9Si' 1
a—ﬂl = 8ij(bnbmiin) + g(bmkbkn) Oij = SuSkj = WixWij»
(11)
ow;;
? =Wii(Dpnbmibin) = SaWij = WirSij - (12)

Equations (11) and (12) dictate the velocity gradient evolu-
tion in restricted Euler turbulence.

Equations (7), (8), (11), and (12) are investigated to obtain
a better understanding of the role of pressure in the velocity
gradient dynamics in turbulent flows. The behavior of veloc-
ity gradients is studied in terms of its invariants as proposed
by Cantwell [3]. The various velocity gradient invariants are

1
P(t") =—by, Q(t,)=_§bimbmi7 (13)
and

R(t’) =- lbimbmkbki'
3
Each of these invariants has a specific physical significance
in the context of turbulent flows. P(¢') is the dilatation (with
a negative sign) of the velocity field. Negative P(¢') (positive
dilatation) implies that the fluid element is expanding and
positive P(z') means that the fluid element is contracting.
The fact that incompressibility is satisfied in case of the re-
stricted Euler equations means that P(')=0, a condition
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which is not necessarily satisfied with the Burgers equation
set. Q(1") represents the difference between the magnitude of
strain and vorticity. If Q(¢') is positive, then the magnitude
of rotation exceeds that of strain and vice versa. R(¢') is an
indicator of the energy cascade rate as will be seen later.

III. RESULTS AND DISCUSSION

The unnormalized velocity gradient REE has been subject
to parametric analysis in previous work [3]. In this study we
adopt a slightly different approach. Rather than examine the
time evolution of the velocity gradients, we focus on its equi-
librium or fixed-point behavior. The fixed-point behavior is
independent of the initial conditions and, more importantly, it
reveals the inherent physics incumbent in the system of
equations. In the absence of any external influences, the sys-
tem state variables will asymptote to the stable fixed-point
values. Saddle fixed points can dictate the behavior of the
system for short periods of time. Hence, fixed-point and ac-
companying stability analysis can provide important insight
into the physics of the system. Here, we first obtain fixed-
point solutions of the two systems analytically. Since the
governing equations are quite complicated, a formal stability
analysis of the fixed points is not feasible. Instead, we iden-
tify the stable fixed points using numerical simulations.
Then, the velocity gradient dynamics is investigated in detail
at the stable fixed points. The results from Burgers equations
are then compared with the restricted Euler results to identify
the effect of pressure. The difference between the two solu-
tions will also reflect the difference between velocity gradi-
ent physics in incompressible and compressible flows.

A. Fixed-point analysis of the restricted Euler equation

The fixed-point equations are obtained from Egs. (11) and
(12) by setting the time derivative to zero:

1
8ii(Dnb i) + g(bmkbkn) Sij = SiSij — wWiawi; = 0,

Wi (Db ibin) = SiWi; = WirSi; = 0. (14)

The fixed points are the roots of the above equations which
can be rewritten as

1
o oSSl Wikt 3By 6
ij—
bmnbmkbkn

for i,j=1,2,3.

WirSs: — WinSs:

ij—
bmnbmkbkn

These solutions need further investigation. Without loss of
generality, we can assume that the coordinate axes of the
reference frame are aligned with the principal strain-rate ten-
sor in the asymptotic limit. Hence s;; and w;; tensors are of
the form
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s;1 0 0 0 Wi wps
5;;=10 s O and wy;=|-wp 0 wyl.
0 0 533 -wpy —wy 0
(16)

In other words, (s;,52,533) are the eigenvalues of the strain-
rate tensor. We also arrange the solutions such that s;;=s,,
= 533. We can then simplify Eq. (15) to a set of six equations
with six unknowns. These equations are additionally subject

Set 1

(511,522,533) = (0,0,0) and
Set 2

(5115522, 533, W12, W13, Wa3) =

Set 3

where y=15\48w};—48-w?;+9.

Set 1 has no free parameters. Sets 2 and 3 represent a
family of fixed points parametrized by ws.

To identify the stable solutions, Eq. (10) is solved numeri-
cally using the fourth-order Runge-Kutta method. We ran-
domly generate 2000 different initial velocity gradient ten-
sors [b;;(t'=0)] and solve the velocity gradient equations to
obtain the asymptotic solutions. These results are studied in
terms of the invariants of the b;; tensor (O vs R). In the case
of restricted Euler equations, a parametric equation can be
obtained that relates the invariants (Q,R) [3],

4 )1/2
R==|-—0°] .
50

It can be shown that Eq. (19) corresponds to the fixed-point
family represented by set 3. Thus, the parametric solution
obtained in [3] is one of the fixed points of the REE. Clearly,
the present fixed-point study provides a more complete
analysis than [3] by identifying other behavior permitted by
the REE.

(19)
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to the constraint that the norm of b;; tensor be equal to unity
by definition:
2,2 .2 2 2 2

ST+ S0+ S5+ 2w, +wiz+wi) =1, (17)
The incompressibility condition is automatically satisfied by
the fixed-point solution. These nonlinear set of equations are
solved analytically in MATHCAD. Three sets of fixed-points
are identified for this system of nonlinear equations as
follows.

1 1 1
W=7, wp=x-—=, wy==—= (alleight different possible combinations).
V6 V6 V6

(18)

L Sl P
\/225’3\/2 5 W
—§W13+E+y 3W13+E+y
, 1
‘W‘3+Z‘3y> (W= 1)
,0,wi3,0 |,

Figure 1 shows the invariant behavior obtained from nu-
merical computations of the REE. Each point corresponds to
the asymptotic state reached from a random initial condition.
As expected, all the points lie on the trajectory prescribed by
Eq. (19) or set 3. Therefore, the stable fixed point is a family

0.2

-0. . .
—8.4 -0.2 R 0.2 0.4

FIG. 1. Invariant plot from computations of restricted Euler
equation. Thin solid line, Eq. (19); bold line, restricted Euler

computations.

036307-4



ROLE OF PRESSURE IN NONLINEAR VELOCITY...

1000
— PDF(s,,)
....... PDF(s,,)
—— PDF(Sss)
500
[y
5
Iy
LY
[IEY
Y
] “
l. S A
- .
91 -0.5 0 1

FIG. 2. PDF of asymptotic principal strain rates from computa-
tions of restricted Euler equations.

of solutions represented by set 3 with one free parameter
(w3). We investigate further the properties of the stable
solution—set 3.

Strain-rate tensor. Figure 2 shows the PDF of principal
strain rates from numerical computations. We can clearly see
that the intermediate strain rate s,, is positive and its magni-
tude is small compared to those of the other two strain rates.

Vorticity vector. The vorticity vector () is related to the
rotation tensor (w;;) by the Levi-Civita tensor (e;j)

1
Wy = Eeijkwij. (20)

Using this relation, the vorticity vector corresponding to the
stable fixed point is calculated,

(01, w;,3) = (0,— wy3,0). (21)

It can be seen that the vorticity vector has only one compo-
nent (w,) and it is indeed aligned with the intermediate strain
rate (s5,).

Energy cascade. The energy cascade can be studied in
terms of the rate of change of magnitude of the velocity
gradient tensor (g). Increase in the magnitude of & corre-
sponds to gradient steepening. Gradient steepening or sharp-
ening implies that the length scale associated with a fluid
particle (containing a certain amount of energy) decreases.
Therefore, gradient steepening indicates forward energy cas-
cade. Decrease in the value of &, on the other hand, implies
gradient smoothing or an inverse energy cascade. Thus, a
positive rate of change of e is an indication that energy is
being transferred from large scales to small scales, and a
negative rate of change indicates the inverse transfer.

The evolution of & can be obtained using Eq. (9),

de

E == 2AmkAknAmn (22)

Decomposing A;; into its symmetric and antisymmetric parts
and using the form defined by Eq. (16) for s;; and w;, the
right-hand side of Eq. (22) can be rewritten as
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FIG. 3. DNS results of decaying isotropic turbulence. +, DNS
results.

de 2 2 2 2 2 2
; =—2g[s(s7; + Wip + Wis) + $20(55 + Wi, + Wa3)

+ s33(s§3 + w%_g + w§3)]. (23)

In the above equation, terms on the right-hand side (RHS) of
the form sss represent self-straining and those of the form
sww correspond to vortex stretching or compression. Upon
substituting the stable solution values of various components
and simplifying, we get

de

e 2&(59)). (24)
Since it is already shown that s,, is non-negative, the right-
hand side of Eq. (24) is non-negative. Thus, at the
asymptotic state, the energy transfer in incompressible flows
can only be from large to small scales. Inverse transfer may
be possible in transient states. Closer examination of the in-
dividual terms in Eq. (23) will reveal that both vortex
stretching and self-straining contribute to forward cascading
of energy.

In summary, we have been able to demonstrate (i) previ-
ously known [2,3] trends and results analytically; and (ii) a
strong tendency for a forward energy cascade in incompress-
ible turbulence. Next, we compare the numerical computa-
tions of restricted Euler equations with direct numerical
simulation of decaying isotropic and homogeneous aniso-
tropic velocity fields. The decaying isotropic DNS data are
obtained from [13] and the homogeneous anisotropic DNS
data from [14]. Figures 3 and 4 show the DNS results of
decaying isotropic and decaying homogeneous anisotropic
velocity fields, respectively. It is to be noted that the invari-
ants in DNS scatter plots are calculated from the normalized
velocity gradients and these variables are different from
those used in [3]. Clearly, the agreement between the REE
stable normalized fixed-point solution (set 3) and DNS is
quite good.

B. Fixed-point analysis of the Burgers equation

The Burgers fixed-point equations are

Sij(Dynbmibin) =SS = Wiuwy; =0,
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FIG. 4. DNS results of decaying homogeneous anisotropic tur-
bulence. +, DNS results.

Wii(Dyunbibin) = Wi = Wiy = 0. (25)

From the above, implicit equations for strain rate and rota-
tion can be easily derived:

SikSkj — WikWkj WikSkj = WikSkj

b mnb mkb kn b mnb mkb kn
for i,j=1,2,3. (26)

Again, these equations are subject to the constraint that the
norm of the b;; tensor equals unity [Eq. (17)]. Solving these
equations for principal rates of strain and rotation tensors we
get four sets of fixed-point solutions.

Set 1

3

1 1 1
(511,522,533, W12, W13, Wp3) = (- -7 =000].
N3 N3

(27)
Set 2

1 1 1
(51155225533, W12, W13, Wa3) = (\'_5’\"_5’\'_6’0’0’0)'

Set 3
( )= (511,051, — 1,0, £ \s;, = 52,,0)
S115822,533, W12, W13, W23) = (811,U, 87 U, TNS 1 —811,Y).
Set 4

|
(511,522,833, W12:W13.Wp3) = (811,— 2+ 811,— 2,0, = Vs1,2,0).

Here z=3V2-4s7,.

Sets 3 and 4 are characterized by a single free parameter
s11. These solutions constitute the entire possible fixed-point
solution set—both stable and unstable solutions. Note that
the incompressibility condition is not satisfied by these solu-
tions (Zs;#0) due to the absence of pressure in this high
Mach number model.

Numerical computations of Eq. (6) are performed using
the fourth-order Runge-Kutta method. Once again 2000 La-
grangian particles with randomly generated initial velocity
gradient tensors [b,-j(t’=0)] are used in the computations.
Figure 5 shows the Q vs R plot for the Burgers velocity
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FIG. 5. Invariant plot from computations of Burgers equations.
Thin solid line, Eq. (6); bold line, from Burgers computations.

gradient equations. From the numerical results, we find that
fixed-point sets 2 and 3 are both stable. Set 2 corresponds to
the single fixed point as seen in the third quadrant of Fig. 5
and set 3 corresponds to the family of solutions in the fourth
quadrant. It is observed from the numerical results that
nearly 30% of the trajectories are attracted to set 2 and the
remainder to set 3. Hence we can say that set 2 is the minor
attractor and set 3 is the major attractor. Let us now examine
the physics of the two stable sets.

Dilatation. Upon relaxation of the incompressibility con-
straint, it will be interesting to observe if the fluid elements
tend to expand, contract, or preserve their initial volume. To
answer this question, we must inspect the behavior of the
first invariant of the velocity gradient tensor, P. We note that
P(1') is negative for set 2, implying that the fluid elements
evolving according to this fixed-point physics experience ex-
pansion. As the three velocity gradient eigenvalues are iden-
tical, we can further observe that the expansion is spherically
isotropic. On the other hand, P(¢') is positive for set 3, indi-
cating that these fluid elements are contracting. When s;; is
zero, the fixed-point solution is a one-dimensional compres-
sion wave or shock.

Strain-rate tensor. In the case of the major attractor (set
3) the intermediate principal strain rate is zero as opposed to
being positive as observed in the case of restricted Euler
solutions. On the other hand, all the particles attracted to set
2 experience a uniform positive strain in all directions.

Vorticity vector. The vorticity vectors corresponding to
the stable fixed-point sets 2 and 3 are

((.01, W), (1)3) = (05070) (Set 2) >

(@1, @9, 03) = (0, F Vs; —52,,0)  (set 3). (28)

It can be seen that in the case of set 3 w, is the only nonzero
component. Hence the vorticity vector is aligned with the
intermediate strain rate (s,,), which is zero. In the case of set
2, the vorticity is zero and the velocity field experiences pure
strain. This clearly indicates that vortex stretching may not
be important in high Mach number turbulence.

Energy transfer. Energy transfer is studied further in
terms of the rate of change of & as was done earlier with
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FIG. 6. PDF of magnitude of velocity gradient tensor (g) in the
asymptotic limit. Solid line, restricted Euler results; dashed line,
Burgers results.

restricted Euler equations. The equation for € is of the same
form for both restricted Euler and Burgers equations. Hence,
using Eq. (22), the evolution equations for & corresponding
to each stable set are

de e (set 2)
—=-—== (set2),
dr’ ch
d
d—;:s(l—Zs”) (set 3). (29)

The right-hand side, in the case of set 3, is always positive as
the numerical computations indicate that all the points be-
longing to the fixed-point set 3 are such that s;; <0.5. Hence,
in this case we have positive growth of velocity gradients,
which implies a forward energy cascade as expected. With
set 2, the right-hand side is negative, indicating that energy is
transferred from small scales to large scales, i.e., an inverse
energy cascade. This is consistent with the numerical com-
putations (Fig. 5): R(¢') is negative for set 2, indicating an
inverse energy cascade, whereas R is positive for set 3, im-
plying a forward cascade. It is important to note that all of
the cascading is due to self-straining and vortex stretching is
completely absent at these fixed points.

We next examine the magnitude of velocity gradients (&)
at the asymptotic limit in the two cases to better highlight the
differences in energy transfer. As mentioned before, a large
magnitude of & implies rapid forward energy transfer and
very low magnitudes imply gradient smoothening or inverse
energy transfer. Figure 6 shows the PDF of the asymptotic
€’s from both Burgers and restricted Euler computations. In
the case of the Burgers results, we have two distinctly con-
centrated regions—one at very high magnitudes and the
other at low magnitudes. From the numerical computations,
it is found that all the low-magnitude &’s correspond to set 2
whereas the high-magnitude &’s correspond to set 3. The
restricted Euler &’s are concentrated in the intermediate
range. Thus the dissipation probability distribution function
will have heavier and longer tails in compressible turbulence,
indicating a greater degree of intermittency than in incom-
pressible turbulence.
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C. Effect of pressure

As mentioned in the Introduction, one of the principal
differences in velocity gradient dynamics between incom-
pressible and compressible turbulence originates from the
difference in the role of pressure in the two cases. Clearly,
the most fundamental role of pressure is to uphold the in-
compressibility condition. In the absence of pressure, fluid
particles may expand or contract depending upon the initial
condition. The expanding particles experience spherically
symmetric dilation, and vorticity, if present initially, is sup-
pressed by the time the asymptotic state is reached. Further,
the velocity gradients associated with these particles de-
crease, indicating transfer of energy from small to large
scales. Contracting particles exhibit a completely different
behavior: the velocity gradients increase in magnitude, indi-
cating forward transfer of energy. Although vorticity is non-
zero, there is insignificant vortex stretching in the asymptotic
state. In fact, the bimodal behavior observed in the Burgers
equation calculations—simultaneous direct and inverse en-
ergy cascades—has been seen in earlier studies of compress-
ible turbulence and magnetohydrodynamic turbulence
[15-18].

It is not unreasonable to expect that the velocity gradient
dynamics in finite Mach number turbulence will fall between
the REE and Burgers behavior. At high Mach numbers, as
the pressure effects are gradually introduced into Burgers
turbulence, it is likely that the forward cascade rate of ex-
panding particles will diminish and the inverse transfer ten-
dencies of contracting particles will be negated. When the
pressure effects are strong enough (low Mach numbers), it is
likely that the REE behavior will be more prominent. Our
study also implies that much of the dissipation will occur in
high-strain regions of the flow in high Mach number turbu-
lence, in contrast to high-vorticity regions in incompressible
turbulence. This is due to the fact that vortex stretching is
weaker at higher Mach numbers. These implications are very
much in line with observations in compressible turbulence
simulations.

IV. SUMMARY

We perform fixed-point and stability analysis of the Bur-
gers and restricted Euler equations to examine the role of
pressure in velocity gradient dynamics. These two equations
are reasonable models for velocity gradients in the extreme
limits of Mach number—the Burgers at the infinite pressure-
released limit and the REE at the incompressible end. Com-
parison of the invariants of the velocity gradient tensor ob-
tained from the Burgers and restricted Euler equations show
the fundamental differences in turbulence cascade and other
small-scale mechanisms between the two limiting cases.
Analytical solutions of the restricted Euler equations are
used to reaffirm some of the previous findings concerning the
geometry of the velocity gradient tensor: (i) the intermediate
principal strain rate is positive and smaller in magnitude
compared to the other two strain rates; (ii) vorticity is
aligned with the intermediate strain rate; and (iii) only a for-
ward energy cascade is permissible and both vortex stretch-
ing and self-straining contribute toward the transfer. A simi-
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lar analysis of Burgers asymptotic solutions leads to the
following observations in the absence of pressure: (i) vortex
stretching is inhibited, (i) contracting fluid elements (which
constitute about 70% of the samples considered) experience
forward energy transfer at rates higher than comparable in-
compressible flow; (iii) expanding fluid elements (about 30%
of the samples) undergo inverse energy transfer; (iv) self-
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straining is the leading cascade mechanism; and (v) the de-
gree of intermittency may be higher than in incompressible
flow. The bimodality observed in our analytical and numeri-
cal computations of Burgers turbulence is consistent with
earlier studies of compressible turbulence [15-18].
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