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Eigenfrequencies of vortex-pair equilibria near an elliptic cylinder or a flat plate in uniform flow
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The eigenfrequencies of the potential-flow equilibria of a symmetric vortex pair behind an elliptic cylinder
in uniform flow are calculated through the use of conformal mapping. These frequencies are shown to have
values in agreement with measured Strouhal numbers reported in various papers. The special cases of the
potential-flow equilibrium of a symmetric vortex pair behind a circular cylinder and the equilibrium behind a
flat plate perpendicular to the uniform flow, are related to the measured Strouhal numbers of about 0.21 and
0.15, respectively. It is suggested that in the range of subcritical Reynolds numbers, 3 X 10% to 5 X 10° for the
circular cylinder, a part of the drag is the result of the presence of a mean recirculation region in the near wake,
which sheds vortices in the far wake and which is fed by vorticity from the cylinder wall.
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I. INTRODUCTION

The presence of vorticity behind a cylinder in uniform
flow emerges from the viscosity of the fluid. Although the
vorticity is generated by viscous forces, the dynamics of the
resulting flowfield with vortices may be governed by inviscid
properties of the flow. The mathematical description of the
flow can then be given by solutions of Laplace’s equation.
This inviscid approach gives rise to Foppl’s equilibrium for
the symmetric vortex pair behind a circular cylinder in uni-
form flow, e.g., Milne-Thomson [1], p. 370. When symmetri-
cally displaced from that equilibrium, symmetric motion
around the equilibrium positions will result. This was re-
ported together with the associated frequencies by de Laat
and Coene [2]. Smith [3] has also calculated the eigenvalues
in view of a stability analysis.

The unsteadiness behind bluff bodies and especially be-
hind circular cylinders has been measured and reported by
many investigators, since it was reported for the first time by
Strouhal in 1878 (Roshko [4]). A recent review was made by
Sarpkaya [5]. He indicated many unsolved matters and made
a large number of recommendations for further experiments
to obtain more insight in the parameters of vortex-induced
vibrations.

Gerrard [6] suggested with respect to the formation of the
vortices behind a circular cylinder that “there is a possible
high Reynolds-number flow régime in which the formation
region is symmetrical in the absence of free-stream distur-
bances.” Furthermore, Williamson [7] stated, following the
results of Roshko [8]: “if one averages over large time (com-
pared to the shedding period) one can define a mean recir-
culation region in the wake, which is symmetric and closed.”
These observations indicate that symmetric solutions might
be relevant for real flow.

In the present paper the eigenfrequencies for an elliptic
cylinder or a flat plate with a symmetric vortex pair in uni-
form flow are calculated through the use of conformal map-
ping, and evaluated with respect to the unsteadiness found in
experiments.
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II. EQUILIBRIUM AND FREQUENCY OF MOTION OF A
SYMMETRIC VORTEX PAIR BEHIND AN ELLIPTIC
CYLINDER IN ONCOMING FLOW

A commonly applied dimensionless number for unsteadi-
ness behind a cylinder is the Strouhal number Sr. This num-
ber is related to the frequency f of the oscillations in the flow
and the cylinder diameter perpendicular to the uniform flow.
For the elliptic cylinder of Fig. 1, with uniform flow U., it is
defined as

2bf
Sr=—. 1
U, (1)
The flowfield in the physical z plane (z=x+iy) of Fig. 1
about an ellipse with major axis 2a and minor axis 2b, is
obtained through two subsequent transformations as de-
scribed in Milne-Thomson [1], p. 166, by
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The flowfield in the { plane can be described by the complex
potential Y,
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with {T being the complex conjugate of ;.

The vortex velocity follows from Helmholtz’s theorem by
calculating the local flow velocity. The vortex velocity in the
z plane is related to the vortex velocity in the { plane. How-
ever, the vortex velocity does not simply transform with the
conformal mapping. It changes according to the change of
the path function described by Routh’s correction, see e.g.,
Lugt [9], p. 162, which in integral form is known as Routh’s
theorem, e.g., Milne-Thomson [1], p. 372. The velocity of
vortex No. 1 in the physical z plane, which we indicate by
Vi=u,+iv,, can be calculated using the complex velocity
potential in the { plane, using Routh’s correction by
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FIG. 1. Transformation of a vortex pair in uniform flow to a vortex pair near a contour, symmetric with respect to the uniform flow.
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with ¢} =(d{/dz).-, and ’{E(dzg“/dzz)zzzl. Equilibrium po-
sitions (xg,y,) are obtained by solving the two equations
(real and imaginary part) contained in Eq. (5) for u;—iv,
=0, using (2)—(4), by means of a numerical iteration method.
We subsequently take a number of x, positions to obtain y,
and I' for aspect ratios a/b of 0, 0.5, 1, 1.5, and 2. The
equilibrium positions x, and y, are made dimensionless us-
ing b and are plotted in Fig. 2(a). The vortex strength is
made dimensionless by

r
2mbU.,.’

(6)

and is plotted against x,/b in Fig. 2(b).

For a/b=0, which yields a flat plate, Smith and Clark
[10] reported that it is not possible to have stationary vortices
on the leeward side. They gave the proof for the symmetric
vortex pair when it satisfies the Kutta condition of smooth
flow at the sharp edges of the plate. When this condition is
not imposed, equilibrium positions are obtained for the sym-
metric vortex pair, which are plotted (a/b=0) in Fig. 2(a)
with the related vortex strength G in Fig. 2(b).

For a/b=1, which yields a circular cylinder, the solution
is that of Foppl’s equilibrium points, e.g., Milne-Thomson
[1], p. 370, which are described by

w122 .
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with ro=x3+yj and y=arctan(y,/x,). It is easily seen from
Eq. (7) that

lim 6,=30°.

rog—%®
The equilibria from Egs. (7) and (8) are plotted in Figs. 2(a)
and 2(b), indicated by a/b=1. The asymptote is also in-
cluded in Fig. 2(a).

When a vortex pair in its equilibrium position is given a
small disturbance while keeping the vortices symmetric, the
vortex-velocity field results in a vortex trajectory around that
equilibrium [2]. Substitution of the angular velocity o, Eq.
(13) of Ref. [2] with f=w/(27), in (1) yields
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In Fig. 2(b) the values of the Strouhal number of the eigen-
frequency (9) related to the equilibria of (7) and (8) are plot-
ted against xo/b (a/b=1).

The frequency of the cyclic motion of a vortex around its
equilibrium position can also be calculated using a method
similar to the procedure used in de Laat and Coene [2],
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2 . : ~ FIG. 2. Equilibrium of a sym-
Yo/b metric vortex pair on the leeward
1.5 | LZ_=_— asymptote 6=30 side of an ellipse in uniform flow
and the related eigenfrequencies.
11— (a) Equilibrium positions; (b)
A Strouhal number Sr of the eigen-
05} 0% frequency and dimensionless vor-
230 tex strength G.
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0 0.5

036302-2



EIGENFREQUENCIES OF VORTEX-PAIR EQUILIBRIA...

which was also used for stability analysis by Smith [3],
Huang and Chow [11], Tang and Aubry [12], and Cai er al.
[13]. It is based on linearization of the vortex velocity near
the equilibrium position and omitting second-order and
higher-order terms. We substitute z;=zy+Az; combined with
(2)-(4), in vortex velocity Eq. (5), with z, being the equilib-
rium position and Az;=Ax;+iAy, a small displacement. We
use the following formulation:

|:M1:| _ X, 21=2 g 7=z, |:A)C1
v (&) (@) Ay,
X, z )

This system of two first-order differential equations for the

perturbation (Ax;,Ay,), can be solved using the method of

eigenvalues. The eigenvalues N of this linearized system are
for z,=2z,

} +0(Az}).
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The equilibrium is stable when the real parts of both eigen-
values are negative, implying that if the equilibrium is dis-
turbed with (Ax;,Ay,), the displacement will tend to zero.
From Eq. (5) we determine the derivatives required in (10)
using

uy = (Vi + V)72, (11)

vy =(V, = V)I(2i), (12)

and z;=x;+1y;. It follows that
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Substitution of (5) combined with flowfield (4) and transfor-
mation {(z) through combination of (2) and (3) into (13) and
(16) yields
d J
L ) (17)
dxp  dy
Furthermore we obtain after substitution of Eqs. (13)—(17)
into the eigenvalues (10),
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av, vV, IV, v
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For the equilibria treated in this paper it was found that all
eigenvalues are imaginary, so the equilibrium is neutrally
stable in these cases and the vortices will move around their
equilibrium positions in the same way as described in
de Laat and Coene [2] for the case of the symmetric vortex
pair near the circular cylinder in uniform flow or the single
vortex in a corner stagnation flow. The angular velocity of
this motion now follows from (18):

_ [ aviav,

w= - + (rad/s). (19)
174 &Z] 074 (91]
With the definition of the Strouhal number (1), we have with

frequency f=w/(2m) in s7!,

b Vv, v, vV, av
Sr= \/—‘—1— 1 (20)
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The Strouhal numbers of the motion around the equilibrium
points of Fig. 2(a) are calculated using Eq. (20) and included
in Fig. 2(b). For a/b=1 the curve is identical to that of Eq.
9).

The limiting Strouhal number for the equilibrium ap-
proaching the rear stagnation point (a,0), so for I'—0, can
be found by a local approximation of the flowfield near that
stagnation point. From the flowfield represented by (4) with
the transformation /(z) from (2) and (3) we find after substi-
tution of z=a+¢& with € <<a, for the flow velocity near the
stagnation point to first order,

) a+b
u—iv= Ux,?s. (21)

With Eq. (5) from de Laat and Coene [2] we have that the
angular velocity of a vortex about its equilibrium position in
a corner stagnation flowfield has the value w=2k, with k the
proportional factor of the stagnation flow. From (21) we now
have k=U.(a+b)/b* so w=2U..(a+b)/b*. With the defini-
tion of the Strouhal number (1) and f=w/(27) we find

mse=2{1+3)
lim Sr=—{1+—. (22)
ro—a w b
Substitution of a/b equal to 0, 0.5, 1, 1.5, and 2, yields the
limiting values of the Strouhal number of, respectively, Sr
=2/m7=~=0.637, Sr=3/7=0.955, Sr=4/m7~1.273 [which is
also found when applying Eq. (9)], Sr=5/7=1.592, and
Sr=6/7=~1.910. Equation (22) is plotted in Fig. 2(b) and the
limiting values are included in Table I.

III. COMPARISON WITH EXPERIMENTAL DATA

Unsteadiness of vortex flows has been reported on many
occasions, especially for the flow past a circular cylinder
(a/b=1). Experimental results were found in various sources
for values of a/b of 0, 0.5, 1, and 2. In this section these
experimental results are compared with the values calculated
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TABLE 1. Vortex-pair equilibria and measured values of Sr and G.

Point-vortices equilibrium

Measured values

alb Xo/b Yo/b G Sr Remark Sr Re/10* Source

0 0 0 0 0.637 Sr=2/m

0 1.131 0.756 1.501 0.161 Sr=0.161 0.161 0.4 Abernathy [14]

0 1.186 0.785 1.560 0.150 Sr=0.150

0 1.208 0.796 1.584 0.146 Sr=0.146 0.146 3-19 Fage and Johansen [15]

0 1.272 0.829 1.652 0.135 Sr=0.135 0.135 0.3-1.7 Roshko [16]

0.5 0.5 0 0 0.955 Sr=3/m

0.5 1.380 0.708 1.348 0.195 Sr=0.195 0.195 11-60 Delany and Sorensen [17]

1 1 0 0 1.273 Sr=4/m

1 1.364 0.348 0.519 0.460 Sr=0.460 0.46 55 Bearman [18]

1 1.392 0.373 0.574 0.430 Sr=0.430 0.43 12 Delany and Sorensen [17]

1 1.499 0.467 0.780 0.337 G=0.780 0.0062 Schaefer and Eskinazi [19], G=0.78
1 1.531 0.494 0.840 0.316 G=0.840 0.0080 Green and Gerrard [20], G=0.84
1 1.680 0.615 1.110 0.237 G=1.110 0.0102 Green and Gerrard [20], G=1.11
1 1.722 0.649 1.184 0.220 Sr=0.220 0.22 3-7 Sarioglu and Yavuz [21]

1 1.750 0.670 1.231 0.210 Sr=0.210

1 1.779 0.693 1.281 0.200 Sr=0.200 0.20 0.01-1.7 Roshko [16], Table 1, averaged
1 2.141 0.960 1.857 0.120 Sr=0.120 0.12 0.0050 Roshko [4]

1.5 1.5 0 0 1.592 Sr=5/m No measurements found

2 2 0 0 1.910 Sr=6/m

2 2.238 0.242 0.322 0.600 Sr=0.600 0.60 110-200 Delany and Sorensen [17]

2 2.995 0.958 1.814 0.120 Sr=0.120 0.12 35-50 Delany and Sorensen [17]

with the expressions produced in the preceding section. The
experimental results are listed in Table I in advancing order
of G, together with some calculated values. The column “Re-
mark” displays the condition for which the equilibrium at
that row has been calculated. The Reynolds number Re is
related to the width 2b of the cylinder perpendicular to the
uniform flow, so

U..2b
Re = R
v

(23)

with v the kinematic viscosity of the fluid.

A. a/b=0, flat plate

Experiments with a flat plate in a uniform flow were made
by Fage and Johansen [15], Roshko [16], and Abernathy
[14]. Fage and Johansen [15] measured a frequency which
had a Strouhal number related to the span of 0.146, which is
included in Table I. The Reynolds number was estimated by
the present author, using kinematic viscosity v=1.45
X 107 m?/s of air at 15 °C. Roshko [16] measured a range
of Strouhal numbers of 0.132 to 0.140 in the range of Rey-
nolds numbers between 3020 to 10 600 (his Table I), the
average of 0.135 is included in Table I. Abernathy [14] mea-
sured Strouhal numbers of 0.161 to 0.244, with increasing
blockage factor of the wind tunnel. The value of the least

blockage Sr=0.161 is included in Table I, also with an esti-
mated Reynolds number as described above.

If we assume the mean measured Strouhal number of
0.15, we can calculate the equilibrium with the method de-
scribed in the preceding section and we find the equilibrium
of G=1.560 at x,/b=1.186 and y,/b=0.785. In Fig. 3
streamlines are plotted for this equilibrium at Sr=0.15. It is
to be seen in this figure that this case approximates the case
that the Kutta condition of smooth flow at the sharp edge is
fulfilled. Smith and Clark [10] have clearly shown that for
the inviscid case there is no equilibrium position at which the
Kutta condition is satisfied. The locus of solutions for the
zero vortex velocity, that we have calculated and plotted in
Fig. 2(a) for a/b=0 is very near the locus of solutions for the
smooth-flow condition at the sharp edge. The equilibrium at
Sr=0.15 nearly fulfills the condition of smooth flow at the
sharp edges, as shown in Fig. 3. It seems likely that in real
flow the viscous effect at the tip smoothens the difference at
the sharp edge between this vortex-pair equilibrium solution
(zero vortex velocity) and the solution of exact smooth flow
at the edge, which for the same vortex strength lies very near
the zero vortex velocity solution.

B.a/b=0.5

Experimental data for the elliptic cylinder with a/b=0.5
is reported by Delany and Sorensen [17]. They measured
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Sr=~0.19-0.20 in the range 1.1 X 10°<Re <6 X 10°, the av-
erage value of Sr=0.195 is included in Table I. The measured
Strouhal number is higher than those of the flat plate, which
is in accordance with the predicted tendency with varying
alb as shown in Fig. 2(b).

C. a/b=1, circular cylinder

Many experiments have been performed on the flowfield
of the circular cylinder in uniform flow since Strouhal re-
ported the unsteadiness for the first time in 1878 (Roshko
[4]). Vortex shedding and the formation of a Kdrmén vortex
street are known to be a mechanism of unsteadiness. In this
section it is shown that the Strouhal numbers of the eigen-
frequencies of the motion around the equilibria of the pre-
ceding section and the related vortex strengths, are in agree-
ment with the measured values of the real flow at Reynolds
numbers higher than approximately 300 and may be a driv-
ing factor in the shedding frequency.

Some results of measured unsteadiness or measured vor-
tex strength are again listed in Table I. In addition to the
measured values, the related values of xy/b, G or Sr are
calculated with (8) and (9), respectively [(5) and (20) give
the same results] and are added to the table. The correspond-
ing equilibrium points can be found on the curves in Fig. 2.
The measurements are evaluated below in three ranges of
Reynolds numbers, respectively, 0 <Re <40, 40 <Re <300,
and Re>300.

1. 0<Re<40

In this range of Reynolds numbers two distinct vortices
become clearly visible when injecting particles in the flow, as
shown in Fig. 4(a). The flow can be compared with the po-
tential flowfield of Fig. 1 with complex potential (4) and
transformation (2).

Although the Strouhal number of the eigenfrequency of
the equivalent equilibria can be calculated, there is no un-
steadiness reported in this range of Reynolds numbers. This
may be due to the dominance of the viscous forces, which
dampens the inviscid motion. For the flowfield of Fig. 4(a)
the Reynolds number is not known [22] but the flow matches
quite well that of Fig. 4(b), although there is the difference of
a small secondary vortex. The closed-flow region of Fig. 4(a)
is not as wide as in the inviscid flow of Fig. 4(b) but the end
of the recirculation region, the free stagnation point, corre-
lates well. In real flow, of course, not all of the vorticity is
concentrated in one point as it is in the case of the potential-
flow model.

2. 40<Re <300

In the range of Reynolds numbers of 40<Re<<150 a
stable Karmdn vortex street is known to be formed. For
150 <Re <300 Roshko [4] reported that an irregular flow-
field is being formed. He found from wind tunnel measure-
ments that the unsteadiness started at about Re=40. From
Re=50 to 150 the Strouhal number continuously rises to
0.18, with relation

PHYSICAL REVIEW E 75, 036302 (2007)

y/b

z/b

FIG. 3. Streamlines of the flowfield of a vortex pair behind a flat
plate (a/b=0) for G=1.560, Sr=0.150.

( 21.2)
Sr=0212{1-——/, (24)
Re
which is represented by the rising part for Re<<150 of the
Strouhal curve in Fig. 5. Substitution of Re=50 into (24)
from Roshko’s experimental data yields Sr=0.12. This Strou-
hal number corresponds to the eigenfrequency of the equilib-
rium at G=1.86, see Fig. 4(d).

For the flow of water Green and Gerrard [20] obtained
from experiment that at Re=80 (their Fig. 13) vortices are
shed from the circular cylinder with a dimensionless strength
G=0.84, which corresponds to an equilibrium position from
(8) with a Strouhal number of its eigenfrequency (9) of 0.32,
see Table I. They did not measure the Strouhal number.
Roshko found in wind tunnel measurements a Strouhal num-
ber of 0.16, which follows upon substitution of Re=80 into
(24). From (8) it then follows that G=1.55, which is larger
than the maximum value found in the results from measure-
ments listed in Table I. There is quite a difference in the
eigenfrequency of the equilibrium at that vortex strength and
the Strouhal number measured by Roshko.

Schaefer and Eskinazi [19] measured a vortex strength
with dimensionless value G=0.78 at Re=62, see Table I.

Green and Gerrard [20] furthermore measured the vortex
strength up to Re=102. The dimensionless vortex strength G
appeared to increase linearly in this range to G=1.11 (their
Fig. 16). This maximum dimensionless vortex strength of
G=1.11 at Re=102, would correspond to Foppl’s equilib-
rium position (8) with a Strouhal number of its eigenfre-
quency (9) of Sr=0.24, see Table I. From the measurements
of Roshko we have at Re=102 through Eq. (24): Sr=0.17, so
there is still some difference. The measured increase in vor-
tex strength with increasing Reynolds number would for
Foppl’s equilibrium relate to an increase in ry/b from (8) and
thus a decrease in Strouhal number from the symmetric
eigenfrequency (9). This is clearly not the case as follows
from Eq. (24), see also Fig. 5, so the oscillation in the range
Re <300 appears not related to the eigenfrequency of Fop-
pl’s equilibrium positions.

3. Re>300

From Fig. 5 it is noted that in the range for Re=3 X 10% up
to Re=5 X 10° the Strouhal number varies between 0.2-0.22.

036302-5



T. W. G. DE LAAT

PHYSICAL REVIEW E 75, 036302 (2007)

FIG. 4. Streamlines of the
flowfield of a vortex pair behind a
circular cylinder (a/b=1). (a)
Streamlines at unknown Re, from

Prandtl and Tietjens [22], p. 279;
(b) G=1.231, Sr=0.210; (¢) G
=0.574, Sr=0.430; (d) G=1.857,
Sr=0.120.

These values consistently appear in many measurement re-
ports. Sarioglu and Yavuz [21] measured a Strouhal number
of about 0.22 in the range 3 X 10*<Re <7 X 10*, see Table I.
They produced an overview in their Fig. 19 with measure-
ments from others in the range 2 X 10*<Re <2.5 X 10° with
Strouhal numbers between 0.19 and 0.22, and a measured
Strouhal number of 0.24 at Re=2 X 10*. From (9) and (8) we
find that a Strouhal number of 0.21 corresponds to the equi-
librium point at G=1.231 (see Table I). The flowfield of the
vortex pair at this equilibrium position, produced with the
velocity potential, is shown in Fig. 4(b) and is quite realistic.

Bloor and Gerrard [24] measured the dimensionless vor-
tex strength of the shed vortices at a large distance (12 times
the cylinder radius), which had a strength of G=0.5 in the
range 1 X 103 <Re <1 X 10*. This result is not listed in Table
I, as at this large distance attenuation of the vortex strength is
to be expected. It is indicative for the vortex strength,
though, and it is a confirmation that the calculated values of
the dimensionless vortex strength are realistic.

A Strouhal number of 0.46 was measured by Bearman
[18] at about Re=5.5X 10°. He observed: “when the time-
mean drag coefficient is a minimum the Strouhal number has
a maximum value of 0.46.” The eigenfrequency with Sr
=0.46 corresponds in the present model to a decreased
amount of vorticity present in the wake at a dimensionless
circulation G=0.52.

At Reynolds numbers related to the transition of laminar
to turbulent flow upstream of the separation point of the
boundary layer, which results in a narrower wake and a
lower pressure drag and consequently the well-known de-
crease of drag coefficient Cp, a rise in Strouhal number from
Sr=0.2 at Re=3X10° to Sr=0.43 at Re=1.5X10° is ob-
served, as shown in Fig. 5. An increase in eigenfrequency in
the present model corresponds to a decrease in circulation or
vortex strength, for instance Strouhal number Sr=0.43 cor-
responds to G=0.57 in comparison with Sr=0.21 at G
=1.23. These flowfields are shown, respectively, in Figs. 4(c)
and 4(b). This would strongly suggest that a portion of the
drag of the cylinder in the range 3 X 102<Re<<5X 10’ is
related to the vorticity present on the leeward side of the
cylinder. Furthermore it is noted from Fig. 5 that the ten-
dency of the Cp to decrease in the range of Reynolds num-
bers from 0.1 to 1 X 103, changes to about a constant Cp, in
the range 1X 10°<Re<5X10°. The extra drag which is
indicated by the present author as a hatched area in Fig. 5,
might be due to an amount of vorticity present behind the
cylinder, with a circulation of G =~ 1.23, which would also be
accountable for the Strouhal number of 0.21 in that range.

These findings may be explained by the reasoning, which
now follows. The vorticity being shed from the cylinder wall
can stay in the near wake under influence of the interaction
of the vortex with the wall. This interaction with the cylinder
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FIG. 5. Variation of Strouhal number and drag coefficient with
Reynolds number for the flow over a circular cylinder, from Lager-
strom [23], with region of “vortex drag” (hatched area) indicated by
the present author.

wall is a basic mechanism in the oscillatory motion of the
vortex about its equilibrium, see Ref. [2]. The vorticity from
the two sides of the cylinder form two vortices with opposite
sign which can reside without velocity in Foppl’s equilib-
rium positions. The vortices in these equilibrium positions
are, however, easily shed into the far wake upon asymmetri-
cal disturbances of the flow (this asymmetry may be in vor-
tex position or strength, see de Laat and Coene [2]). Vorticity
is, however, also continuously being shed from the wall into
the near wake, thus forming new vortices. So vortices can
continuously being shed into the far wake while still main-
taining two vortices in the near wake, as suggested by Will-
iamson [7]: “if one averages over large time (compared to
the shedding period), one can define a mean recirculation
region in the wake, which is symmetric and closed.”

The critical Reynolds number for the Cj drop, is known
to be triggered by the onset of turbulence in the boundary
layer, with consequently a higher level of disturbances in the
downstream flow. This could well cause the vortices being
more easily shed into the far wake, as a vortex is then more
easily disturbed from its equilibrium which is unstable for
asymmetric disturbances [2], whereas the feeding of vorticity
from the cylinder wall is not proportionally increased at the
higher flow velocity. The mean recirculation region can then
be modeled by a vortex pair with lower strength, which has a
higher eigenfrequency of the symmetric motion, compared to
the subcritical vortex pair.

The force due to a symmetric vortex pair near the circular
cylinder is elaborated upon in de Laat and Coene [25], a
contour plot of the dimensionless force per unit depth
F./(pU,’b) from that study is reproduced in Fig. 6. The
negative-force regions are indicated in gray. This force has a
maximum for the limit when the vortex pair would approach
the inviscid-flow separation point (a/b,0) on the outer side
of Foppl’s equilibrium curve, which is also the zero-force
curve independent of the vortex strength as shown in de Laat
and Coene [25]. When a vortex pair would move inviscidly
around its equilibrium without any disturbances the mean
time-dependent force on the cylinder would be zero. When
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force on the circular

FIG. 6. Dimensionless
F./ (przb), with increments of 1, by the symmetric vortex pair as
function of position of vortex 1 for G=1, from de Laat and Coene
[25].

cylinder

the vortex pair is intended to model a mean recirculation
region, it might however, have a mean position which is not
at the equilibrium position, where it would yield zero force
on the cylinder in agreement with d’Alemberts paradox ap-
plicable for steady flow. Displaced from that equilibrium the
vortices have a nonzero velocity and the flow will be un-
steady and yield a time-dependent force on the cylinder.

The position of the vortex pair representing the mean re-
circulation region can be estimated by the trajectory of the
shed vortices and the distribution of the feeding vorticity.
The exact calculation would require a more detailed model
of the equations of motion of the fluid. It can, however, be
argued that the position of the mean recirculation region
would be on the outer side of the equilibrium curve. The
motion of a vortex around its equilibrium is in the direction
of the outer flow on the far side of the equilibrium position
from the axis of symmetry (x axis), and the vortex velocity is
in the opposite direction near the axis of symmetry. So when
symmetrically disturbed from their equilibrium positions the
vortices will rotate around their equilibrium positions in the
same direction as their direction of circulation. Upon distur-
bance from the equilibrium toward the axis of symmetry the
vortex would thus move toward the cylinder and while ap-
proaching the cylinder it would move to the outside before
being shed into the far wake, whereas upon being displaced
from the equilibrium away from the axis of symmetry it
would directly be shed into the far wake without traveling
around the equilibrium position through the region between
equilibrium position and x axis. As the vortices would be
randomly disturbed, the shed vortices would spend more
time on the far side of the equilibrium point from the axis of
symmetry, and consequently the mean center of circulation
would also be further to that far side. Moreover as the vor-
ticity is shed from the wall its mean center will also be on the
outside of the zero-force curve. The vortex pair which is
intended to model the mean recirculation region would thus
reside in the area with positive force, outside the zero-force
curve, see Fig. 6 and could consequently account for a part
of the drag force (“vortex drag”) such as indicated by the
hatched area in Fig. 5.

D.a/b=2

Experimental data for the elliptic cylinder with a/b=2 is
reported by Delany and Johansen [17]. They measured Sr
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~(.12 for Re=3.5X10° and 5% 10°, and Sr=0.60 in the
range 1.1 X 10°<Re<2X 10°. We thus have a similar tran-
sition as with the circular cylinder, though, the subcritical
Strouhal number is lower (0.12 compared with 0.22),
whereas the supercritical Strouhal number is higher (0.6
compared with 0.46). This higher supercritical Strouhal num-
ber is in agreement with the higher predicted value near the
stagnation point, see Fig. 2(b). The lower subcritical Strouhal
number would imply more vorticity being present behind the
elongated ellipse compared to the circular cylinder.

IV. CONCLUSIONS

The relatively simple potential-flow eigenfrequencies of
the equilibria of a symmetric vortex pair near an elliptic cyl-
inder in uniform flow are calculated using conformal map-
ping.

Equilibrium positions and eigenfrequencies for a flat plate
perpendicular to the uniform flow (a/b=0) with a symmetric
vortex pair are obtained, without Kutta condition for smooth
flow at the edges. When disturbed from its equilibrium posi-
tion the symmetric vortex pair will move around this position
with an eigenfrequency, which is in agreement with mea-
sured Strouhal numbers reported by various papers. The
equilibrium flowfield related to the eigenfrequency with
Strouhal number 0.15, which is often measured, approxi-
mates indeed the flowfield of a flat plate perpendicular to the
uniform flow with a symmetric vortex pair, apart from a
small difference from smooth flow at the sharp edges of the
plate, which could be smoothened by viscosity in a real flow.

Comparison of the eigenfrequencies of the vortex-pair
equilibria of a circular cylinder in uniform flow with mea-
sured Strouhal numbers reported elsewhere, showed that the
measured frequencies agree with these eigenfrequencies, es-

PHYSICAL REVIEW E 75, 036302 (2007)

pecially for the Strouhal number of about 0.21 for Reynolds
numbers between 3 X 10? and 5 X 10°. So, although viscosity
determines the amount of vorticity that is being shed into the
wake of the cylinder, the resulting unsteadiness in the flow is
in agreement with the symmetric potential-flow approxima-
tion.

It is suggested that for the circular cylinder in the range of
Reynolds numbers 3 X 10><Re <5 X 10° a part of the drag
is the result of the presence of a mean recirculation region in
the near wake of the circular cylinder as proposed by Will-
iamson [7], which sheds vortices into the far wake and which
is fed by vorticity from the cylinder wall. This recirculation
region could be modeled by a vortex pair, the mean position
of which would be on the outside of the zero-force curve
yielding “vortex drag.” This mechanism would be expected
to be generally applicable to bluff cylinders.

For the elliptic cylinder with a/b=2 the same rise in
Strouhal number associated with a decreased recirculation
region and decreased Cp was observed by Delany and So-
rensen [17]. This rise in Strouhal number with decreased
vortex strength is in agreement with calculated values of the
inviscid point-vortex model.

It is concluded that the relatively simple inviscid motion
of a symmetric vortex pair near its equilibrium position may
play an important role in the unsteadiness behind bluff bod-
ies as shown for the elliptic cylinders and the flat plate.
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