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We present methods to detect the transitions from quasiperiodic to chaotic motion via strange nonchaotic
attractors �SNAs�. These procedures are based on the time needed by the system to recur to a previously visited
state and a quantification of the synchronization of trajectories on SNAs. The applicability of these techniques
is demonstrated by detecting the transition to SNAs or the transition from SNAs to chaos in representative
quasiperiodically forced discrete maps. The fractalization transition to SNAs—for which most existing diag-
nostics are inadequate—is clearly detected by recurrence analysis. These methods are robust to additive noise,
and thus can be used in analyzing experimental time series.
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I. INTRODUCTION

Starting with the seminal works of Landau �1� and Ruelle
and Takens �2�, the transition from regular to chaotic dynam-
ics via quasiperiodicity has attracted great interest. Different
aspects of this transition have been studied both theoretically
and experimentally over the past decades. About two decades
ago, however, it was found that in quasiperiodically forced
systems the transition to chaos is generally mediated by
strange nonchaotic attractors �SNAs�. SNAs were first de-
scribed by Grebogi et al. in 1984 �3� and since then have
been investigated in a number of numerical �4–14�, experi-
mental �15,16�, and mathematical �17–20� studies. These
unusual attractors are thought to be important in biological
systems �10,21� and in nonlinear dynamics based communi-
cation �22,23�.

SNAs are geometrically strange �or fractal� while they are
nonchaotic in the dynamical sense. These attractors can be
regarded as intermediate between regularity and chaos. Typi-
cal trajectories experience arbitrarily long time intervals of
expansion while on average, contraction dominates. This be-
havior yields a strange geometric structure in the phase space
similar to chaotic attractors. Different routes to SNAs have
been reported: �i� collision between a period-doubled torus
and its unstable parent �7�, �ii� fractalization of a torus �12�,
�iii� blowout bifurcation �24�, and �iv� intermittency �13�.
Most studies on SNAs have focused on their characterization
using tools such as Lyapunov exponents and their variance,
spectral properties �4,5�, geometrical properties �6,10�, local
divergence of trajectory �25�, phase sensitivity and rational
approximations �8�, functional maps and invariant curves
�12,26�, as well as a renormalization-group analysis �27�.

In the present work, we propose measures of complexity
which are based on the recurrences of states in phase space
to detect transitions from regular to chaotic motion via
SNAs. Moreover, they enable us to identify the birth of an
SNA for the fractalization route, which is not always appar-
ent in measures based on the Lyapunov exponents. We fur-
ther show that recurrence based measures are robust with
respect to additive noise, and are therefore highly suitable for
the analysis of experiments �28� where the data may be both
noisy and sparse.

The paper is organized as follows. In Sec. II, we define
the recurrence measures and apply them in Sec. III for the
detection of some routes to SNAs in discrete one-
dimensional nonlinear mappings. Section IV examines the
fractalization of a torus to an SNA, and Sec. V the transition
from SNAs to chaos. The final section summarizes our re-
sults.

II. MEASURES OF COMPLEXITY

The concept of recurrences in dynamical systems goes
back to Poincaré �29�, who has shown that under certain
conditions, the orbit of a bounded dynamical system must
return arbitrarily close to each former point of its route with
probability one. The time of return can, however, be arbi-
trarily long. A visual representation of such recurrences is
provided by recurrence plots �RPs�, which were introduced
in 1987 �30�. RPs are defined for a given trajectory �x� i�i=1

N , of
a dynamical system, where x� i�Rn. They are based on the
matrix

Ri,j = ��� − �x� i − x� j��, i, j = 1, . . . ,N , �1�

where � is a predefined threshold, ��·� the Heaviside func-
tion, and �·� denotes a norm. In this paper we use the maxi-
mum norm, also called infinity norm, which is given by
�x�i��=max��xi

1� , �xi
2� , . . . , �xi

d�� where �xi
j� denotes the jth com-

ponent of the vector x�i and d is the dimension of the phase
space. For computing RPs, the maximum norm is often used
because it is computationally faster and its independence
from the phase space dimension is of relevance if in one
analysis different embeddings of a time series have to be
used. Points that are closer �further� than � yield an entry “1”
�“0”� in the matrix Ri,j. Then, the values “1” and “0” are
depicted as black and white dots in a two-dimensional plot,
providing a visual representation of the system dynamics.

Special attention has to be paid to the choice of the
threshold �. It is desirable that the smallest threshold pos-
sible is chosen. However, in the presence of noise a larger
threshold might be needed because noise would distort any
existing structure in the RP. It has been suggested that this
threshold should range from a few percent of the maximum
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phase space diameter �31� and should not exceed 10% of the
mean �32�. In the presence of observational noise, the choice
�=5�, with � being the standard deviation of the observa-
tional noise, has been shown to be more appropriate �33�. We
use this latter choice.

Several measures have been proposed to quantify the
structures in RPs, which have found applications in the
analysis of, e.g., physiological or geophysical time series
�34–36�. It has been shown that—under some conditions—
all topological information about the underlying system is
contained in the RP �37�. In �38� it has been shown that the
recurrence time statistics corresponding to white vertical
structures in the RP are directly related to the information
dimension. These statistics seem to be of special importance
in the present study. Marwan et al. �39� have proposed fur-
ther measures of complexity to quantify vertical black struc-
tures in RPs: this permits the identification of chaos-chaos
transitions.

In order to detect transitions from a torus to an SNA, we
extend this approach to the “white vertical lines” in RPs.
Note that the length of these lines is equal to the time needed
by the system to recur to a previously visited state. Here we
propose two types of recurrence analysis in order to identify
transitions to or from SNAs.

�1� Transition from a torus to an SNA. From the RP, we
evaluate the frequency distribution P�w� of the lengths w of
the white vertical lines. We then compute the mean recur-
rence time �TMRT� from this distribution,

TMRT = 	
w=1

N

wP�w�
 	
w=1

N

P�w� . �2�

Furthermore, we determine the number of recurrence of the
most probable recurrence time �NMPRT�. It indicates how
many times the system has recurred using the most probable
recurrence time and is given by

NMPRT = max„�P�w��;w = 1, . . . ,N… . �3�

Contrary to the definitions of measures based on black ver-
tical lines, we consider wmin=1 in order to estimate the mean
recurrence times, because we are interested in all time spans
between each recurrences, and a vertical white gap between
two recurrence points, even if only w=1, corresponds to the
time span between a recurrence. We also consider the vari-
ance �MRT of TMRT and �MPRT of NMPRT. For a given suffi-
ciently long trajectory, the variance is evaluated by dividing
the trajectory into k segments and computing TMRT and
NMPRT for each segment separately. Thus

�MRT =
1

k − 1	
l=1

k

�TMRT�l� − T̄MRT�2, �4�

�MPRT =
1

k − 1	
l=1

k

�NMPRT�l� − N̄MPRT�2, �5�

where the overbar indicates the mean value.
�2� Transition from SNAs to chaos. To detect this transi-

tion �40� we use the fact that two trajectories in the SNA
regime starting at different initial conditions but driven by
the same quasiperiodic force with an identical phase syn-
chronize, whereas in the chaotic regime, they do not �22�. In
order to quantify synchronization, we compute first the
cross-recurrence matrix �CRM�

CRi,j
m,� = ��� − �x� i − y� j�� �6�

of the two separate trajectories x� i and y� j, i , j=1, . . . ,N. The
trajectories are reconstructed by delay coordinates and m de-
notes the embedding dimension. The threshold � is taken in
units of the average standard deviation � of the two time
series. As in other computations, we set the delay to 1. If

FIG. 1. �Color online� Phase diagram of the quasiperiodically
forced cubic map �Eq. �9��, obtained using NMPRT �Eq. �3��. 1T and
2T correspond to tori of period 1 and 2, respectively. GF corre-
sponds to the region where the gradual fractalization of the torus
occurs. HH represents the region where the SNA is created through
the Heagy Hammel route. S1 and S3 denote regions where the SNA
appears through type-I and type-III intermittencies, respectively. IC
denotes the region where SNAs are created through crisis-induced
intermittency. C1 and C2 correspond to chaotic regions. For the
parameter values in the region marked D, the trajectories escape to
infinity.
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FIG. 2. �Color online� Phase diagram of the quasiperiodically
forced logistic map �Eq. �8��, obtained using NMPRT �Eq. �3��.
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both trajectories synchronize, the main diagonal of the cross-
recurrence plot �CRP� �41� will be continuous, otherwise the
main diagonal will be interrupted. We then compute the de-
terminism �DET� �37� of the main diagonal line,

DET = 	
l=lmin

N

lD�l�
	
l=1

N

lD�l� , �7�

where D�l� denotes the frequency distribution of the length l
of black diagonal lines. Note that in this case DET is com-
puted only on the main diagonal, i.e., only for coordinates
i= j. If both systems x� i and y� j are synchronized, DET=1,
otherwise DET�1. Therefore by computing DET in depen-

dence on the bifurcation parameter, we can detect the transi-
tion from SNAs to chaotic attractors.

III. THE TRANSITION FROM QUASIPERIODIC
DYNAMICS TO SNAS

We next study the transition from quasiperiodic dynamics
to SNAs in the quasiperiodically forced logistic map �42�,

xn+1 = ��1 + � cos�2�	n��xn�1 − xn� ,

	i+1 = 	i + 
 mod 1 �8�

and the quasiperiodically forced cubic map �43�,

xi+1 = Q + f cos�2�	i� − Axi + xi
3,

1.8865 1.887 1.8875
3

3.5

4

4.5

A

T
M

R
T

1.8865 1.887 1.8875
1

2

3

4

5

A

N
M

P
R

T

1.8865 1.887 1.8875
0

2

4

6

8

A

σ M
R

T

1.8865 1.887 1.8875
0

10

20

30

A

σ M
P

R
T

(a) (b)

(c) (d)

x103 x103

FIG. 3. �Color online� Transition from a
doubled torus to SNA through a HH mechanism
in the cubic map �Eq. �9��. �a� behavior of TMRT;
�b� behavior of NMPRT; �c� variance of TMRT; and
�d� variance of NMPRT. The critical value is A
�1.886 97.
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FIG. 4. �Color online� Type-I intermittency
route in the logistic map �Eq. �8��. �a� Behavior
of TMRT; �b� behavior of NMPRT; �c� variance of
TMRT; and �d� variance of NMPRT. The critical
value is �c�3.405 808 8.
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	i+1 = 	i + 
 mod 1. �9�

These systems have been already investigated and various
transitions to SNAs have been identified using tools such as
Lyapunov exponents and their variance, as well as finite-time
Lyapunov exponents, dimensions, power spectral measures,
and phase sensitivity exponents �42,43�. Using NMPRT �Eq.
�3��, we obtain for the logistic and cubic maps two-parameter
���� ,�� and �A , f�, respectively� phase diagrams which
clearly show transitions in the dynamics that are in strong
agreement with those reported in �42,43�. These phase dia-
grams were computed using �=0.06 and N=10 000 normal-
ized data points. The parameter ��=� / �4/�−1� is a rescaled
driving parameter.

The phase diagram of the cubic map �43� is given in Fig.
1. It can be observed that the dynamics is symmetric about
f =0, with two chaotic regions C1 and C2. Bordering these
chaotic areas, one finds SNAs which are created through
different mechanisms such as Heagy Hammel �HH�, gradual
fractalization �GF�, intermittencies of type-I and type-III �S1,
S3�, and interior crisis �IC�. There are also regions where the
dynamics is on quasiperiodic attractors of period 1 and 2
which are marked, respectively, by 1T and 2T. The phase
diagram of the quasiperiodically forced logistic map �42�
obtained using NMPRT exhibits very interesting patterns �Fig.
2�. Almost all the transitions found in the phase diagram of
the cubic map are also present here.

In order to exemplify the performance of TMRT and
NMPRT, we analyze in detail two typical transitions to SNAs.

�i� The Heagy Hammel route �HH� in the cubic map �Eq.
�9��. In this route to SNAs, the birth of a SNA is due to the
collision between a period-doubled torus with its unstable
parent �7�. We fix the bifurcation parameter f =0.7 and vary
A in the range 1.8865�A�1.8875. At the starting value of
A, we have a period-doubled torus of period 2. As A in-
creases to the value 1.8868, the torus begins to wrinkle and
approaches its parent, with which it collides and ultimately
gives birth to a fractal attractor when A is increased up to the

value 1.886 97. It has been shown that at this value of A, the
attractor possesses a geometrically strange structure and is
nonchaotic �43�. Using the threshold �=0.001 and N
=10 000 normalized data points for the computation of the
RP, TMRT and NMPRT are able to detect the critical value A
=1.886 97 at which both tori collide �Figs. 3�a� and 3�b��.
The variances �MRT and �MPRT, computed using N
=300 000 data points for the whole trajectory and N=2 000
data points for each segment, show this transition even more
clearly �Figs. 3�c� and 3�d��. One can see that the recurrence
time measures vary slightly before the collision and at the
critical value there is a drastic jump, after which some oscil-
lations start indicating an irregular behavior.

�ii� The intermittency route �S1� wherein a strange attrac-
tor disappears and is replaced by a one-frequency torus
through an analog of the saddle-node bifurcation. In the vi-
cinity of this phenomenon the attractor is strange and non-
chaotic. It has been shown that the dynamics at this transition
is intermittent, and the scaling behavior is characteristic of
type-I intermittency �13,44�. In the logistic map �Eq. �8��,
this intermittency route to SNAs �denoted S1� occurs along
the right edge of the chaotic region C2 in Fig. 2. For ��=1
and varying �, we see in Fig. 4 that the measures TMRT and
NMPRT fluctuate rather strongly in the SNA regime and
smoothly in the quasiperiodic one. There is an abrupt change
at the critical value �c�3.405 808 8 where the intermittent
transition takes place. The threshold is set to �=0.03. For the
computation we have used N=10 000 normalized data points
for NMPRT and TMRT, N=300 000 for the variances, and N
=2000 as the length of each segment.

We have also identified by these measures other transi-
tions to SNAs in �42,43�. Indeed, all four measures based on
RPs are able to detect these transitions to SNAs. Since the
mechanism for the creation of SNAs is different for each
route, it was not easy to find a satisfactory threshold for the
computation of the RP which holds for all the different
routes to SNAs. However, for each route to SNAs, we are
able to find a threshold which leads to a good detection
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FIG. 5. �Color online� Robustness of the re-

currence time measures against noise for the HH
route in the cubic map �Eq. �9��. �a� and �c� TMRT

and NMPRT for dynamical noise of amplitude
10−4; and �b� and �d� TMRT and NMPRT for obser-
vational noise of amplitude 0.01. The threshold
used �=0.001 and N=10 000 normalized data
points.
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of the transition to SNAs by the recurrence time measures.
The robustness of the measures against noise has also

been investigated. It is known that noise generally decreases
the threshold for chaos since transitions and bifurcations get
blurred in the presence of fluctuations. We present here the
case of the HH route in the cubic map �Eq. �9��. Figures 5�a�
and 5�c� show TMRT and NMPRT when weak dynamical uni-
formly distributed noise of amplitude 10−4 has been added to
the variable x �in order to keep the quasiperiodicity of the
forcing�. Figures 5�b� and 5�d� represent the case of obser-
vational uniformly distributed noise of amplitude 0.01. The
transition from torus to SNAs globally survives. In the case
of dynamical noise and especially for TMRT �Fig. 5�a��, noise
has considerably reduced the value of the bifurcation param-
eter at which the transition to SNAs appears, but the recur-
rence time measures are still able to detect the transition.

IV. FRACTALIZATION ROUTE TO SNA

The fractalization of a torus is both the most common and
the most intriguing transition to SNAs. In this mechanism,
a torus becomes more and more wrinkled as the forcing

increases until it breaks up to form a strange set. The fracta-
lization appears as a gradual change in the structure of the
attractor which is difficult to relate to a precise bifurcation
point, where a sudden change in the dynamics occurs due to
the crossing of a well-defined critical threshold. In some par-
ticular cases, namely for forced noninvertible maps, it is pos-
sible to define a critical threshold for the fractalization tran-
sition. In contrast to other mechanisms for the emergence of
SNAs, there is no obvious unstable set involved in the frac-
talization route. Datta et al. �46� have, however, recently
used techniques introduced by Kim et al. �47� to find un-
stable sets for the fractalization process using a sequence of
rational approximations of the irrational forcing. They found
that these unstable sets are created through a cascade of
period-doubling bifurcations and collision of chaotic bands
with them. This causes a cascade of interior merging crises
whereby the fractalization process takes place.

The first example we study is the fractalization route in
the forced logistic map as described by Nishikawa and
Kaneko �12�:

xn+1 = axn�1 − xn� + � sin�2�	n� ,
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FIG. 6. �Color online� Fractalization route in the logistic map
�Eq. �10��. �a� Variance of TMRT and �b� Variance of NMPRT; vari-
ances computed using �=0.05, N=750 000 data points as the whole
trajectory and N=3000 as the length of each segment. The critical
value of the bifurcation parameter is �c�0.1553.
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FIG. 7. �Color online� Fractalization route in the Hénon map
�Eq. �11��. �a� Variance of TMRT and �b� variance of NMPRT. Vari-
ances computed using �=0.05,750 000 data points and 2500 as the
length of each segment. The variances increase suddenly at the
bifurcation parameter b�0.69.
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	n+1 = 	n + 
 mod 1. �10�

We fix a=3 and vary �. At �=0, the attractor of the sys-
tem is a straight-line torus. As � is increased, oscillations of
the torus start to appear and it becomes fractal at �
�0.1553. The variances �MRT and �MPRT vary slightly but at
the critical value �c�0.1553, they suddenly increase and
their fluctuations become larger for the following values of
the bifurcation parameter �Fig. 6�.

A second example that we consider is the fractalization
route in the Hénon map �45�, given by the equations

un+1 = 1 + vn − bun
2 + A cos�2�	n� ,

un+1 = cun,

	n+1 = 	n + 
 mod 1, �11�

with c=0.1 and A=0.7. The bifurcation parameter is b. Sos-
novtseva et al. �45� have found that the transition to SNAs
happens at b=0.7; we rather find the transition closer to 0.69,

where an abrupt increase of �MRT and �MPRT can be observed
�see Fig. 7�.

V. THE TRANSITION FROM SNAS
TO CHAOTIC ATTRACTORS

The transition from SNAs to chaotic attractors is a purely
dynamical one: the structure of the attractor remains essen-
tially unchanged, while the largest Lyapunov exponent be-
comes positive. This is a consequence of the manner in
which the invariant measure is redistributed on the attractor
�48�. Since the largest Lyapunov exponent of SNAs is nega-
tive, two such systems are able to undergo complete synchro-
nization. It has been shown in �22� that regardless of the
initial conditions of two identical SNAs, they eventually con-
verge to the same dynamics if the phase of the quasiperiodic
driving coincides for both of them. In contrast, in the chaotic
regime, both systems have positive Lyapunov exponents, and
therefore they cannot synchronize. A recurrence measure,
which can easily identify the synchronization, and hence the
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FIG. 8. CRP of the forced logistic map �Eq.
�8��: �a� in the SNA regime with �=3.32, ��
=0.595, and �c� in the chaotic regime with �
=3.33, ��=0.595. Due to synchronization, the
CRP and the ordinary RP are identical in the SNA
regime, whereas this is not the case in the chaotic
regime. In �b� and �d� only the main diagonals for
the SNAs and chaotic attractors are shown. The
threshold for the computation of the CRP is �
=0.2� where � is the average of the individual
standard deviations of the two time series. The
embedding dimension is taken to be m=3.

3.27 3.28 3.29 3.3 3.31 3.32 3.33
-0.06

-0.04
-0.02

0
0.02

3.27 3.28 3.29 3.3 3.31 3.32 3.33

0.9

1

1.1

3.4 3.42 3.44 3.46
-0.15

0

0.15

0.3

3.4 3.42 3.44 3.46

0.9

1

1.1

2 2.2 2.4 2.6

-0.2
-0.1

0
0.1
0.2

2 2.2 2.4 2.6

0.9

1

1.1

a

λ

λ

Λ
,

D
E

T
D

E
T

D
E

T

TTTTT
Λ

,
x

λ x

α

α

α

α

a

Λ

λx

ΛT
x

(a) (b)

(d)

(e) (f)

(c)

FIG. 9. �Color online� Comparison of the
Lyapunov exponent ��� and DET for the CRPs on
the main diagonal line. �a� � for Eq. �8� with ��
=0.595, �b� the corresponding DET, �c� � for Eq.
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x and �x for Eq. �12� and �f� the corresponding
DET. A DET value of unity corresponds to SNAs
dynamics, and a drop in the value of DET to lower
values indicates the SNAs to chaos transition. In
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bedding dimension is m=3.
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transition from SNAs to chaos, is based on the DET of the
CRM defined in Eq. �6� for two different time series gener-
ated by the same initial phase 	0. If both trajectories synchro-
nize, we obtain an uninterrupted main diagonal in the CRP.
Otherwise, the main diagonal is interrupted indicating the
chaotic regime. This can be clearly seen in Fig. 8 where the
CRPs are illustrated for both cases. Thus by computing the
DET of the CRP only on the main diagonal, the transition
from SNAs to chaos can be detected very clearly. In the SNA
regime DET=1, while in the chaotic regime DET�1.

The specific characteristics of SNAs depend on the
mechanisms through which they were created, and it appears
that this feature carries over into the corresponding chaotic
attractors. Accordingly, we have numerically examined the
SNAs to chaos transition for SNAs created via the HH �7�
and intermittency �13� routes in the quasiperiodically forced
logistic map �Eq. �8��. We have also studied the mapping

xn+1 = �a cos 2�	n + b�sin 2�xn,

	n+1 = 	n + 
 mod 1, �12�

where the blowout bifurcation �24,49� route to SNAs has
been observed.

These results are shown in Fig. 9. For the HH route we
use ��=0.595 �see Fig. 2� in the logistic map. Figures 9�a�
and 9�b� show the Lyapunov exponent and DET, respectively.
As it can be clearly seen, when the Lyapunov exponent
changes from negative to positive, this is accompanied by a
sharp drop in the value of DET. Analogously, for the intermit-
tency route to chaos at ��=1, the behavior of the Lyapunov
exponent and DET is shown in Figs. 9�c� and 9�d�.

In the case of the blowout bifurcation, the largest non-
trivial Lyapunov exponent x is compared to DET and shows
the SNA to chaos transition �see Figs. 9�e� and 9�f��. Recall
that the blowout bifurcation occurs in systems with a sym-

metric low dimensional invariant subspace S: when the trans-
verse Lyapunov exponent T goes from negative to positive
through zero, the invariant subspace loses its stability, and
SNAs can be created if the total Lyapunov exponent x re-
mains nonpositive. x is deduced from the transverse
Lyapunov exponent T via �24,49�

x = T − ��x� , �13�

where �x is the nonzero Lyapunov exponent of Eq. �12�.
DET is found to be robust to added external noise. This is

very important in the context of the analysis of experimental
data. In Fig. 10, we show the effect of uniform additive noise
in Eq. �8� for the HH and the intermittency routes.

VI. SUMMARY

Our main objective in this work has been to use recur-
rence time statistics in order to detect transitions to or from
SNAs. To detect the transition from quasiperiodic motion to
SNAs, we have introduced four measures, namely TMRT,
NMPRT, and their variances, which are based on the time
needed by the system to recur to a neighborhood of a previ-
ous point of the trajectory. These measures have been able to
detect the onset of the strange nonchaotic dynamic in the
Heagy Hammel and intermittency routes, respectively, in the
cubic and logistic maps. Moreover, they also detect the frac-
talization of a torus to an SNA, which is not easily located by
the measures based on the Lyapunov exponent �50�. We have
seen, for example, in the Heagy Hammel route that these
four measures vary slightly in the quasiperiodic regime. At
the critical value of the bifurcation parameter, there is a dras-
tic jump followed by irregular fluctuations of the recurrence
time measures indicating the SNA regime.

The transition from SNAs to chaos has been identified by
computing the determinism of a cross-recurrence plot of two
different time-series generated by the same initial phase. At
the critical value, we have noticed a sharp change in the
value of the determinism from its maximum value 1.

These measures—which are robust against noise—can de-
tect these transitions even when the orbits are not very long,
in contrast to Lyapunov exponent based measures. The
present measures are also advantageous in the sense that they
do not require the knowledge of the equations governing the
system under study. Therefore they are very appropriate for
the analysis of experimental data. We will show the applica-
bility of these measures for continuous systems and experi-
mental data in a forthcoming paper.
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