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We present a dynamic van der Waals theory starting with entropy and energy functional with gradient
contributions. The resultant hydrodynamic equations contain the stress arising from the density gradient. It
provides a general scheme of two-phase hydrodynamics involving the gas-liquid transition in nonuniform
temperature. Some complex hydrodynamic processes with evaporation and condensation are examined numeri-
cally. They are �i� adiabatically induced spinodal decomposition, �ii� piston effect with a bubble in liquid, �iii�
temperature and velocity profiles around a droplet in heat flow, �iv� efficient latent heat transport at small liquid
densities �the mechanism of heat pipes�, �v� boiling in gravity with continuous bubble formation and rising, and
�vi� spreading and evaporation of liquid on a heated boundary wall.
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I. INTRODUCTION

The van der Waals theory provides a simple description of
gas-liquid phase transitions in one-component fluids �1�. It is
an equilibrium mean-field theory for hard sphere particles
with long-range attractive interaction �2�. Moreover, in his
pioneering paper in 1893, van der Waals introduced a gradi-
ent term in the Helmholtz free energy density to describe a
gas-liquid interface. Such a gradient term began to be widely
used in statistical mechanics of nonuniform states, since
seminal papers by Ginzburg and Landau for type-I supercon-
ductors �3� and by Cahn and Hilliard for binary alloys �4�.

In most phase transition theories, including those of dy-
namics, the temperature T is a given parameter independent
of space �5,6�. The Ginzburg-Landau theory is based on a
free energy functional with homogeneous T. It goes without
saying that there are a variety of situations, where phase
transitions occur in inhomogeneous T or in heat flow. In fluid
systems, wetting dynamics �7–11�, boiling processes
�12–14�, and droplet motion �15,16� are strongly influenced
by applied heat flux. Rayleigh-Bénard convection is very
complex in liquid crystals with first-order phase transition
�17� and in binary fluid mixtures with phase separation
�18–20�. In He4, the superfluid transition can be nonlinearly
influenced by heat flux, where a sharp interface is produced
separating superfluid and normal fluid �21,22�. Understand-
ing such a problem is very difficult. We need to construct a
dynamical model first to study nonequilibrium effects, where
phase transitions and hydrodynamics are inseparably
coupled.

In 1901, Korteweg proposed hydrodynamic equations for
binary fluid mixtures including the stress induced by compo-
sition gradients �23�. Diffuse interfaces between two-phases
then arise in solutions of the hydrodynamic equations in the
presence of the gradient stress �24–26�. In this line, a number
of two-dimensional simulations of diffuse-interface models
have been presented to describe two-phase hydrodynamics in
one-component fluids �6,14� and in binary mixtures
�19,20,26–28�. One-dimensional numerical solutions are
themselves highly nontrivial in heat flow �29,30�. Note that
diffuse-interface models or phase field models have been
used in numerical analysis of dendrite instability in crystal

growth �31–33�. As another line of research, critical dynam-
ics in classical fluids was studied with inclusion of the gra-
dient contributions of the mass density and the composition,
which are relevant even in one-phase states with growing of
the correlation length near the critical point �5,6,34–38�. The
so-called model H for near-critical binary mixtures was
originally devised to describe dynamics of the thermal fluc-
tuations �5�, but has also been used to describe phase sepa-
ration processes �39� and steady states under shear flow
�6,40�. We mention Kawasaki’s hydrodynamic equations for
van der Waals fluids with long-range interaction �36�, where
the stress is of a nonlocal convolution form but reduces to
the well-known form in critical dynamics in the gradient
approximation �41�. For He4, on the other hand, a set of
nonlinear hydrodynamic equations with the gradient contri-
butions was established in an early period �42�, whose sim-
plified version near the superfluid transition was later used in
critical dynamics �5,6� and in studying nonlinear effects of
heat flow �21�.

Recently, we presented a dynamic van der Waals theory
on the basis of entropy and energy functionals containing the
gradient contributions �15�. We then constructed hydrody-
namic equations with the gradient stress and numerically
solved them to examine droplet motion in heat flow. One of
our findings is that the temperature becomes homogeneous
within a droplet under applied heat flux without gravity. La-
tent heat transport is so efficient such that the interface re-
gion is nearly on the coexistence curve T=Tcx�p� even in
nonequilibrium, where the pressure p is uniform outside the
droplet. This picture was confirmed in a subsequent hydro-
dynamic theory �16�. As a result, the Marangoni effect aris-
ing from inhomogeneous surface tension is not operative in
one-component �pure� fluids, while it gives rise to much
faster fluid and interface motions in mixtures even at very
small impurity concentrations �43�.

In this paper, we will present a general scheme of the
dynamic van der Waals theory in one-component fluids in a
general form and give numerical results of some fundamen-
tal but complicated processes with evaporation and conden-
sation. Section II will be a theoretical part, while Sec. III will
present some numerical illustrations of such processes.
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II. THEORY

A. van der Waals theory

We summarize the main results of the van der Waals
theory �1,6�, which will be needed in constructing our theory.
As a function of the number density n and the temperature T,
the Helmholtz free density f�n ,T� for monoatomic molecules
is written as

f = kBTn�ln��th
d n� − 1 − ln�1 − v0n�� − �v0n2, �2.1�

where v0=ad is the molecular volume and � is the magnitude
of the attractive potential with d being the space dimension-
ality. The molecular radius is given by a=v0

1/d. The �th
=��2� /mT�1/2 is the thermal de Broglie length with m being
the molecular mass. As functions of n and T, the internal
energy density e, the entropy s per particle, and the pressure
p are given by �44�

e = dnkBT/2 − �v0n2, �2.2�

s = − kB ln��th
d n/�1 − v0n�� + kB�d + 2�/2, �2.3�

p = nkBT/�1 − v0n� − �v0n2. �2.4�

In this paper, use will be made of the expressions for the
sound velocity c= ���p /�n�s /m�1/2 and the specific heat ratio
�s=Cp /CV,

c = �kBT/m�1/2�1 + 2/d − Ts/T�1/2, �2.5�

�s = 1 + 2/d�1 − Ts/T� . �2.6�

where CV=dnkB /2 is the constant-volume specific heat and
Cp is the isobaric specific heat per volume. We introduce the
spinodal temperature,

Ts = 2�v0n�1 − v0n�2/kB. �2.7�

Maximization of Ts�n� as a function of n yields the critical
temperature Tc=8� /27kB and the critical density nc=1/3v0.

As mentioned in Introduction, van der Waals introduced
the gradient free energy density,

fgra =
1

2
M��n�2, �2.8�

We consider the equilibrium interface density profile n
=n�x� varying along the x axis. The chemical potential per
particle ��n ,T�= ��f /�n�T changes as

� − �cx =
M

2

d2n

dx2 +
d

dx

M

2

dn

dx
, �2.9�

where �cx�T� is the chemical potential on the coexistence
curve. From dp=nd� at constant T, the van der Waals pres-
sure p�n ,T� in Eq. �2.4� is expressed as �6�

p − pcx =
M

2
n

d2n

dx2 +
d

dx

M

2
n

dn

dx
− M�dn

dx
�2

, �2.10�

where pcx�T� is the the pressure on the coexistence curve. In
Sec. II D, a stress tensor �ij including gradient contributions
will be introduced, in terms of which Eq. �2.10� is equivalent

to �xx= pcx �see discussions below Eq. �2.50��. The surface
tension ��T� is expressed as �6,45,46�

� = �
−	

	

dxM�dn/dx�2. �2.11�

We note that Eqs. �2.9�–�2.11� hold even if M depends on n
as M =M�n� �while M was a constant in the original theory
�1��.

B. Gradient entropy and energy

We generalize the van der Waals theory by including gra-
dient contributions to the entropy and the internal energy as

Sb =� dr	ns�n,e� −
1

2
C��n�2
 , �2.12�

Eb =� dr	e +
1

2
K��n�2
 , �2.13�

where the space integrals are within the container of the
fluid. The entropy and energy contributions at the boundary
walls will be introduced in Eq. �2.28� below. The entropy
density and the internal energy density including the gradient
contributions are thus written as

Ŝ = ns −
1

2
C��n�2, �2.14�

ê = e +
1

2
K��n�2. �2.15�

The gradient terms represent a decrease of the entropy and an
increase of the energy due to inhomogeneity of n. They are
particularly important in the interface region. For simplicity,
we neglect the gradient terms proportional to ��n� ·�e and
��e�2. The gravitational energy is also neglected, but its in-
clusion is trivial �see discussions around Eq. �2.51��. In this
work, in constructing a general theory, we allow that C and
K depend on n as

C = C�n�, K = K�n� . �2.16�

However, in our simulations in the next section, we will set
K=0 and assume that C is independent of n.

We then define the local temperature T=T�n ,e� by

1

T
= � 



e
Sb�

n
= n� �s

�e
�

n
, �2.17�

where n is fixed in the derivatives. This definition of T is
analogous to that in a microcanonical ensemble. We will use
it even for inhomogeneous n and e in nonequilibrium. We
also define a generalized chemical potential �̂ per particle
including the gradient contributions by

�̂ = − T�
Sb


n
�

ê
= � − T � ·

M

T
� n +

M�

2
��n�2,

�2.18�

where the internal energy density ê in Eq. �2.15� is fixed so
we set 
e=−
�K��n�2 /2� in the functional derivative. The
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�= �e+ p� /n−Ts is the usual chemical potential per particle
and

M = CT + K . �2.19�

Obviously, M is the coefficient of the gradient term in the
Helmholtz free energy defined in equilibrium �see the next
section�. Under Eq. �2.16�, M =M�n ,T� depends on n and T,
so M�= ��M /�n�T in Eq. �2.18� is its derivative with respect
to n. Now, regarding Sb as a functional of n and ê, we con-
sider small changes 
n and 
ê of n and ê which yield an
incremental change of Sb. Using Eq. �2.18� and 
ê=
e
−
�K��n�2 /2�, we obtain


Sb =� dr� 1

T

ê −

�̂

T

n� −� da

M

T
�� · �n�
n .

�2.20�

The second term is the surface integral, where da is the
surface element and � is the outward normal unit vector at
the surface.

We remark on the following two papers. Fixman proposed
the energy and entropy functionals, but without the gradient
entropy, to calculate the transport coefficients near the criti-
cal point �34�. Anderson et al. started with energy and en-
tropy functionals to include the velocity field in the solidifi-
cation problem �33�.

C. Equilibrium conditions

In equilibrium, we maximize Sb at a fixed particle number
N=�drn and a fixed energy Eb=�dr�̂ for a fluid confined in
a cell. First, we are interested in the bulk equilibrium. To this
end, we introduce

W = Sb/kB + �N − �Eb, �2.21�

where � and � are the Lagrange multipliers. The maximiza-
tion condition �
W /
e�n=0 with respect to e at fixed n yields
the homogeneity of the temperature,

T = 1/kB� �2.22�

and then

W = �− F + kBT�N�/kBT �2.23�

becomes a functional of n. We introduce the Helmholtz free
energy functional,

F = Eb − TSb =� dr� f�n,T� +
M

2
��n�2� , �2.24�

where the integrand is ê−TŜ, so f =e−Tns and M is defined
by Eq. �2.19�. In the Ginzburg-Landau theory, we further-
more minimize W with respect to n to obtain

�̂ = kBT� = const, �2.25�

where �̂ is defined by Eq. �2.18�. In the thermodynamic limit
we find W= pV /kBT where p is the pressure and V is the total
volume of the fluid.

In a two-phase state with a planar interface at x�0, the
surface tension � is expressed as Eq. �2.11�. Here we intro-
duce the grand potential density,

g�n,T� = f�n,T� − �cxn + pcx, �2.26�

where �cx and pcx are the values of � and p on the coexist-
ence curve. It is nonvanishing in the interface region, where
n=n�x� changes from a gas density ng to a liquid density n�

as a function of x. From Eq. �2.25� it holds the relation
g�n ,T�=M�dn /dx�2 /2 and

��T� = �
ng

n�

dn�2Mg�n,T��1/2. �2.27�

This expression holds even when M depends on n �6�.
In real fluids we need to consider the boundary condition

on the surface of the container. For simplicity, we consider
the surface entropy and energy of the forms,

Ss =� da
s�n�, Es =� daes�n� , �2.28�

where da is the surface element and the areal densities 
s
and es are assumed to depend only on the number density n
on the surface. We need to maximize the total entropy Stot
=Sb+Ss under fixed N and Etot=Eb+Es. To this end, we in-
troduce

Wtot = W +� da�
s − �es� , �2.29�

where � is common to that in Eq. �2.22�. Maximization of
the surface part of Wtot additionally yields

M� · �n + ��fs/�n�T = 0, �2.30�

as the surface boundary condition. Here we use Eq. �2.20�
and define the Helmholtz surface free energy density,

fs�n,T� = es − T
s. �2.31�

In equilibrium, the temperature is homogeneous and we
should minimize the total Helmholtz free energy,

Ftot = F +� dafs�n,T� , �2.32�

in order to calculate the surface density profile �7,48�. The
surface free energy is usually expanded to second order in
n−nc as

fs = − as�n − nc� + bs�n − nc�2/2, �2.33�

where as and bs are constants. Then the boundary condition
�2.30� is written as

M� · �n − as + bs�n − nc� = 0. �2.34�

D. Generalized hydrodynamic equations

We propose hydrodynamic equations taking account of
the gradient entropy and energy. They are of the same forms
as those of compressible fluids in the literature �47� except
that the stress tensor contains gradient contributions. The
guiding principle of their derivation is the non-negative defi-
niteness of the entropy production rate in the bulk region. In
the previous theories �24,26,28� the gradient entropy was not
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assumed and M =K in Eq. �2.19�. We suppose that a fluid is
in a solid container with controllable boundary temperatures
and the velocity field v vanishes on the boundary. We here-
after include a gravity g applied in the downward direction
along the z axis.

First, the number density n obeys

�n

�t
= − � · �nv� . �2.35�

The mass density is defined by �=mn, where m is the par-
ticle mass. Second, the momentum density �v obeys

�

�t
�v = − � · ��vv� − � · ��J − 
J� − �gez, �2.36�

where the last term arises from the gravity with ez being the

�upward� unit vector along the z axis. The �J = 
�ij� is the
reversible stress tensor containing the gradient contributions,
which is invariant with respect to time reversal v→−v. The

J= 

ij� is the dissipative stress tensor of the form,


ij = ���iv j + � jvi� + �� − 2�/d�
ij � · v �2.37�

with �i=� /�xi. The � and � are the shear and bulk viscosi-
ties, respectively. Third, including the kinetic part, we define
the �total� energy density,

eT = ê + �v2/2. �2.38�

We assume that the energy current is of the usual form in

terms of the stress tensor �J −
J and the thermal conductivity
�. Then eT is governed by �47�

�

�t
eT = − � · �eTv + ��J − 
J� · v� + � · �� � T� − g�vz.

�2.39�

Equivalently, we may rewrite the above energy equation in
terms of the internal energy density ê using Eqs. �2.35� and
�2.36� as

�

�t
ê = − � · �êv� − �J :�v + �̇v + � · �� � T� , �2.40�

where there is no term proportional to g. On the right-hand
side of Eq. �2.40�, the second term represents −�ij�ij�iv j
and �̇v=�ij
ij�iv j is the viscous heat production rate. Use of
Eq. �2.37� gives

�̇v = �
ij

�

2
��iv j + � jvi −

2

d

ij � · v�2

+ ��� · v�2 � 0.

�2.41�

From Eq. �2.20� the time derivative of Sb becomes com-
posed of bulk and surface contributions as

dSb

dt
=� dr� 1

T

�ê

�t
−

�̂

T

�n

�t
� −� da�� · �n�

M

T

�n

�t
.

�2.42�

From our hydrodynamic equations the first bulk term be-
comes

�dSb

dt
�

bulk
=� dr	v · �� ·

�J

T
+ ê �

1

T
− n �

�̂

T
�

+
1

T
�� · � � T + �̇v�
 . �2.43�

If there is no heat flow from outside, the above quantity
should be non-negative definite. We thus require

�
j

� j� 1

T
�ij� = − ê�i

1

T
+ n�i

�̂

T
. �2.44�

Under Eq. �2.44� we obtain �dSb /dt�bulk=�dr��̇v+ �̇�� /T�0
without heat input from the boundary �47�, where the ther-
mal heat production rate is

�̇� = ���T�2/T � 0. �2.45�

Now we seek the symmetric tensor �ij which satisfies Eq.
�2.44�. Notice the thermodynamic identity,

d�p/T� = − ed�1/T� + nd��/T� , �2.46�

following from the Gibbs-Duhem relation d�=−sdT+dp /n
�6�, where d�¯� denotes an infinitesimal change. If the gra-
dient stress is neglected, we have �ij = p
ij, as should be the
case, where p= p�n ,T� is the van der Waals pressure in Eq.
�2.4�. If it is included, some calculations yield

�ij = �p + p1�
ij + M��in��� jn� , �2.47�

where p1 is a diagonal gradient part,

p1 = �nM� − M�
��n�2

2
− Mn�2n − Tn��n� · �

M

T

= n�̂ − ê + TŜ − p . �2.48�

In the first line of Eq. �2.48�, the last term does not exist in
the previous theories �26�. The second line indicates that Eq.
�2.48� is a generalization of the thermodynamic identity p
=n�−e−Tns. In Appendix A, we will present another deri-

vation of the above expression for �J using Eqs. �2.35� and

�2.40�. With the above form of �J , the total entropy density Ŝ
in Eq. �2.14� obeys

�

�t
Ŝ = − � · 	Ŝv −

M

T
n�� · v� � n −

�

T
� T
 + ��̇v + �̇��/T .

�2.49�

The additional entropy flux −T−1Mn�� ·v��n is reversible
and is nonexistent in the usual hydrodynamics �47�. The last
term on the right-hand side is the usual entropy production
rate per unit volume.

We make some further comments. �i� Gouin �24� and
Anderson et al. �26� also started with the entropy production
rate with M =K=const �see Eq. �10� of Ref. �24� and Eq. �15�
of Ref. �26��, but without assuming Eqs. �2.39� and �2.44�
they included a reversible contribution �in our notation�,

JGA = M�� · v�n � n , �2.50�

in the energy flux. We do not assume such a new energy flux
in Eq. �2.39�; instead, we have the last term ����M /T�� in
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p1 in Eq. �2.48� and the additional entropy flux written as
T−1JGA in Eq. �2.49� �49�. �ii� When M and T are constants

independent of space, our expression for �J reduces to that
used near the critical point �6,37�. The off-diagonal compo-
nents M�in� jn �i� j� give rise to the critical anomaly of the
shear viscosity �5,6,34� and the surface tension contribution
to the shear viscosty in sheared two-phase states �40�. �iii�
We consider the one-dimensional equilibrium case, where all
the quantities vary along the z axis. We then obtain v=0, T
=const, and the equilibrium relation,

d

dz
�zz = − g� , �2.51�

which leads to Eq. �2.10� in two phase coexistence �by
changing z to x and setting g=0�. Using Eq. �2.44� we also
obtain the equilibrium chemical potential,

�̂ + mgz = const, �2.52�

which is a generalization of Eqs. �2.9� and �2.25� in gravity.
In addition, we find �zz−�xx=�zz−�yy =M�dn /dz�2. This is
consistent with the surface stress tensor ���i� j −
ij�
s in the
thin interface limit �50�, where � is the normal unit vector
and 
s is the 
 function on the surface.

As the simplest boundary condition on the container sur-
face, we may use the equilibrium condition �2.30� even in
nonequilibrium and even when the temperature is not homo-
geneous on the boundary walls. This is justified when the
equilibration at the boundary is much faster than that in the
bulk. Then, under Eqs. �2.30� and �2.44� the total entropy
Stot=Sb+Ss changes in time as

FIG. 1. Density profiles in phase separation after lowering of the
boundary temperature from 1.1Tc to 0.91Tc at t=0. Here the liquid
layer �in black� at the boundary acts as a piston adiabatically ex-
panding the interior.

FIG. 2. Adiabatic time evolution of the temperature T and the
density n at the cell center �lower solid lines� in the early stage after
lowering of the boundary temperature from 1.1Tc to 0.91Tc. Also
shown is the inverse isothermal compressibility 1 /KT multiplied by
Kc=nckBTc �dotted line�. The entropy s per particle �upper line�
remains nearly unchanged, indicating that the process is adiabatic.
The sc is the critical value. All the quantities are those at the cell
center still without domains in this early stage.

FIG. 3. Early stage time evolution due to the piston effect after
a change of Tb /Tc from 0.875 to 0.895 without gravity. A bubble
with radius 50�=L /4 is at the center. Upper plate: T /Tc vs t / t0 at
the center y=L /2 and in the liquid at y=L /5 and 4L /5, where x
=L /2. Lower plate: v at t / t0=55, where the gas region is strongly
perturbed.
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dStot

dt
=� dr

�̇� + �̇v

T
+� da

� · � � T + ės

T
, �2.53�

where ės=�es /�t= ��es /�n��n /�t. On the right-hand side, the
first term is the entropy production rate in the bulk, while the
second term is due to the heat flux from outside and surface
energy change. Note that the relation �2.53� holds even when
the temperature is inhomogeneous on the boundary walls.

III. NUMERICAL RESULTS

A. Method

We integrated the hydrodynamic equations �2.35�, �2.36�,
and �2.39� in two dimensions on a 202�202 lattice. We
assume that C in Eq. �2.12� is a constant independent of n
and K in Eq. �2.13� vanishes. The mesh size of our simula-
tion cell is chosen to be

� = �C/2kBv0�1/2. �3.1�

The interface thickness in two phase coexistence is of order
� far from the critical point and is given by �8Tc /27�Tc

−T��1/2� close to the critical point. The system length is L
=202�, so our system is very small. In the following figures,
the x axis is in the horizontal direction, while the y axis is in
the vertical direction, with 0�x�L and 0�y�L. The ve-
locity field v is assumed to vanish on the walls; then, the
average number density �n�=�drn /V is a conserved quantity.
Hereafter �¯� denotes taking the space average. As the
boundary condition for the density, we assume Eq. �2.34� in
the form

2�2�� · �n = n − 5nc/2, �3.2�

on all the walls. This yields as=�kBT /2�2 and bs=2v0as in
Eq. �2.33�. Then the boundary walls are wetted by liquid in
equilibrium. The boundary condition for the temperature is
as follows. In Figs. 1 and 2, we assume a common boundary
temperature on all the walls. In Figs. 3–15, the bottom
boundary temperature Tb at y=0 and the top boundary tem-

perature Tt at y=L will be taken to be different, while the
side walls are thermally insulating or � ·�T=0 at x=0 and L.
We use the words “top” and “bottom” even in the absence of
gravity.

The transport coefficients strongly depend on the density
�30,51�. That is, the shear viscosity and the thermal conduc-
tivity of liquid are usually much larger than those in gas
except in the vicinity of the critical point. For simplicity, we
assume them to be proportional to n as

� = � = �0mn , �3.3�

� = kB�0n . �3.4�

Here the kinematic viscosity �0=� /� is assumed to be inde-
pendent of n. For example, the liquid and gas densities are
n�=1.70nc and ng=0.27nc in two phase coexistence at T

FIG. 4. �T−Tt� / �Tb−Tt�, p / pc, and v0n vs y /L at t / t0=200 and
at x=L /2, with Tb=0.895Tc and Tt=0.875Tc, in the same run as in
Fig. 3. The thermal diffusion layers are reaching at the bubble due
to the small system size.

FIG. 5. T �upper plate� and v and n �lower plate� in a steady
heat-conducting state at Tb=0.945Tc and Tt=0.875Tc under zero
gravity. A bubble is attracted to the warmer boundary wall. Tem-
perature homogeneity inside the bubble is attained by latent heat
convection. The horizontal direction is along the x axis in the text.
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=0.875Tc in the van der Waals model. Thus, under Eqs. �3.3�
and �3.4� in the van der Waals model, the transport coeffi-
cients in liquid are larger than those in gas by 1.70/0 /27
=6.3 at T=0.875Tc. Not close to the critical point, the ther-
mal diffusion constant DT=� /Cp is of order �0, where the
isobaric specific heat Cp per unit volume is of order kBn.
Therefore, the Prandtl number Pr=� /�DT is of order unity
both in gas and liquid far from the critical point under Eqs.
�3.3� and �3.4�.

We will measure time in units of t0 defined by

t0 = �2/�0, �3.5�

which is the viscous relaxation time �� thermal diffusion
time for Pr�1� on the scale of �. See Appendix B, where we
will rewrite our hydrodynamic equations in dimensionless

forms. We then obtain a dimensionless number,


 = �0
2m/��2 = m�2/�t0

2. �3.6�

For He3 near the gas-liquid critical point with Tc=3.32 K,
we have 
1/2�=�0�m /��1/2=2.03�10−8 cm by setting �
=27kBTc /8. In this paper we set 
=0.01 �see the sentences
below Eq. �3.9� below for its reason�. The normalized gravity
acceleration reads

g* = mg�/� , �3.7�

which is the gravity energy of a molecule over the distance l
divided by the van der Waals energy �. For He3 we have
g*=3.2�10−6� with � in units of cm under the earth gravity
g=0.98�103 cm3/s. Thus g* is extremely small unless � is
large, which means that the gravity can be relevant only on
macroscopic scales. In Figs. 9–15 below, however, we will
set g*=10−4 to induce appreciable gravity effects even for
our small system size.

In terms of 
 we express the sound velocity c as

c = As

−1/2�/t0, �3.8�

where As is of order unity since Eq. �2.5� gives

As = �kB�2T − Ts�/��1/2/�1 − v0n� �3.9�

in two dimensions. Therefore, the acoustic oscillation be-
comes apparent for small 
, but we require that the acoustic
traversal time L /c should be much longer than the micro-
scopic time t0 even for our small system length L to obtain

1/2L /��1. A plane wave sound with small wave number q,
evolves in time as exp��qt� with �q= ± icq−�sq

2 /2 in a ho-
mogeneous one-phase state. The sound damping coefficient
�s is written as �s= ��+ �2−2/d��� /�+DT��s−1� �6�. If we
use Eqs. �3.3� and �3.4�, we find

t0�q = ± iAs

−1/2Q − �2 − 1/�s�Q2, �3.10�

where Q=�q is the scaled wave number. Therefore, in our
simulation, the damping takes place on the time scale t0 /Q2

and the acoustic oscillation can be seen for Q�
−1/2. Fur-
thermore, the capillary wave frequency �q����q3 /mn��1/2�
in two phase states behaves as �46�

t0�q � �1 − T/Tc�3/4
−1/2Q3/2. �3.11�

The right-hand side gives the deformation rate of a droplet
due to the surface tension if Q=q��2�� /R with R being the
droplet radius.

FIG. 7. Density profiles after that in Fig. 6. Illustrated are slow
migration and rapid spreading after collision with the upper
boundary.

FIG. 6. T �upper plate� and v and n �lower plate� around a cool
liquid droplet at t=4565t0 with Tb=0.91Tc and Tt=0.875Tc under
zero gravity. Condensation is taking place at the interface and ve-
locity field is induced.
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B. Phase separation by adiabatic expansion at g=0

First, we investigate phase separation induced by the pis-
ton effect �52� taking place upon lowering of the boundary
temperature. In such situations, due to contraction of thermal
boundary layers, the interior can be expanded into metastable
or unstable states adiabatically �6�. The piston effect is inten-
sified near the critical point owing to the divergence of iso-
baric thermal expansion. With this method in near-critical
one-component fluids, nucleation experiments were per-
formed by Moldover et al. �53�, while spinodal decomposi-
tion experiments were realized in space by Beysens et al.
�54�. Recently Miura et al. �55� measured adiabatic density
changes of order 10−7nc in the interior caused by sound
pulses in supercritical states. In this paper, however, we
present an example of adiabatic spinodal decomposition far
below the critical point caused by the growth of a wetting
layer.

We prepared a supercritical state at T=1.1Tc and �n�=nc

in equilibrium, where �n�=�drn /V is the average density. We
then lowered the temperature of all the boundary walls from
1.1Tc to 0.9Tc at t=0. Subsequently, a liquid wetting layer
thickened and acted as a piston adiabatically expanding the
interior. Here the interior was in a gaseous state with n�nc
�see Fig. 2�. In Fig. 1, we show snapshots of the density n,
where instability and coarsening proceeded from the bound-
ary into the interior on a slow time scale. It is remarkable
that the interior can be adiabatically quenched on a rapid
time scale. In Fig. 2, we display T, n, s, and the inverse
isothermal compressibility,

1

KT
= n� �p

�n
�

T
=

kBn

�1 − v0n�2 �T − Ts� , �3.12�

at the cell center x=y=L /2 in the early stage when the inte-
rior was still homogeneous. It demonstrates that the adiabatic
changes were caused by sounds emitted from the boundary
walls. In the present case, the isothermal compressibility be-

FIG. 8. T �upper plate� and v and n �lower plate� in a steady
heat-conducting state at Tb=0.89Tc and Tt=0.875Tc under zero
gravity.

FIG. 9. T �upper plate� and v and n �lower plate� in a steady
heat-conducting state at Tb=0.91Tc and Tt=0.875Tc under g*

=10−4.
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came negative or brought below the spinodal T�Ts�n� in the
early stage. The acoustic time scale L /c is of order

1/2t0L /��10t0 from Eqs. �3.8� and �3.9�, which agrees with
the oscillation period in Fig. 2.

We make some comments. �i� Though the interior was
transiently close to the critical point in the adiabatic quench-
ing in Fig. 2, we neglected the critical fluctuations and the
critical anomaly of the transport coefficients. �ii� Though not
shown here, temperature variations are significant among do-
mains in the presence of latent heat, while previous simula-
tions of spinodal decomposition have been performed in the
isothermal condition �6,27,39�. �iii� In our case, a wetting
layer acts as a piston because of its thickening in deep
quenching. In near-critical fluids a thermal diffusion layer
can well play the role of a piston in supercritical states. If the
bulk region is in a liquid state below Tc, a cooled thermal
diffusion layer can even cause phase separation in the inte-
rior �54�. By cooling the boundary wall at fixed volume,
Moldover et al. �53� could realize homogeneous nucleation
in the bulk at liquid densities but could not do so at gas
densities, where the latter result was ascribed to the preexis-
tence of a liquid wetting layer. The growth process of a liq-
uid wetting layer upon cooling itself has not yet been exam-
ined in the literature.

C. Piston effect with a bubble in liquid at g=0

Let us consider the piston effect in the presence of a
bubble in liquid. When Tb is changed by 
Tb, sound waves
emitted from the boundary cause a pressure change 
p. After
many traversals of the sounds in the cell, 
p soon reaches of
the following order �52�:


p � As�
−1
Tb, �3.13�

where As� is the liquid value of the adiabatic coefficient As
= ��T /�p�s. From Eqs. �2.3� and �2.4� the van der Waals
theory gives

As = � �T

�p
�

s
=

1/n − v0

kB��1 + d/2� − dTs/2T�
. �3.14�

If 
Tb�0.1Tc and T /Tc�0.9, we find 
p�0.1pc, which is
10 times larger than the Laplace pressure difference � /R for
R�50� �46�. Here, due to the different values of As in the
two phases, there arises a considerable temperature differ-
ence in the two regions,

��T�g� = �Asg − As��
p , �3.15�

in the early stage. For example, AskB /v0 is equal to 7.1 for
gas and 0.65 for liquid at T=0.875Tc from Eq. �3.14� in two
dimensions. On the other hand, near the critical point, Asg
−As� tends to zero as 2�s

−1/2��T /�p�V, where �s is the specific
heat ratio �6�. Thus, the bubble temperature becomes higher
�lower� than in the surrounding liquid for positive �negative�

Tb. For the case of a liquid droplet, as will be shown in Fig.
6, the droplet temperature becomes lower �higher� than in the
surrounding gas for positive �negative� 
Tb.

In Figs. 3 and 4, we prepared a bubble with radius R
=50�=L /4 in equilibrium at T=0.875Tc under zero gravity.
We then changed Tb to 0.895Tc for t�0 with Tt held un-
changed. In the upper plate of Fig. 3, the bubble center is
more heated than in the liquid at y=L /5 and 4L /5 in the
early stage in accord with Eq. �3.15�. We notice that the
oscillation persists within the bubble for a longer time than
in the liquid region. The lower panel of Fig. 3 shows the
velocity field induced by the sounds at t=55t0, which is
larger within the bubble than outside it. The typical velocity
within the bubble is a few times larger than ��v2�
=0.011� / t0 at this time. It indicates the presence of appre-
ciable mass flux through the interface and suggests existence
of collective modes with evaporation and condensation local-
ized near a bubble. In Fig. 4, we show �T−Tt� / �Tb−Tt�,
p / pc, and v0n vs y /L at t=200t0 and x=L /2. Here, the os-
cillation is mostly damped, while the temperature inside the
bubble is not yet flat. We also notice that the thermal diffu-
sion layer is thickened up to the bubble, since the distance
between the bottom and the bubble is narrow. It would take
an extremely long time for macroscopic separation. While
the temperature is continuous, the pressure is slightly higher
inside the bubble than outside it by � /R�0.01pc and exhib-
its a singularity in the interface region. The latter behavior
can be seen in the equilibrium relation �2.10�, from which
the integral of p in the interface region in the normal direc-
tion is equal to −3� /2 for constant M.

D. Two-phase states in heat flow at g=0

In our previous work �15,16�, we examined the tempera-
ture and velocity field around a droplet in heat flow. We
summarize the main results there. Under zero gravity, we
showed numerically and analytically that a gas �liquid� drop-
let slowly moves to the warmer �cooler� boundary and that
the temperature becomes nearly homogeneous within the
droplet. Let a gas droplet �bubble� with radius R be placed in
a heat flux Q=−��T	� , where �� is the liquid thermal conduc-
tivity and T	� is the temperature gradient far from the droplet.
A convective velocity of order

vc = Q/ngT�s = − ��T	� /ngT�s �3.16�

is induced within the droplet, where �s=sg−s� is the entropy
difference per particle between the two phases. The velocity
vc characterizes latent heat flow and is independent of the
bubble radius. The Reynolds number Re=vc�gR /�g is less
than unity for R��gT�s /mQ, where �g=mng and �g are the
mass density and the shear viscosity, respectively, in the gas
phase.

FIG. 10. Evaporation of a liquid layer at g*=10−4 after increas-
ing the bottom temperature from 0.91Tc to 1.1Tc, where the initial
state is given in Fig. 9.
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In our simulation Re is smaller than unity. In Figs. 5–8,
we examine heat-conducting two-phase states at zero gravity,
where the top temperature at y=L is fixed at Tt=0.875Tc and
the bottom temperature Tb at y=0 is changed to a higher
value. In Fig. 5, we initially prepared a bubble with radius
R=50� in equilibrium at T=0.875Tc at the cell center. We
then raised Tb to a high value, 0.945Tc, for t�0 to induce
droplet motion toward the bottom. The time scale of migra-
tion was about 104t0. Eventually, the droplet partially wetted
the bottom plate with an apparent contact angle. However,
Fig. 5 shows the presence of a thin gas layer sandwiched
between them. The typical velocity in Fig. 5 is given by
��v2�=0.029� / t0, which is of order vc in Eq. �3.16�. We can
see that T is flat inside the bubble and continuous across the
interface. The generalized chemical potential �̂ in Eq. �2.18�
exhibits the same behavior �not shown here�. The pressure is
nearly constant outside the bubble at p�0.76pc, while it is
slightly higher inside by � /R�0.01pc �46�. With further in-
creasing Tb, the apparent contact angle decreases and the
bottom wall is eventually wetted completely by gas. See
such an example of complete wetting at Tb=0.97Tc in Ref.
�15�. As a related experiment, Garrabos et al. observed that
gas spreads on a heated wall initially wetted by liquid and
exhibits an apparent contact angle �10�.

Next, we initially prepared a liquid droplet i gas with R
=50� at the cell center at T=0.875Tc and then raised Tb to
0.91Tc for t�0. In Fig. 6, we show T, v, and n around a
liquid droplet suspended in gas at t=4565t0. Here the veloc-
ity field is nearly steady and, as in the lower panel of Fig. 3,
it is much smaller in the liquid than that in the gas due to the
viscosity difference from Eq. �3.3�. The average velocity am-
plitude is given by ��v2�=0.015� / t0 at this time. The tem-
perature inside the droplet is nearly homogeneous and is
lowest in the cell, while the pressure inside it is again only
slightly higher than outside it by � /R�0.01pc. Hence, con-
densation is taking place at the interface and the temperature
inside it is slowly increasing in time as 0.849Tc, 0.851Tc, and
0.855Tc at t / t0=4565, 7770, and 15820, respectively, on the
time scale of thermal diffusion ��R2 /D� t0R2 /�2�. Note that
the initial temperature lowering inside the liquid droplet can
be explained by the adiabatic relation �3.15� �see the argu-
ments around it�. In Fig. 7, we show three snapshots of the
density at later times in the same run as in Fig. 6. The droplet
migration to the cooler wall is very slow, but after its en-
counter with it the liquid spreads over it rather rapidly under
the wetting condition �3.2�. In this process the warmer
boundary remains dried.

E. Heat conduction in steady two-phase states

Even when the liquid volume fraction is small, efficient
heat transport is realized in the presence of evaporation on
the warmer boundary and/or condensation on the cooler
boundary. This is the mechanism of heat pipes widely used
in refrigerators and air conditioners. In such processes, the
warmer boundary drys out if evaporation proceeds without
supply of liquid. Here we demonstrate that steady heat trans-
port with evaporation and condensation can be achieved in a
closed cell in the presence of a liquid wetting layer and/or a
gravity.

In our situation, we define the effective thermal conduc-
tivity through the cell by

�eff = �
0

L

dxQb�x�/�Tb − Tt� . �3.17�

As the heat flux, we choose its value at the bottom y=0,

Qb�x� = − ���T/�y�y=0, �3.18�

where v vanishes. It is the heat flux from the bottom bound-
ary wall to the fluid. In convection, a normalized effective
thermal conductivity, called the Nusselt number, has been
used to represent the efficiency of heat transport. We define it
by

Nu = �eff/��. �3.19�

We take �� as the thermal conductivity at n=1.7nc, which is
the liquid density in two-phase coexistence at T=0.875Tc
�see the sentences below Eq. �3.4��. In one-phase states with-
out convection, we have Nu=n /1.7nc under Eq. �3.4�. There-
fore, Nu is small for gas without convection.

In Fig. 8, we show T, v, and n in a steady heat conducting
state with Tb=0.89Tc and Tt=0.875Tc at zero gravity. A char-
acteristic feature in this case is that a liquid layer covers all
the boundary walls. The average density �n�=0.22v0

−1 is rela-
tively small. The typical velocity is given by ��v2�
=0.0080� / t0. Remarkably, the temperature profile is nearly
flat in the majority gas region, due to latent heat convection
through the cell. As a result, Nu=5.0 is realized, despite the
fact that the liquid region is only near the boundary walls.

Under gravity, the warmer boundary does not dry out
even for large heat flux. In Fig. 9, we realized a steady state
with �n�=0.206v0

−1 and Tb=0.91Tc under gravity at g*

=10−4, where ��v2�=0.0119� / t0 and Nu=2.0. Again a liquid
layer covers all the boundary walls, while the bottom part is
thicker due to the gravity. These features are very different
from those in the right panel of Fig. 7 without gravity. In Fig.
9, the temperature gradient is large everywhere on the side
walls and widely in the region y /��0.25 near the bottom,
while the liquid-gas interface is at y /��0.1 apart from the
side walls. Due to these features we obtain the smaller value
of Nu than for the case in Fig. 8. In Fig. 10, we raised Tb /Tc
from 0.91 to 1.1 starting with the steady state in Fig. 9. We
recognize that this is the case of strong heating, where
bubbles emerge from the bottom to break the liquid into
smaller pieces. As the gas flow from the bottom is warmer,
condensation occurs on the side and top boundary walls,
leading to growth of the liquid wetting layer there.

F. Boiling in gravity

Boiling phenomena are very complex and still remain vir-
tually unexplored in physics �6,12–14�. Usually, the typical
bubble size is macroscopic and the associated Reynolds
number is large. In the present case, we realized boiling un-
der gravity at g*=10−4 even for our small system size, where
bubbles from the heated bottom wall were small but could
rise upward with small Reynolds numbers.

In Figs. 11 and 12, we set �n�=0.34v0
−1 and held Tt at

0.775Tc. Starting with an equilibrium two-phase state at t
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=0, we reached a steady nonboiling state at Tb=0.915Tc,
where ��v2�=0.023� / t0 and Nu=3.2 owing to latent heat
convection in the gas region. See the left snapshot at t
=104t0 in the upper panels of Fig. 11. We then raised Tb to
0.945Tc to produce a weakly boiling state, where a single
bubble periodically appeared with a period about 103t0. At
t=27 700t0 a bubble is at the center of the liquid region,
while at t=28 010t0 it is being absorbed into the gas region.
Here ��v2�=0.033� / t0 and Nu=4.5 at t=27 700t0. Finally, at
t= tb=34 245t0, we again raised Tb to 1.0Tc. The middle pan-
els of Fig. 11 display transition from weak to strong boiling.
The bottom plates of Fig. 11 are those in fully developed
boiling, which was reached for t− tb�5000t0. In Fig. 12, we
show T, n, and v in fully developed boiling at t=63047t0,
where ��v2�=0.055� / t0 and Nu=9.2. We can see steep tem-
perature gradients near the boundary walls and large velocity
deviations around the rising bubbles. In Fig. 13, we show
that the heat flux Qb�x� on the bottom in Eq. �3.18� is large
where rising bubbles are being produced. The upper panel at
t=34 600t0 is at the inception of strong boiling, exhibiting a
sharp maximum where a bubble is being detached. The lower
panel of Fig. 13 at t=63 047t0 is taken in the fully developed
boiling state, exhibiting multiple peaks.

In our boiling simulation, the bubble sizes are of order
R�20� and the Reynolds number Re=��v2�R /�0 on the
droplet scale is of order 0.1 in the lower panels in Fig. 11 and

in Fig. 12. Thanks to the high efficiency of latent heat trans-
port, the temperature gradient is mostly localized near the
boundary walls. Generally in gravity, there should remain a
small temperature gradient in the bulk region in boiling and
in stirring. It is given by the so-called adiabatic temperature
gradient �6,14�,

�dT

dz
�

bulk
= − �g� �T

�p
�

s
, �3.20�

which is the minimum for the onset of convection for com-
pressible fluids �47� and is equal to −0.27 mK/cm for CO2
near the critical point. In our case, the right-hand side of Eq.
�3.20� is of order −g*Tc /� and is consistent with the average
gradient seen in the upper panel of Fig. 12. In usual
Rayleigh-Bénard convection in one-phase fluids, the average
temperature gradient in the bulk region can be suppressed
only in turbulence by rapid convective motion of thermal
plumes, where the Reynolds number exceeds unity even on
the scale of the plumes �56�.

G. Wetting dynamics

Wetting dynamics has been studied mostly for involatile
droplets �7�, but it has not yet been well understood for vola-
tile droplets or in the presence of evaporation and condensa-
tion �8–10�. The previous approaches in the latter case were
by solving the hydrodynamic equations with phenomeno-
logical surface boundary conditions �8� and by performing
molecular dynamics simulations of nanometer-size liquid
droplets �9�. Here we present its preliminary numerical study
in our scheme.

At t=0, we placed a semi-circular liquid droplet with R
=40� on the bottom, where the interface was on the curve
�x−L /2�2+y2=R2. The initial temperature was 0.875Tc

throughout the cell. In the upper panels of Fig. 14, where
both Tb and Tt were held unchanged, spreading of the liquid
region occurred over the walls on a time scale of 103t0. In the
middle panels of Fig. 14, we set Tb=0.915Tc for t�0 to
induce slow evaporation of the liquid region. We can see
only a small amount of liquid left on the bottom at t
=4000t0 �right�. In the bottom panels of Fig. 14, where Tb
=0.975Tc for t�0, a gas droplet appeared within the liquid
region and, as it grew, the liquid region itself was finally
detached from the boundary �right�. In these processes, a
considerable amount of liquid was evaporating even for the
first case of Tb=Tt=0.875Tc and the latent heat needed for
evaporation was supplied from the equitemperature bound-
ary wall. In all these examples, the liquid region was itself
cooled even below the top temperature Tt=0.875Tc by an
amount typically of order 0.05Tc. In Fig. 15, we show the
velocity v �upper panel� and the heat flux Qb�x� �lower
panel� at t=500t0 obtained from the run giving the series �a�
in Fig. 14. We can see a circulating flow in the gas and large
heat absorption at the contact points. The peak height of
Qb�x� gradually decreased with spreading. These stem from
evaporation at the contact points and condensation on the top
of the droplet. The flow pattern here is very different from
that for involatile droplets �7�.

FIG. 11. Changeovers of boiling with increasing Tb at Tt

=0.775Tc and g*=10−4. Upper plates: nonboiling state at Tb

=0.91Tc �left�, and weakly boiling state with a single bubble at Tb

=0.945Tc �middle and right�. Middle plates: transition from weak to
strong boiling after a change of Tb from 0.945Tc to 1.0Tc at t
=34245t0. Lower plates: dynamical steady state with continuous
bubble formation and rising.
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We mention two theoretical papers in accord with our
results. Koplik et al. found a large temperature decrease of a
nanometer-scale liquid droplet on a heated wall using mo-
lecular dynamics simulation �9�. Nikolayev et al. solved the
heat conduction equation around a contact point of a bubble
in two dimensions to find a divergence of Qb�x� there on an
equitemperature heated wall �11�.

IV. SUMMARY

We have developed a general scheme of the dynamic van
der Waals theory. Our hydrodynamic equations including the
gradient stress can readily be integrated numerically. We may
then gain intuitive ideas of complicated but fundamental hy-
drodynamic processes in two-phase states. In particular, em-
phasis has been put on adiabatic changes and latent heat
transport in two-phase states, which have rarely been dis-
cussed in the literature. Though in two dimensions and for
small system size �200�200�, we have presented a number

of simulation results to demonstrate the usefulness of our
scheme. Examples treated are �i� adiabatically induced spin-
odal decomposition, �ii� piston effect with a bubble in liquid,
�iii� temperature and velocity profiles around a gas and liquid
droplet in heat flow, �iv� efficient latent heat transport at
small liquid densities, �v� boiling in gravity with continuous
bubble formation and rising, and �vi� spreading and evapo-
ration of a liquid region on a heated boundary wall.

We make some comments below.
�i� Our numerical analysis in this work is very fragmen-

tary. We should investigate each problem in more detail over
wide ranges of the parameters. In particular, we have used
the special boundary condition �3.2�, for which liquid is
strongly attracted to the boundary walls. We should perform
more simulations for various as and bs in Eq. �2.33�.

�ii� The mesh size of our simulation cell � is on the order
of the interface thickness away from the critical point. If � is
a microscopic length in our numerical analysis, we have
treated hydrodynamics on small scales �� several 10 nanom-
eters�, as in the molecular dynamics simulation �9�. We have
not examined crossovers taking place with increasing the
spatial scales, but general features of adiabatic changes and
latent heat transport revealed in this work should be indepen-
dent of the spatial scales.

�iii� In integrating our hydrodynamic equations, we do not
assume phenomenological boundary conditions at the inter-
face, while they are needed in the hydrodynamic calculation
in the thin interface limit �8,11,50�. To clarify the relation-
ship between these two approaches, we should examine the

FIG. 12. Temperature �upper plate� and velocity field �lower
plate� in a fully developed boiling state at Tb=Tc and Tt=0.775Tc

under g*=10−4 at t=63047t0.

FIG. 13. Normalized heat flux Qb�x� /Q0 at the bottom in boiling
at t=34 600t0 in �a� and t=63 047t0 in �b�, corresponding to the first
panel in Fig. 11 for �a� and to Fig. 12 for �b�. Here Qb�x� is defined
by Eq. �3.18� and Q0=�� /v0t0.

AKIRA ONUKI PHYSICAL REVIEW E 75, 036304 �2007�

036304-12



thin interface limit of our model �26–28�. Moreover, in the
phase field model of crystal growth �31–33�, the interface
motion can be insensitive to the interface thickness � under
some conditions among the parameters in the model. Also in
our fluid problems, we should clarify such conditions.

�iv� In our numerical analysis, we evidently see smooth
variations of the temperature T and the generalized chemical
potential �̂ in Eq. �2.18� across the interface �not shown for
�̂�. In our hydrodynamic theory �16�, we assumed the conti-
nuity of these quantities together with the stress balance and
the mass and energy conservation at the interface. In the
literature �8,29�, however, discontinuities in the temperature
and the chemical potential have been supposed to arise
across the interface between liquid and dilute gas �which
originate from the long mean free path in the gas phase�.

�v� Since the Reynolds number is small in this work, we
should examine the high-Reynolds-number regime by en-
larging the droplet size R in a much larger system �see the
discussion below Eq. �3.16��.

�vi� Figure 3 indicates complex nonspherical dynamic re-
sponse of bubbles to sound waves in the presence of evapo-
ration and condensation. This aspect seems to have not yet
been investigated, while large sound attenuation of liquid
containing bubbles has long been discussed �6�.

�vii� We should study hydrodynamics near the critical
point, where the singularities of the thermodynamic and dy-
namical properties largely influence the dynamics
�6,10,12,14,54�. It is well-known that the piston effect gives
rise to critical speeding-up of thermal equilibration �52�,
while the thermal diffusion is slowed down. In near-critical
one-phase convection, significant are overall pressure and
temperature fluctuations propagating as sounds on birth and
arrival of thermal plumes at the boundary walls �56�. In near-
critical two-phase states, such adiabatic fluctuations could be
stronger in boiling and phase separation.

�viii� We are also interested in droplet motion and two-
phase hydrodynamics in binary fluid mixtures. Marek and
Straub examined the effect of a small amount of noncon-
densable gas doped in the gas phase �43�, which drastically
alters thermocapillary convection. Pooley et al. �20� took
account of latent heat transport in binary mixtures to calcu-
late the Nusselt number in two-phase convection.

�ix� In the Landau and Lifshitz book �47�, the linearized
hydrodynamic equations are treated as Langevin equations,
where newly added are random stress and random heat flux
related to the transport coefficients via the fluctuation-
dissipation relations �6�. They describe the thermal fluctua-

tions of the hydrodynamic variables. The random source
terms in the dynamic equations are particularly important
near the critical point �5,6�. We should clarify how our hy-
drodynamic equations with the gradient stress can be treated
as Langevin equations.

�x� We mention the lattice-Boltzmann method devised to
treat two-phase flow and phase separation �20,57,58�. In par-
ticular, Palmer and Rector included thermal effects to calcu-
late a nonequilibrium temperature profile around a gas-liquid
interface �58�.
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APPENDIX A: DERIVATION OF THE REVERSIBLE
STRESS

We derive the reversible stress tensor �J following the
method in Appendix 6A of Ref. �6�. Adopting the Lagrange
picture of fluid motion, we suppose a small fluid element

FIG. 14. Spreading and evaporation of a liquid region on the
bottom with Tb /Tc=0.875 in �a� �top�, 0.915 in �b� �middle�, and
0.975 in �c� �bottom�, with the initial temperature being at 0.875Tc.

FIG. 15. Velocity v �upper panel� and normalized heat flux
Qb�x� /Q0 at the bottom �lower panel� at t=500t0 with Tb /Tc

=0.875 obtained from the run giving the series �a� in Fig. 14. Here
Q0=�� /v0t0. Absorption is maximum at the contact points, where
evaporation is taking place.
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with volume V at position r and at time t. Due to the velocity
field the element is displaced to a new position, r�=r+u with
u=v
t, after a small time interval 
t. Hereafter, we neglect
the dissipation ��=�=�=0�. The density n and the volume
of the fluid element V are changed by


n = − n � · u, 
V = V � · u . �A1�

The change of the internal energy in the volume element is
written as 
E=�dr�ê�−�drê=V
ê, where dr�=dr�1+� ·u�.
From Eq. �2.39� we have


ê = − �êIJ+ �J �:�u , �A2�

where IJ= 

ij� is the unit tensor. We shift the coordinates as
r�=r+u; then, the space derivatives are changed as

�

�xi�
=

�

�xi
− �

j

�uj

�xi

�

�xj
. �A3�

As a result, ��n�2 /2 is changed by �i��in���i
n�−�ij��in�
��� jn���iuj�=�n ·�
n−�n�n :�u. We then calculate the
entropy change in the volume element 
S=�dr�ŝ�−�drŝ as

T

V

S = ��TŜ − ê + n�̂�IJ− �J + M � n � n�:�u . �A4�

Without dissipation we should require 
S=0 to obtain the

reversible stress �J in Eqs. �2.47� and �2.48�.

APPENDIX B: SCALED HYDRODYNAMIC EQUATIONS

We rewrite our hydrodynamic equations into dimension-
less forms in two dimensions using Eqs. �3.3� and �3.4�. The
scaled space and time, �−1r and t0

−1t, will be simply written as

r and t, respectively. Here we introduce the scaled density,
temperature, and velocity,

 = v0n, ! =
kB

�
T, V =

t0

�
v . �B1�

The continuity equation �2.35� is written as � /�t=
−� · � V�. The momentum equation �2.36� reads


	 �

�t
 V + � · � VV�
 = − � · MJ − g* ez, �B2�

where 
 and g* are the constants defined by Eqs. �3.6� and
�3.7�. Including the viscous stress we define

Mij = 	 ! 

1 −  
−  2 − 2!�2 − !�� �2

ij

+ 2!��i ��� j � − 
 ��iVj + � jVi� . �B3�

We define a scaled total internal energy density by ET
�eTv0 /� to obtain

ET =  ! −  2 +



2
 V2, �B4�

which is governed by

�

�t
ET + � · �ETv + MJ · V� = � ·  � T − g* Vz. �B5�

The boundary condition �3.2� is rewritten as

� · � = � − 5/6�/2�2. �B6�

Equations �2.35�, �B2�, and �B5� were integrated using the
Euler scheme with the time mesh size �t=0.01 �59�.
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