
Signature of ray chaos in quasibound wave functions for a stadium-shaped dielectric cavity

Susumu Shinohara and Takahisa Harayama
Department of Nonlinear Science, ATR Wave Engineering Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan

�Received 20 November 2006; published 26 March 2007�

Light emission from a dielectric cavity with a stadium shape is studied in both ray and wave models. For a
passive cavity mode with low loss, a remarkable correspondence is found between the phase space represen-
tation of a quasibound wave function and its counterpart distribution in the ray model. This result provides
additional and more direct evidence for good ray-wave correspondence in low-loss modes previously observed
at the level of far-field emission pattern comparisons.
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Directional lasing emission is one of the most highlighted
features of two-dimensional microcavity lasers �1�. In inter-
preting the appearance of emission directionality and its de-
pendence on cavity shape, a ray dynamical model has proven
useful �1–6�. In the standard version of the ray model,
Frenel’s law is applied to describe the light emission process
from a cavity without its application being fully justified;
Frenel’s law is usually derived when a plane wave is scat-
tered at a planer dielectric interface. For a cavity shape obey-
ing integrable ray dynamics, one can approximately make a
connection between the ray picture based on Frenel’s law
and wave solutions in the short-wavelength limit by using
the Eikonal method �7�. Besides, even for a nonintegrable
cavity, one can associate its stable ray trajectory �if it exists�
to a class of wave solutions by the Gaussian-optical method
�8�. For a fully chaotic cavity, however, one lacks a method
to relate ray trajectories with wave solutions. Whereas estab-
lishing ray-wave �or classical-quantum� correspondence in
closed chaotic systems has been very matured in the field of
quantum chaos �9�, it is still an ongoing issue to make such a
correspondence in “open” systems �10�, one of which being
dielectric microcavities.

In this paper, we present numerical evidence showing that
for a fully chaotic cavity, there is significant correspondence
between ray dynamics and solutions of the Helmholtz equa-
tion, although we currently lack justification for applying the
ray model to a fully chaotic cavity. We consider a stadium-
shaped cavity as shown in the inset of Fig. 1, whose internal
ray dynamics is known to become fully chaotic �11�.
Stadium-shaped cavities have actually been fabricated using
materials such as semiconductors �4� and polymers �6�, and
stable lasing has been experimentally confirmed in both ma-
terials. In particular, for polymer cavities �refractive index
n�1.5�, the ray model predicts highly directional light emis-
sion, which can be associated with the unstable manifolds of
a short periodic trajectory of the stadium cavity �3,12�. This
highly directional emission has been experimentally ob-
served, and systematic agreement between experimental far-
field patterns and those obtained from the ray model has
been reported in Ref. �6�. Moreover, in recent work, we em-
ployed a nonlinear lasing model based on the Maxwell-
Bloch equations �13� to numerically simulate the lasing of
polymer stadium cavities and successfully obtained a highly
directional far-field emission pattern that agrees with the ray
model’s prediction �12�. The analysis of the passive cavity
modes relevant for lasing revealed that each of the low-loss

�or high-Q� modes exhibits the far-field emission pattern
closely corresponding to the ray model’s results. The present
work provides more direct and clearer evidence for this ray-
wave correspondence by showing that the phase space rep-
resentation of wave functions reproduces the ray model’s
distribution formed by the stretching and folding mecha-
nisms of ray chaos.

As a method to relate a wave function with ray dynamics,
the Husimi phase space distribution is often used �5,14–16�.
To accord with the definition of the phase space for the ray
model, where only the collisions with the boundary with out-
going momentum are taken into account, it is appropriate to
decompose a wave function into radially incoming and out-
going components and then project the latter onto the phase
space. Such decomposition has been implemented by using
the expansion in terms of the Hankel functions �15�, which
is, however, only suited for a cavity shape slightly deformed
from a circle. Hence, here we introduce a different phase
space distribution that can be formally related with the ray
model’s distribution and directly calculated from the wave
function and its normal derivative at the boundary.

First, we introduce a ray model incorporating Frenel’s
law. In what follows, we fix the refractive indices inside and
outside the cavity as nin=1.5 and nout=1.0, respectively, and

FIG. 1. �Color online� Exponential decay of light intensity in the
ray model, where the time is measured in the unit of ninR /c. Inset
shows geometry of the stadium-shaped cavity.
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restrict our attention to transverse magnetic �TM� polariza-
tion. Inside the cavity, we regard the dynamics of a ray as a
point particle that moves freely except for bounces at the
cavity boundary satisfying the law of reflection. We assign a
ray trajectory a variable ��t� representing intensity at time t,
where t is measured by trajectory length in real space. Due to
the collision with the boundary at time t, the ray intensity
changes as ��t+�=R��t−�, where t− and t+ are the times just
before and after the collision and R is the Fresnel reflection
coefficient for TM polarization �17�: R= �sin��−�t� / sin��
+�t��2, where � and �t are incident and transmission angles
related by Snell’s law nin sin �=nout sin �t. Since we do not
consider any pumping effect, ��t� is a monotonically de-
creasing function.

Ray dynamics can be reduced to a two-dimensional area-
preserving mapping on the phase space defined by the
Birkhoff coordinates �s , p�, where s is the curvilinear coor-
dinate along the cavity boundary and p=sin � is the tangen-
tial momentum along the boundary. The intensity leakage at
the cavity boundary creates an “open window” in the mo-
mentum space: Whenever a ray trajectory comes into region
�p�� pc=nout /nin, it loses intensity by amount Te, where T is
the transmission coefficient, i.e., T=1−R, that can be ex-
pressed by sole variable p.

We assume that initially rays are distributed uniformly
over the phase space having identical intensities. To study
the statistical properties of the ray model, we focus upon a
time-independent distribution P�s , p� that describes intensity
flux at the cavity boundary. The usefulness of studying this
distribution has been demonstrated in Refs. �12,16,18�. Be-
low we define this distribution for the ray model and later
derive the corresponding distribution for the wave model.

We denote the light intensity inside the cavity as E�t�
=� j� j�t�, where the sum is taken over the ray ensembles. Its
time evolution can be written as

dE
dt

= − �
0

S

ds�
−pc

pc

dpT�p�F�s,p,t� , �1�

where F�s , p , t� represents intensity flux at the cavity bound-
ary and S the total boundary length.

It has been numerically shown that E�t� exhibits exponen-
tial decay behavior for stadium cavities �18�. Performing a
numerical simulation with 107 ray ensembles, we obtain E�t�
as shown in Fig. 1. We can estimate the exponential decay
rate as �r�0.194�c / �ninR�, where c is the light speed out-
side the cavity and R the radius of the circular part of the
stadium cavity. Exponential decay E�t�=E�0�e−�rt can be de-
rived from Eq. �1� by assuming that F�s , p , t� can be factor-
ized as F�s , p , t�=F�s , p�E�t� �16�, where the decay rate �r

can be expressed as

�r = �
0

S

ds�
−pc

pc

dpP�s,p� . �2�

Here, we put P�s , p�=T�p�F�s , p� for convenience. P�s , p�
describes how the rays’ intensities are transmitted outside the
cavity and becomes important when trying to understand the
relation between emission directionality and the phase space

structures of ray dynamics �3,12,16�. Figure 2�a� shows a
numerically obtained distribution P�s , p�. As explained in de-
tail in Refs. �3,12�, the structure of the high-intensity regions
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FIG. 2. �Color� �a� Intensity flux distribution P�s , p� for the ray
model. �b� Phase space distribution H�s , p� of a wave function for a
low-loss mode with kR=100.000 24−0.126 67i. �c� The average of
H�s , p� of the 21 lowest-loss modes. Dashed lines represent critical
lines p= ± pc. Note that P�s , p� and H�s , p� are normalized to �r as
in Eq. �2�
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of P�s , p� can be well fitted by the unstable manifolds of a
pair of unstable four-bounce periodic trajectories; one is lo-
cated just above critical line p= pc and the other just below
p=−pc.

Let us next treat the light field by the Maxwell equations.
For a two-dimensional cavity, the z component of the TM
electric field is written as Ez�x ,y , t�=Re���x ,y�e−i�t�, where
��x ,y� satisfies the Helmholtz equation ��xy

2 +n2�x ,y�k2��
=0 and �=ck. For a dielectric cavity, the eigensolutions of
the Helmholtz equation become quasibound states �or reso-
nances� characterized by complex wave numbers k=kr+ iki
with ki�0. Wave numbers k and wave functions � can be
numerically obtained by the boundary element method �19�.
In Fig. 3, we plot the distribution of the resonances for krR
�100. For the wave description, the light intensity decay
rate �w is written as �w=2c �ki�. Equating �w with �r evalu-
ated in the ray simulation, one obtains the ray model’s esti-
mate of the kiR value, i.e., kiR=−0.194/ �2nin��−0.0647,
which turns out in this case to give an upperbound of the kiR
values as shown in Fig. 3. It is an interesting problem to
establish a precise correspondence between �r and �w by a
semiclassical argument, which however we will not pursue
here.

Next, we derive a distribution for the wave description
that corresponds to P�s , p�, formulating the intensity decay
process as in the ray model. The light intensity of the cavity

is written as E=		Ddxdy 1
2 �	E� 2+
H� 2�, where D represents

the area of the cavity and 	 and 
 are electric permittivity
and magnetic permeability, respectively. The time evolution
of E can be written as

dE
dt

= − �
0

S

dsS�s,t� , �3�

where S�s , t� is the component of the Poynting vector normal
to the cavity boundary, i.e., S�s , t�=cEz�−�xHy +�yHx�,
where �� is a unit vector normal to the cavity boundary. In the
TM case, Hx and Hy are determined from Ez through
�Ez /�y=−�
 /c���Hx /�t� and �Ez /�x= �
 /c���Hy /�t�. S�s , t�

contains terms rapidly oscillating in time with frequency

2ckr. We smooth out this rapid oscillation by S̄�s , t�
= 1

T	t
t+Td�S�s ,�� with T=2
 / �ckr�. Assuming kr� �ki�, which

is valid in the low-loss and short-wavelength limit, one ob-
tains

S̄�s,t� =
ce2ckit

2
kr
Im��*�s��v��s�� , �4�

where ��=�� ·�� . Moreover, we coarse-grain spatial variations
smaller than the wavelength by applying Gaussian smooth-
ing as follows:

S� �s,t� =
1

�


�

n=−�

� �
0

S

ds� exp�−
�s� − s − nS�2

�2 �S̄�s�,t� ,

�5�

where �=
S / �2ninkrR�. Plugging the right-hand side of Eq.

�4� into S̄ in Eq. �5�, we obtain the following expression for

S� �s , t�:
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FIG. 4. �Color� �a� Log10 plot of the intensity flux distribution
P�s , p� shown in Fig. 2�a�. �b� Log10 plot of the averaged distribu-
tion H�s , p� shown in Fig. 2�c�. Only region �p�� pc is shown.

FIG. 3. �Color online� Distribution of resonances for krR�100.
Prediction from the ray model is plotted in a dashed line.
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S� �s,t� =
ce2ckit

2
kr

1

2

�

−�

�

dpH�s,p� . �6�

Here, H�s , p� is a phase space representation of �*�s�����s�
similar to the Husimi distribution, defined by

H�s,p� = Im�h�
*�s,p�h����s,p�� , �7�

where

hf�s,p� = �
0

S

ds�G*�s�;s,p�f�s�� �8�

and G�s� ;s , p� is a coherent state for a one-dimensional pe-
riodic system,

G�s�;s,p� =
1


�


�

n=−�

�

�exp�−
�s� − s − nS�2

2�2 + ip�s� − s − nS�� .

�9�

Comparing Eqs. �1� and �3� with S�s , t� being replaced with

S� �s , t�, one finds that H�s , p� is the distribution that should be
compared with P�s , p�.

Calculating H�s , p� for all the cavity modes shown in Fig.
3, we confirmed that for a low-loss mode, H�s , p� is pre-
dominantly supported on the high-intensity regions of
P�s , p�. We show a typical example in Fig. 2�b�, where we

note that to compare with P�s , p� shown in Fig. 2�a�, the
momentum is rescaled as p / �ninkrR�→p and H�s , p� is nor-
malized to �r: 		dsdpH�s , p�=�r. We plot the average of
H�s , p� of the 21 lowest-loss modes �i.e., those with kiR�
−0.20� in Fig. 2�c�, which not only proves that the localiza-
tion on the high-intensity regions of P�s , p� is a common
feature of low-loss modes, but also shows that the correspon-
dence with P�s , p� becomes better by this averaging. The
correspondence between P�s , p� and the averaged H�s , p�
can be further revealed by plotting these distributions in
logarithm scale as shown in Fig. 4: The log10 plot of P�s , p�
reveals the structure of low-intensity regions, which can be
associated with the long-term behavior of the unstable mani-
folds of the four-bounce periodic trajectories located near the
critical lines. From Fig. 4�b�, one can confirm that the aver-
aged H�s , p� reproduces even the low-intensity regions of
P�s , p�.

The ray-wave correspondence in low-loss modes provides
a natural explanation why experimental far-field patterns
agree with the ray model’s prediction. In experiments, lasing
often occurs in multimode, so that a lasing state can be con-
sidered as a “superposition” of multiple low-loss modes. The
observation that better ray-wave correspondence is obtained
after the averaging over low-loss modes suggests that such a
superposition might enhance the ray-wave correspondence.
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