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Singular unlocking transition in the Winfree model of coupled oscillators
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The Winfree model consists of a population of globally coupled phase oscillators with randomly distributed
natural frequencies. As the coupling strength and the spread of natural frequencies are varied, the various stable
states of the model can undergo bifurcations, nearly all of which have been characterized previously. The one
exception is the unlocking transition, in which the frequency-locked state disappears abruptly as the spread of
natural frequencies exceeds a critical width. Viewed as a function of the coupling strength, this critical width
defines a bifurcation curve in parameter space. For the special case where the frequency distribution is uniform,
earlier work had uncovered a puzzling singularity in this bifurcation curve. Here we seek to understand what
causes the singularity. Using the Poincaré-Lindstedt method of perturbation theory, we analyze the locked state
and its associated unlocking transition, first for an arbitrary distribution of natural frequencies, and then for
discrete systems of N oscillators. We confirm that the bifurcation curve becomes singular for a continuum
uniform distribution, yet find that it remains well behaved for any finite N, suggesting that the continuum limit

is responsible for the singularity.
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I. INTRODUCTION

Spontaneous synchronization of oscillators occurs
throughout the natural world, in fields ranging from physics
and engineering, to biology and even human group behavior
[1-6]. Examples include the synchronization of arrays of la-
sers [7,8], pendulums [9], Josephson junctions [10,11], and
nanomechanical oscillators [12,13]; the rhythmic flashing of
firefly congregations [14] and the chorusing of crickets
[15,16]; the coordinated firing of neurons or cardiac pace-
maker cells [17-26]; oscillatory glycolysis in yeast cell sus-
pensions [27]; menstrual synchrony among women room-
mates or close friends [28,29]; synchronous applause of
concert audiences [30]; and the inadvertent walking in step
by the opening day crowd on London’s Millennium Bridge
[31].

The theoretical study of self-synchronizing systems was
pioneered by Winfree 40 years ago [1]. He considered a
population of N>1 self-sustained oscillators, with natural
frequencies chosen at random from some prescribed prob-
ability distribution. Specifically, the Winfree model is

N
b= 0+ —>, X(6)Z(6), (1)
Nig

for i=1,...,N. Here 6,(z) is the phase of the ith oscillator at
time 7, k=0 is the coupling strength, and the frequencies w;
are drawn from a symmetric, unimodal density g(w). We
assume that the mean of g(w) equals 1, by a suitable rescal-
ing of time. The width of g(w) is characterized by a param-
eter I'. The coupling in Eq. (1) has the following interpreta-
tion: the jth oscillator exerts its effects through a phase-
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dependent influence function X(6;); in turn, the ith oscillator
responds to the mean field (the average influence of the
whole population) according to a sensitivity function Z(6,).

Winfree found that the onset of synchronization was a
threshold phenomenon, analogous to a phase transition. In
the absence of coupling (k=0), the oscillators behaved inco-
herently because of the dispersion of their intrinsic frequen-
cies. Incoherence persisted as the coupling was gradually
increased, until a critical coupling strength was reached.
Then, suddenly, some of the oscillators began to synchronize
and run at the same frequency.

In 1975 Kuramoto [32] reformulated and simplified Win-
free’s model and, in a mathematical tour de force, showed
how to calculate the coupling at the onset of synchronization,
where the first oscillators begin to lock their rhythms to-
gether. Kuramoto’s model is

N
. K
0,= w;+—2, sin(6; - 6), )
Nj:]

for i=1,...,N, with the frequencies chosen at random as
above. This model has turned out to be much more tractable
than Winfree’s, for two reasons: the sine function is simpler
than the arbitrary X and Z in Eq. (1); and more importantly,
the coupling depends only on the phase difference 6,-6,, not
on the absolute phases 6; and 6, separately as in Eq. (1). This
algebraic feature imparts a rotational symmetry to the Kura-
moto model that makes it easier to analyze.

In 1985 Ermentrout [33] studied a second transition for
Kuramoto’s model. Loosely speaking, he investigated the op-
posite end of the synchronization process—its culmination
rather than its onset. To be more precise, for a frequency
distribution with compact support, Ermentrout calculated the
coupling strength at which all the oscillators become locked
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FIG. 1. Stability diagram for the Winfree model (1), with cou-
pling strength « and influence and sensitivity functions given by Eq.
(3). The plot shows the regions of parameter space corresponding to
different stable states of the system, for the case of N=800 oscilla-
tors with natural frequencies w; that are evenly spaced on the inter-
val [1-T",1+T]. This choice of frequencies approximates a uniform
distribution as N—. The goal of this paper is to understand the
perturbative properties of the curve that bounds the “locking” re-
gion. (Diagram adapted from Ref. [41].)

to the same frequency, a state known as complete frequency
locking or full synchrony.

In the intervening decades, the analysis of Kuramoto’s
model has generated an enormous literature [34-38],
whereas Winfree’s model has been relegated to the footnotes
(for reviews of the work on the Kuramoto model, see Refs.
[39,40]). But a few years ago, [41] exhumed Winfree’s
model in the continuum limit as N— % and showed that it
too becomes tractable, at least for the special case where the
model’s influence and sensitivity functions have just a single
Fourier component, namely where

X(0)=1+cos 0, Z(6) =-sinb. (3)

Then, in the limit of weak coupling and nearly identical natu-
ral frequencies, Winfree’s model reduces to Kuramoto’s (in
the sense that one can show that the averaged or “slow time”
equations for the Winfree model are isomorphic to the Kura-
moto model, with coupling K=«/2). Away from this limiting
regime, the Winfree model displays collective behavior not
seen in the Kuramoto model, including oscillator death and
various hybrid states combining incoherent, dead, and
frequency-locked oscillators.

Figure 1 shows where the various stable states lie in pa-
rameter space, for the case where the frequencies are evenly
spaced in the interval [1-I",1+1I"]. Notice that near the ori-
gin, there are just three possibilities: locking, incoherence,
and a thin strip of partial locking (where some of the oscil-
lators are locked and the others are desynchronized). These
are precisely the stable states seen in the Kuramoto
model—as they must be, given that the Kuramoto model
governs the long-time dynamics of the Winfree model (1)
and (3), in the limit where both I" and « are small.

Ariaratnam and Strogatz showed that all but one of the
bifurcation curves in Fig. 1 could be obtained analytically.
Unfortunately, the curve that could not be calculated was an
important one: the boundary between locking and partial
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locking. Attempts to derive this curve kept running into
obstacles—the series expansions in powers of the coupling
would become singular at cubic order, which seemed myste-
rious given that the corresponding numerics showed no hint
of singular behavior.

In this paper, we try to understand why the earlier calcu-
lation broke down. The strategy is to derive the boundary of
the locked state using the perturbative technique known as
the Poincaré-Lindstedt method [42]. This method assumes a
periodic solution of the governing equations (implying that
all the oscillators are running with the same frequency,
though the phase differences between them need not be zero
or even constant). The period of the collective motion is
unknown and is to be determined perturbatively as part of
the solution.

We find that a singularity does indeed occur at cubic order
in perturbation theory, and that this is due to a combination
of two effects: (i) the discontinuous jumps at the endpoints of
the assumed frequency distribution, and (ii) the implicit pas-
sage to a continuum (infinite-N) limit of the model. For any
finite number of oscillators, no singularity arises, and the
theoretical predictions match the numerical results. Further-
more, we provide strong evidence (but have been frustrat-
ingly unable to prove) that the order of divergence in the
singularity is precisely what one would expect, when inte-
grals are replaced by the corresponding finite-N sums. The
conclusion is that the continuum limit of the model is more
subtle than one might have imagined.

As the discussion above should suggest, our work in this
paper is motivated principally by mathematical consider-
ations, not scientific ones. We regard the Winfree model as a
fascinating dynamical system with a life of its own, worthy
of study in its own right. At the same time we recognize the
importance of connecting it to the real-world phenomena that
originally inspired it. In the past few years there have been
some encouraging advances in this direction [43]. For ex-
ample, the emergence of synchronization in a system of
coupled electrochemical oscillators has been shown to agree
quantitatively with the predictions of the Kuramoto model
[44], and the influence and sensitivity functions of real neu-
rons have recently been measured for the first time [23], thus
paving the way for an analysis of coupled neural systems in
these terms. But, to be candid, we doubt that the results
presented here will have similar experimental impact. The
theoretical subtleties of the infinite-N limit are unlikely to
have salient testable consequences, precisely because of our
result that the finite-N system is well behaved for all N.
Moreover, we still do not know which features of the model
are responsible for the singularity, so we cannot say how
generic our results would be for real systems of coupled
oscillators. The reader should take these admissions for what
they are: an invitation to help resolve the mathematical ques-
tions that remain. Several suggestions for such research are
indicated in the final section.

II. MODEL

As in Ariaratnam and Strogatz [41] we consider the spe-
cial case of the Winfree model given by the following
integro-differential equation:
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90 !
E(t’ v)=1+Tv- ksin O(t, V)f [1+cos O, w)h(w)du,
-1

(4)

for all -1 <w=<1. Here O(z, v) denotes the phase at time ¢ of
an oscillator with natural frequency 1+Iv. Note that by a
choice of time scale, the mean natural frequency across the
population has been set to unity, without loss of generality.
The parameter I'>0 represents the width of the frequency
distribution, and —1 < v=1 is a normalized detuning, a mea-
sure of how far an oscillator’s natural frequency deviates
from the population mean. The expression containing the
integral represents global coupling to all the other oscillators
in the population. The prefactor x>0 is the coupling
strength. The sensitivity function Z[@(¢,v)]=-sin O(z,v)
quantifies how the given oscillator changes its instantaneous
frequency in response to the collective influence of all
the others. Within the integral, the term X[O(z,u)]
=1+cos O(z, u) describes the influence of an oscillator, with
detuning w, on the given oscillator with detuning v. These
influences are expressed with a weight i(u), the probability
density of natural frequencies (more precisely, the probabil-
ity density of normalized detunings) across the population.
For simplicity, we assume /() is an even function subject to
the normalization condition

1
f Mu)du=1. (5)
-1

The formulation above allows us to handle both discrete
and continuous distributions of natural frequencies in a
single framework. For example, to represent the discrete case

where the oscillators have detunings v;, for i=1,...,N, we
can write
L ¥
h(v) =2, 8y =v). (6)

i=1

Then the integro-differential equation (4) reduces to the set
of N ordinary differential equations given by Egs. (1) and

(3).

III. PERTURBATION THEORY

To analyze Eq. (4) with perturbation theory, we assume
that the parameters « and I' are small, corresponding to a
system of weakly coupled, nearly identical oscillators. Tak-
ing the coupling as a small parameter 0 <e<<1, we set «
=€ and replace I' by €l’ from now on.

In effect, we are considering the joint limit in which both
the coupling strength « and the frequency spread I' tend to
zero simultaneously along some curve in parameter space.
That is the appropriate limit for this problem, as evidenced
by the shape of the numerically computed bifurcation curve
for the unlocking transition. As shown in Fig. 1, the unlock-
ing curve emanates from the origin with a nonzero slope,
indicating that we need to consider the joint limit. In con-
trast, if we were to allow one parameter to become small
while holding the other fixed, we would not see any transi-
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tion or interesting dynamics. The system would either act
uncoupled (and hence incoherent), or would have identical
oscillators (and hence would synchronize perfectly, with all
oscillators in phase).

Our approach uses the Poincaré-Lindstedt method [42] to
characterize periodic solutions for €# 0 and to identify the
bifurcation curve on which these periodic solutions disap-
pear. Any such periodic solution can be written in the fol-
lowing ansatz:

O(t,v,6) = Q(e)t + P(v,€) + O(1,v,€). (7

Here Q(e) represents the collective locked frequency of the
population [where Q(¢) is to be determined in the course of

the analysis], and ®(v, €) +@(z, v, €) describes the phase evo-
lution of each oscillator with respect to a frame rotating at
the locked frequency. The time-independent phase offset
®(v,¢€) is defined such that the remaining oscillatory term
has zero mean over one cycle,

2m/Q) .
f O(t,v,e)dt=0. (8)

0

From now on, time is nondimensionalized as 7= (€)t, and
we expand everything in the form of the following regular
perturbation series:

= €y, Qe)=1+ > €w;,

i=1 i=1

O(r,v,6) =, €6i(r,v), P(re)=D ed(v). (9)
i=1 i=0

Substitution of these series into Eq. (4) yields the following
equation at O(e):

a0 !
—(9 1(T,1/)=—a)1+ viv=sin[t+ ¢y(v)]| {1 +cos[T
T -1

+ () Mh(p)d. (10)

At O(€%) and O(€) the equations of motion, although
straightforward, are lengthy and are omitted for brevity.

In the course of working through the analysis at succes-
sively higher orders, we noticed that certain quantities kept
reappearing, and it therefore proves convenient to introduce
a compact notation for them at the outset. These quantities
have to do with the series expansion of the global coupling
term in powers of €. Specifically, the w average of
expli®(u, €)] generates terms that enter at each order of per-
turbation theory. This motivates the following definitions.

Let angle brackets denote an average over the population:

1
(") = J e "1 On(p)dp. (11)
-1

If we expand this average in powers of €, we obtain
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(®y=> ejrjei'”j, (12)
J=0

where r; and ¢; denote the magnitude and argument of the
complex coefficient of € in the Maclaurin series. Equiva-
lently, the complex coefficients have real and imaginary parts
given by

1 &

r; cos i; j!de/<cos >e=0 (13a)
. 1 d

rjsin ;= j—!E@m D) B (13b)

These can be combined to yield

_ lij ® in ®)si 14

ri= j!dej«cos )cos is; + (sin ®)sin ) e=()’ (14a)
_ 14 ®)si in @ 14b
= j!dej(<cos )sin 4; — (sin ®)cos ;) o (14b)

The series R =26jr_,- turns out to be the counterpart of the
order parameter in Kuramoto’s model [3,39]. Moreover, just
as in Kuramoto’s classic analysis, the presence of this order
parameter suggests a solution strategy based on a self-
consistency argument. Roughly speaking, at each order of
perturbation theory, the relevant differential equation and its
solution will be found to depend on some particular r; and t;
as parameters; but then that solution must also be consistent
with the equations that defined r; and ¢; in the first place. In
this way, the requirement for self-consistency implies alge-
braic conditions that help determine the unknown coeffi-
cients in the solution.

For instance, the O(e) equation (10) can be rewritten in a

way that incorporates r( and ¢ as

a0,

P (r,v) ==, + yyv—=sin[7+ ¢o(v)|[1 + ry cos(T+ i) ].

(15)

To make further headway, we recall that the oscillatory
terms 6,(7,v) are 27r-periodic in 7 and have zero mean over
one cycle, according to their definition. Thus, in the differ-
ential equation for 8, above, we must get zero if we integrate
the right-hand side over one cycle. Imposing this condition
(equivalent to removing secular terms) yields

0==wy+yv=" sinl (1) = hl. (16)

Now we invoke the self-consistency conditions (14). For
j=0 these reduce to

1
ro= f cos[ () = olh(w)dp, (17a)
-1
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1
0= J sin[ ¢hy(w) = Polh(p)dpe. (17b)
-1

Solving Eq. (16) for sin[ ¢y(v) -] and making use of the
second of the self-consistency conditions (17) and the as-
sumed evenness of i(w), one finds that

w;=0. (18)
Next, without loss of generality we can set
=0, (19)

since Egs. (7) and (14) show that this can always be achieved
by shifting the origin of time, r— -1, for a suitable #,, if
necessary. With this choice of ¢, the phase offset satisfies
do(—=1)==¢py(1), and the solvability condition (16) becomes

2
= sin y(v)]. (20)
7o

The value of ry must still be found in a self-consistent
manner from Eq. (17) so that

1
ro= J cos go(w) J(p)dp. (1)
-1

Thus the problem reduces to solving Egs. (20) and (21) si-
multaneously for the unknowns ry and ¢y(v). This problem
has already been studied and solved; it arises in the analysis
of the Kuramoto model.

At this point it becomes crucial to distinguish between
finite and infinite populations of oscillators, because the pre-
vious work on the Kuramoto model has shown that their
bifurcation behavior is different. Imagine that we start with a
stable locked state and slowly increase the width ' of the
natural frequency distribution. For the finite-N case [45,46],
the stable locked state is lost at a saddle-node bifurcation,
and this is known to occur when the maximum phase offset
¢y(1) is close to, but strictly less than, /2. In contrast, for
the infinite-N case [33] there is no saddle-node bifurcation, at
least not when the frequency distribution is even and unimo-
dal; instead, locking is lost when the maximum phase
¢o(1)=m/2. Since in this paper we are concerned with the
limiting behavior of the finite-N system, we will henceforth
impose the saddle-node condition at the unlocking transition.
Also, keep in mind that although the density 4(u) may look
like it represents a continuous distribution in the formulas
below, it actually represents a discrete system, via the device
in Eq. (6).

Let us now return to the analysis of Egs. (20) and (21), to
see how a saddle-node bifurcation arises when N is finite.
Changing variables from w to ¢, yields

$o(1) sin(¢by) )
— 2 A
2y —f_%(l) cos (¢0)h<sin[¢0(l)] dey, (22

which can be solved for ¢,(1), if and only if the saddle-node
bifurcation has not yet occurred (Fig. 2).

The right-hand side of Eq. (22) is a function of ¢,(1). At
the saddle-node bifurcation the derivative of this function
with respect to ¢y(1) vanishes. With some manipulation the
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FIG. 2. (Color online) Graphical solution to Eq. (22), the self-
consistency condition, for discrete populations. The curves show
graphs of the right-hand side of Eq. (22) for four different popula-
tion sizes N. In the example shown, the detunings were chosen
according to a discrete uniform distribution given by Egs. (6) and
(38). The horizontal dashed line represents the left-hand side of Eq.
(22), a constant function of height 2v,. Intersections between the
dashed line and the curve correspond to locked states (solutions of
the self-consistency equation), and determine the value of the maxi-
mum phase offset ¢y(1) for such a state. Notice that for typical
values of 7, there are two intersections for each N, indicating that
there are two locked states (presumably one stable, and the other
unstable). As 7y, increases, these states approach each other and
collide in a saddle-node bifurcation at the local maximum of the
curve. Above this point, no locked solutions exist. The point marked
by a small open circle corresponds to a saddle-node bifurcation for
N=4, at [y}, #;(1)]=(0.884,0.516). As N increases, the saddle-
node value of ¢;(1) moves to the right and ultimately tends to /2
as N— o,

zero-derivative condition for the saddle-node bifurcation can
be rewritten as

L f sin’[ go()]

-1 cos[p(m)]

a result that has also been obtained by other arguments
[45,46]. Combining this with Eq. (22), we find that the loca-

tion of the saddle-node bifurcation is determined from the
solution of the equation

0 J ' cos[2¢(w)]
_1 cos[ ()]

This can be written as

h(u)du, (23)

h(wdp. (24)

(1) sin( ) )
0= 2¢0)h| ————— |dd,, 25
J_¢3(1) cos(2¢) (Sin[d)(‘;(l)] b (25)

where ¢;(1) corresponds to the maximum phase offset at the
bifurcation. By using the cosine double-angle formula in Eq.
(24) and invoking Eq. (20), we find that the value of vy, at the
bifurcation is given by

. _ sin[g5(1)] f hw)
4 _

1 cos[ do(u)]

1 du. (26)
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At higher orders of perturbation theory, the strategy is
much the same. Omitting the details, we find that at O(€%),
the solvability condition (for removal of secular terms) can
be expressed as

2
0=—wy+ yv— %|:<1 + %) + % COS[¢0(V)]:|

~ S sinl ()~ i1+ b OMeosL (T} (27)

The self-consistency conditions for j=1 become

1
r=- f 1 (w)sinlo(p) = i Jh(wdp,  (28a)
-1

1
0=- f ¢1(wsin[ o(w) = ¢ Ja(pw)dp, — (28b)
-1
which imply that
1 2
w2=—§<1+%>, ¢1=g. (29)

Imposing the saddle-node bifurcation yields ryy5/¥{=0 and
hence

7, =0. (30)

Next, from the O(€’) solvability condition (not shown),
the self-consistency conditions for j=2 yield

(l)3=0, (31)

and at the saddle-node bifurcation,

* 1 2
0=- roli -7+ (f cos[2o(u) Jh(pm)du
y 64 -1

1
Tofy_hf L
+64<1 2L cos (] ) 52

Finally this brings us to the puzzling result that motivated
this paper: the cubic coefficient of I" on the bifurcation curve
satisfies

* 1 2
V== h{ 16+ ( f cos[2¢>o(u)]h(u)du)
64 1
+(®f S Y )} (33)
2 ) cosily(w1 ) |

and this expression can become singular, as we will now
show.

IV. CALCULATING THE COEFFICIENTS
A. Uniform distribution

For a continuous uniform distribution of natural frequen-
cies [A(v)=1/2], the maximum phase offset at the unlocking
transition is given by ¢;(1)=7/2, as proven by Ermentrout
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and as mentioned above. Hence, substitution of v=1 into Eq.
(20) yields 2y}/ry=1 and thus

sin[ o(v)]=v. (34)

These results, together with the self-consistency condition
(21), then imply that

T
¥ =—, 35
Y1 3 (35)
T
=—. 36
To 4 (36)

As vranges from —1 to 1, the corresponding phases ¢, cover
the entire interval [—7/2,/2]. So when Eq. (33) is evalu-
ated to determine 75, the integral

1
1
[ atagae o

blows up because of the singularities at the endpoints, and
therefore the cubic coefficient of I diverges.

However, in Ariaratnam and Strogatz [41] numerical re-
sults were presented for 800 oscillators with evenly spaced
frequencies (approximating the uniform distribution), and the
location of the bifurcation curve was identified in terms of
the parameters. Surprisingly, there was no indication of any
singularity in the bifurcation curve.

B. Discrete uniform population

Now consider a discrete population of N oscillators with
evenly spaced frequencies, for which the distribution func-
tion A(v) can be written as a sum of delta functions,

N .
h(v)=]l\725[v—<l—2l_l>]. (38)
i=1

N-1

In the limit N— oo, this approaches a uniform distribution
with h(v)=1/2.

However, since N is now finite, the maximum phase offset
at the unlocking transition is no longer simply ¢j(1)=/2.
Instead, ¢g(1) is implicitly determined by the saddle-node
bifurcation condition. Furthermore, the value of ¢g(1) will
depend on N.

For the discrete uniform population considered here, the
saddle-node condition (25) can be rewritten (again using the
cosine double-angle formula) as

N o i—1\ 2|2
0=§(2{1—[sm[¢0(1)](1—2N_1)] }
o i—1\12|-1”2
- 1—[Sln[¢0(l)]<1—2m>} ) (39)

This equation determines sin[ ¢(1)] implicitly as a function
of N. We solved it numerically, using a bracketing method in
MATLAB with double precision variables to ensure an accu-
rate solution for large N.

Figure 3(a) shows the results of such computations. The
numerics suggest that as N— o,
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sin[¢py(1)] ~ 1 =cN7!, (40)
where
¢~ 0.605443 657 ... , (41)

as obtained by root-finding supplemented by Richardson ex-
trapolation. Hence

* 7T !’_ r—
dy(1) ~ 5 V2eN712, (42)

We would love to be able to derive an analytical expres-
sion for ¢ in the asymptotic expansion (40), but so far we
have been stymied. Approximating the Riemann sums in Eq.
(34) by integrals and then solving for sin[ ¢ (1)] immediately
yields the constant term, sin[¢g(1)]~ 1, but how does one
find a formula for ¢ in the correction term? We have tried
using the trapezoid rule and its generalization, the Euler-
Maclaurin summation formula, to approximate the sums in
Eq. (39) asymptotically for large N, but analysis along these
lines does not produce a formula for ¢ that matches the nu-
merics. The trouble is that the asymptotics are delicate
[47,48]. The Euler-Maclaurin formula works well over a
large range of sin[¢;(1)], but it begins to diverge just in the
region where we need to apply it. The source of the difficulty
is that one of the sums in Eq. (39) has an integrable singu-
larity at sin[¢)(1)]=1, while at the same time, the desired
root (40) approaches this singularity as N — oo,

In any case, once sin[ ¢b5(1)] has been computed, the value
of ¢{(1) can then be used to compute ] from Eq. (26) and
75 from Eq. (33). Because the frequency distribution is dis-
crete (a sum of delta functions), the integrals for ¥} and 7}
also become finite sums. To evaluate the various cosine
terms in the sums (26) and (33), we also need to make use of
Eq. (20) when the saddle-node condition is imposed. Then
the oscillator phases satisfy

sin[py(v)] = av, (43)

where

a=sin[¢5(1)]. (44)

Figure 3(b) shows that as N increases, the resulting ]
approaches a limiting value. This limit equals 7/8, just as
expected from Eq. (35).

In contrast, the magnitude of v} appears to increase with-
out bound, as illustrated in Figs. 3(c) and 3(d). Notice that
the growth starts slowly: at N=10° Eq. (33) evaluates to
%5 =-5.0. We now seek to understand this interesting behav-
ior of ;.

C. Asymptotic behavior of 7}

Assuming that the value of 1-sin[¢)(1)] scales as con-
jectured above, like N7! as N—o, we can show that yg
scales as a square root, y3 ~bN'"? as N— co. The numerical
results of Fig. 3(d) agree with this scaling and indicate that
the prefactor b~—-0.005.

To derive this scaling law for yg, consider the finite sum
corresponding to the integral (37). Using the discretization
(38) we obtain
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1 —sin(og(1 00
100 (¢5(1)) -
(a) (c)
—0.02
—0.04
—0.06
—0.08F FIG. 3. (Color online) Scaling
laws for the discrete uniform dis-
—0.10 tribution. (a) The maximum phase
offset  satisfies  1—sin[¢p(1)]
—0.12, 5 A 6 S 10 ~¢N!, with ¢ given by Eq. (41).
N (b) The linear coefficient ¥} con-
verges to 7/8 for large N, as ex-
% " pected from the continuum limit
0 571 _107273 (35). (c) The cubic coefficient ¥
' (b) (d) is small and slowly becomes more
negative for small values of N. (d)
04F As N increases, y; remains mod-
_10-1E erately small and negative, but
eventually diverges according to
0.3r the square-root scaling law (57).
02} —10° F
01
—10* : :
0.0 , , , . . 10° 102 10* 106
100 102 10 10° N
N
f = L5 (45) | 2 (LS e )
————=h(v)dv=—S(N,a), — | = )+ —
O COSS[d)O(V)] N f_]f(V)dV< N—1 2f(V1)+i222f(Vz)+2f(VN) .
where (49)
N The expression in parentheses is almost S(N,a), except that
S(N.a) = 2 ), (46) the endpoint terms contain factors of 1/2. To compensate for
i=l this, we manually add (1/2)[f(»;)+f(vy)]=f(1) inside the
parentheses and balance this by adding the resulting term
fv) = (1 =a*?) 2, (47) 2f(1)/(N-1) to the other side of the inequality. Thus we
arrive at a lower bound on S,
and
. N-1 (!
po1_niz] (48) S(N,a) > f(1) + fw)dv. (50)
[ N-— 1 . 2 -1
Although we cannot evaluate S(N,a) in closed form, we Af . he | 1 this red
can write down upper and lower bounds on it. The idea is to ter carrying out the integral this reduces (o
use numerical quadrature rules in reverse. The sum is closely
related to the rectangular and trapezoidal approximations for 1 N-1
I! f(v)dv; by exploiting the concavity of f, we can turn S(N.a) > (1-a%)*"? + - (51)

these approximations into rigorous bounds.

For example, because the graph of f is concave up, the
area beneath it is strictly less than that given by the trapezoid
rule. Hence

Similarly, we can use lower rectangles to obtain a lower
bound on the integral, which then yields an upper bound on
the sum. The result is
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S(N,a) < 2f(1) - £(0) + N-

1!
f f)dv, (52)
-1

which simplifies to

2 N-1
S(N,a) < (1—a)" -1+ N (53)

These bounds are valid for any fixed N>1 and fixed 0
<a<1. But since we are primarily interested in the large-N
limit of the sum, we now substitute @ ~ 1 —c/N, as suggested
by the observed scaling law (40), and examine the
asymptotic behavior of the bounds as N— . To leading or-
der, we find

1+2¢

1+
32 312
2VZCWN < S(N,1-c/N) < 5 3/2N (54)
For ¢ given by (41) these bounds imply that 1.66N*?<S§
<2.41N*? for large N. In fact, using direct computation
supplemented by Richardson extrapolation, we find that

S(N,1=c/N)

lim == =2.038 169 ... . (55)

N—o
which is consistent with our bounds. Unfortunately we have
not been able to evaluate this limit in closed form, or even to
prove that it exists. (The usual convergence tests do not ap-
ply.)

Nevertheless, Egs. (54) and (55) suffice to explam why 7}
grows like VN. The dominant contribution to 75 in Eq. (33)
is

Nt 1
‘64<2J:,am%¢4uﬂh“”d“ - 68

After substituting y}=
(45) and (55), we find

/8, ro=m/4, and making use of Eqs.

772
¥ ~ M(Z 038169 ... )\N, (57)

which reduces to y; ~(-0.004 91.. )xﬁ thus accounting for
the scaling law seen numerically in Fig 3(d). The smallness
of the prefactor here explains why vj is unnoticeable for
small systems of oscillators, and why it has only reached a
value of roughly —5 for systems of a million oscillators.

D. Even polynomial distributions

One might wonder whether the divergences seen above
are artifacts of the uniform frequency distribution we have
been assuming. In related problems [33,46], it is known that
the uniform case is nongeneric in certain respects, compared
to other unimodal distributions with even symmetry. To shed
light on this issue, we now consider a broader class of such
distributions, first for the continuous case and then for the
discrete. We will see that the divergences persist, though
with different scaling laws.

PHYSICAL REVIEW E 75, 036218 (2007)

For an even polynomial distribution of frequencies, the
density can be expressed as

h(v) = 2, hylvl. (58)
k=0
Then the saddle-node bifurcation condition becomes

[ cosl2n(m)]<
- J‘—1 cos ()] I%

©

#5(1) -,
= g}) mfo cos(2¢hy)sin*(hy)d .  (59)

In particular, consider a piecewise linear distribution of
the form

h(v) = ho+ (1 = 2h)| ). (60)

For hy=1 this can be described as a tent-shaped distribution,
while for sy=1/2 it reduces to the uniform distribution con-
sidered above. With this, the condition for the saddle-node
bifurcation reduces to
1- 2h0>
3 .

0:<h0—2
3
(61)

One solution to this equation is cos[¢(1)]=1, while the re-
maining solutions satisfy the equation

)0083[¢8(1)] + (1 = ho)cos[ #5(1)] - (

O=cosz[¢6(1)]+cos[¢6(l)]+(22}10;11), (62)
—hy

1 6-9h
cos[¢y(1)] = - PR m (63)

Therefore, for hy=1/2 the maximum phase offset at the bi-
furcation is ¢(1)=r/2. In addition, for h,>1/2 no solution
for ¢;(1) exists so that no saddle-node bifurcation is found
for this system. This confirms what we already knew on
general theoretical grounds, namely, that saddle-node bifur-
cations do not occur for continuous, even, unimodal fre-
quency distributions [33]. Instead, locking is lost when the
O(e) phase distribution covers the interval —/2< ¢y(v)
=77/2.

so that

E. Discrete piecewise linear distribution

Now we ask what happens in the discrete case, where
saddle-node bifurcations become possible again. The family
of piecewise linear distributions considered above have a
discrete counterpart, in which

2< =
h(V)=]T7§ [ho+ (1 =2hg)|¥|] X 5[V_<1_ N—1>]'

(64)
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As for the discrete uniform population, the condition for the
saddle-node bifurcation reduces to a nonlinear algebraic
equation that can be solved for ¢g(1) with MATLAB. This
value can then be used to determine the bifurcation curve
from Egs. (26) and (33).

Figure 4 shows that as N increases, the quantities ¢j(1)
and 9, approach stationary values; beyond N=10* little
variation is observed. In contrast, the value of y§ along the
bifurcation curve does not converge as N increases. Instead
the magnitude of this term appears to grow as N2. This is a
much more rapid divergence than the N'/? behavior seen for
the uniform case. Hence we conclude that the divergence of
'yg is not an artifact of a uniform distribution. Indeed, the
divergence becomes even more severe when the distribution
is tentlike.

V. OPEN QUESTIONS

We are still confused about several questions that arose in
our analysis, and would welcome insights from our col-
leagues.

First, can any of the scaling laws found here be derived
more convincingly? We keep feeling that these should be
tractable calculations, and hope that experts in asymptotics
will look into them. For example, what equation determines
the coefficient ¢ in Eq. (40)? Can the other scaling laws (for
the large-N dependence of 7y} and 73) be shown to follow
directly from this first one, not just in the sense of bounds but
with genuine asymptotics?

Second, what are the implications of the singular behavior
found in the bifurcation curve at the unlocking transition?
Should one infer that the assumed form of the curve, given
by the regular perturbation series el'=X_ €'y, is valid for all
finite N but wrong in the continuum limit? If so, that would
suggest that the bifurcation curve loses a certain amount of
differentiability (since the singularity occurs only in the cu-
bic coefficient, and not in the linear one). But then what is
the correct form of the bifurcation curve in this case? In
other words, what is the precise algebraic nature of the sin-
gularity?

Third, how generic is the singularity found here? We can
see that it stems from the 1/cos[¢y(u)] term in the inte-
grand of Eq. (33). Would it still occur if the influence and
sensitivity functions were generic periodic functions contain-
ing all harmonics in their Fourier series? Or is it an artifact of
our tractable special case, where only first harmonics were
allowed?

Fourth, how do these results depend on the nature of the
assumed frequency distribution? The presence of even stron-
ger singular behavior for the tentlike frequency distributions
hints that the unlocking transition may display singular be-
havior for any unimodal distribution with compact support,
in the continuum limit. If this is true, what are the dynamical
consequences, if any, for the Winfree model? For the past
40 years, much of the research on populations of coupled
oscillators has taken a cavalier approach to the infinite-N
limit, and no major problems have arisen. Are we now start-
ing to see some subtleties here?

PHYSICAL REVIEW E 75, 036218 (2007)
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FIG. 4. (Color online) Scaling laws for discrete tentlike distri-
butions. The curves show the N dependence of (a) ¢;(1), (b) ¥},
and (c) 7;. The curves in panel (a) and (b) are shown for hy=1/2
(dashed-dotted), hy=3/4 (dashed), and hy=1 (solid). In (c), v5 is
shown for values of hy=1/2 (dashed-dotted, the limiting case of a
discrete uniform distribution, which shows much weaker diver-
gence than all the other curves), hy=3/4 (dashed, a typical
piecewise-linear distribution, which shows N? divergence), and A
=0.95 (solid).
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