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An intermittent nonlinear map generating subdiffusion is investigated. Computer simulations show that the
generalized diffusion coefficient of this map has a fractal, discontinuous dependence on control parameters. An
amended continuous time random-walk theory well approximates the coarse behavior of this quantity in terms
of a continuous function. This theory also reproduces a full suppression of the strength of diffusion, which
occurs at the dynamical transition from normal to anomalous diffusion. Similarly, the probability density
function of this map exhibits a nontrivial fine structure while its coarse functional form is governed by a time
fractional diffusion equation. A more detailed understanding of the irregular structure of the generalized
diffusion coefficient is provided by an anomalous Taylor-Green-Kubo formula establishing a relation to de
Rham–type fractal functions.
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I. INTRODUCTION

Since more than a century normal diffusion, characterized
by a linear increase in time of the mean square displacement
�MSD� of an ensemble of moving particles, provides a para-
digmatic example of a stochastic process. Here the MSD can
be expressed by the ensemble average �x2�� t� with an ex-
ponent �=1, where x holds for the position of a particle on
the real line at time t�0. However, exponents ��1 are also
possible yielding two important examples of anomalous dif-
fusion: superdiffusion with ��1 and subdiffusion with 0
���1. More recently, the importance of anomalous diffu-
sive regimes was realized not only in physics but also in
chemistry, biology, and economics. These regimes were
found in theoretical models and experiments related, among
others, to turbulence, amorphous semiconductors, porous
media, surface diffusion, glasses, granular matter, reaction-
diffusion processes, plasmas, and biological cell motility, see
Refs. �1–9� for reviews. Parallel to this development low
dimensional deterministic maps attracted much attention as
simple models of anomalous dynamics which can be under-
stood analytically �10–26�. A characteristic feature of the sto-
chastic processes generated by these maps is provided by the
probability density functions �PDFs� of the dynamical vari-
ables. In the case of normal diffusion these PDFs exhibit
Gaussian forms, whereas for subdiffusion they yield tails
with stretched exponential decay and for superdiffusion Lévy
power laws �17�.

Several theoretical approaches have been worked out over
the past few decades in order to explain anomalous diffusion.
Perhaps the most famous one is continuous time random
walk �CTRW� theory, pioneered by the work of Montroll,
Weiss, and Scher �27�. Their stochastic approach was later on
adapted to sub- and superdiffusive deterministic maps
�11–13,17–19,22,24�. Related maps were originally proposed
by Pomeau and Manneville as simple models of intermit-
tency �10�. A classification of their dynamics was provided
particularly by Gaspard and Wang combining stochastic with

dynamical systems theory �14�. Exploiting the deterministic
properties of these maps, anomalous diffusion was further
studied in the framework of the thermodynamic formalism
�15,20�, by means of periodic orbit theory �16,21,25� and by
spectral decomposition techniques �23�. Currently aging phe-
nomena �24,26�, nonergodic behavior �28�, and infinite in-
variant measures �29� are in the focus of investigations dem-
onstrating that these simple models provide ongoing
inspiration for important new research.

However, all of the above studies focused on specific val-
ues of control parameters only for which these maps are to a
large extent analytically tractable. That generally the dynam-
ics is more intricate was shown by calculating the parameter-
dependent diffusion coefficient of a piecewise linear one-
dimensional map, which turned out to be fractal �30–32�.
Similar behavior was detected in more complicated models
like the climbing sine map �33�, in experimentally accessible
systems like particles bouncing on corrugated surfaces �34�
and in models of Josephson junctions �35�. These findings
can be explained by the existence of deterministic dynamical
correlations that are topologically unstable under parameter
variation �30,31,36�; for a review see Part 1 of Ref. �37�.

In this paper we show that a fractal parameter dependence
of physical quantities is not only typical for low-dimensional
periodic deterministic dynamical systems exhibiting normal
transport laws but also for anomalous dynamics. As an ex-
ample we study parameter-dependent subdiffusion in a
simple deterministic map, however, our main arguments hold
for a broad class of anomalously diffusive systems. A spe-
cific feature of our analysis is that it employs a blending of
techniques from stochastic theory and the theory of dynami-
cal systems. That way we wish to contribute to the micro-
scopic foundations of a general theory of anomalous deter-
ministic transport, which does not yet seem to be fully
developed.

Our paper is organized as follows: The model is intro-
duced in Sec. II. As a rate of diffusivity we choose a gener-
alized diffusion coefficient �GDC�, which generalizes the dif-
fusion constant known from normal diffusion. In Sec. III we
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present results from computer simulations showing that the
GDC has a nonmonotonic, irregular dependence on control
parameters of the map. We give a qualitative explanation of
this phenomenon by arguing that the GDC is a self-similar-
like, fractal function. The GDC is, furthermore, conjectured
to be everywhere discontinuous. In Sec. IV we briefly review
CTRW theory. In Sec. V we show that an amended version
of it correctly describes the coarse functional form of the
GDC. Apart from fractal parameter dependencies, the map
under consideration exhibits an interesting dynamical transi-
tion, which is studied in detail in Sec. VI. In Sec. VII we
compute the PDF of this map from simulations and analyze
it by means of a time fractional diffusion equation. Section
VIII finally outlines a deterministic approach for analyzing
the fractal GDC, which is based on a Taylor-Green-Kubo
�TGK� formula for anomalous diffusion. This theory enables
us to relate anomalous diffusion processes to fractal de
Rham–type functions. Section IX summarizes our results.
For an outline of this work we refer to Ref. �38�.

II. MODEL

We focus on a subdiffusive map which, restricted onto the
unit interval, was introduced by Pomeau and Manneville to
describe intermittency �10�,

xn+1 � Mz,a�xn� = xn + axn
z , 0 � xn �

1

2
, �1�

where the parameter z�1 holds for the degree of nonlinear-
ity and a�1 is a second control parameter. In the following
we will omit these two indices for convenience, Mz,a�M.
The variable xn�R denotes the position of a point particle at
discrete time n�N0. Translation symmetry, M�x+1�=M�x�
+1, and reflection symmetry, M�−x�=−M�x�, complete the
definition of the map on the real line. The iterated dynamics
of this model is illustrated in Fig. 1 for particular values of
the two control parameters: Given some initial condition x0,
the equations of motion Eq. �1� produce the next value x1, x1
determines x2, and so on. A typical trajectory of the system,
displayed in Fig. 1 in a cobweb plot, is therefore represented
in form of jumps x0→x1→x2→¯ on the real line.

For 1�z�2 the diffusion process generated by this map
is normal, whereas for z�2 it is anomalous �11,14,17�. This
anomaly is due to the existence of marginally stable fixed
points located at all integer values of xn around which a
particle gets “trapped” for a long time �15�. However, in
regions with larger local derivative, where the particle can
“jump” to different unit intervals, the dynamics becomes
more irregular, see Fig. 1. Thus a typical trajectory of the
spatially continued map Eq. �1� consists of long laminar
pieces interrupted by short chaotic bursts. Such a behavior is
the hallmark of what is called intermittency �10�. An ex-
ample of a typical intermittent trajectory generated by this
map is shown at the bottom of Fig. 1.

In the groundbreaking works of Geisel and Thomae �11�
and Zumofen and Klafter �17�, main attention was paid to the
time dependence of the MSD for specific fixed values of the
parameter a. In contrast, our aim is to study how a suitably

defined GDC behaves under variation of the two control pa-
rameters a and z. In Refs. �5,39� an anomalous diffusion
coefficient was introduced by

D � D�z,a� = lim
n→�

��1 + ��
2

�x2�
n� , �2�

where � is the gamma function and � is some constant that
will be specified in the following. For convenience we define
the GDC by

K � K�z,a� =
2D

��1 + ��
. �3�

For numerical simulations of the spatially extended map Eq.
�1� we have typically used an ensemble of 106 particles,
where the initial conditions are uniformly distributed on the
unit interval �0, 1�. If not noted otherwise, each trajectory
was calculated up to 104 time steps. For different values of a
we have confirmed that the numerically computed power law
dependence of the MSD is in full agreement with the CTRW
solution �17�,

� = 	1, 1 � z � 2

1

z − 1
, z � 2. 
 �4�

We remark that at the transition point between normal and
anomalous diffusion a logarithmically corrected dependence
of the MSD is obtained,

FIG. 1. Top: Illustration of the spatially continued map M Eq.
�1� for parameters z=3, a=8 with a typical trajectory generated by
the map �cobweb plot with dashed horizontal and vertical lines�
starting at initial condition x0. Bottom: The demonstration of inter-
mittency in a time series plot of a typical trajectory. Note the long
laminar periods in the trajectory, which are interrupted by chaotic
“bursts.” Here and in the following figures all quantities are without
units.
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�x2� � n/ln n for z = 2, �5�

which again is in complete agreement with CTRW theory.
Hence for the rest of this paper � is defined by the theoreti-
cally correctly predicted values Eq. �4�.

III. NUMERICAL RESULTS

We first fix the parameter a and study the dependence of
K as a function of the degree of nonlinearity z. Numerical
results are presented in Figs. 2 and 3. K as a function of z
appears to be highly irregular exhibiting a lot of structure on
fine scales. Particularly Fig. 2 shows how the fine structure
as a function of z evolves under variation of a.

In Fig. 3 the calculations were performed both for the
normal and for the anomalous diffusive regime. Equation �5�
suggests that at z=2 the GDC exhibits a local minimum in
form of a total suppression of the strength of anomalous
diffusion, that is, K�2,a�=0 for all values of a. Interestingly,
this transition from normal to anomalous diffusion appears to
be approached continuously by K as a function of z. The
reason is that for z�2 logarithmic terms are still present in
the dynamics, but they contribute for transient times only.
This peculiar behavior does not only diminish the GDC but
also significantly slows down the convergence of the simu-
lation results. The inset of Fig. 3 shows several representa-
tive values of K in the transition region, where different sym-
bols correspond to different computation times and different
numbers of trajectories for fixed a. Due to the slow conver-
gence, even for the largest computation times the results for
K are quantitatively still apart from the CTRW prediction,
which holds in the limit of time to infinity. However, quali-
tatively there is a tendency towards zero at z=2. This specific
problem will be analyzed in full detail in Sec. V.

From normal diffusive maps it is known that iterations of
the critical points of a map, which here are the points of
discontinuity at x=1/2+m, m�Z, play a crucial role in or-

der to understand the complicated parameter dependence of a
diffusion process �30,31�. Accordingly, variations of the
height of the map hªM� 1

2
�= 1

2 +a� 1
2

�z strongly affect the
parameter-dependent GDC, as we will discuss in detail be-
low. Such variations are achieved both by changing z and a.
In order to more clearly represent the impact of variations of
z only on the GDC, we study K as a function of z for fixed
height h. We emphasize that the topology of the orbit of the
critical point is still affected by variations of z only, however,
it is less sensitive to z than to varying h. Respective simula-
tion results are shown in Fig. 4. As expected, K�z ,h� for
fixed h is considerably smoother compared to Figs. 2 and 3.
Indeed, the local minimum in the transition from normal to
anomalous diffusion is now less obscured by a nontrivial fine
structure. However, note that very small irregularities form-
ing a self-similar-like pattern are still present, as is suggested
by Fig. 4 and the inset, which depicts a magnification of a
small characteristic region. The figure also shows the conver-
gence of the data with respect to simulation time and number
of trajectories from which the formation of the irregularities
is clearly seen.

Now we focus on the dependence of K on the parameter h
with the parameter of nonlinearity z kept fixed. In Fig. 5 the
behavior of the GDC as a function of h is shown for different
values of z which, as expected, is more nonmonotonous than
that of K�z�. The structure of K�h� for different z looks some-
what similar, however, we could not detect a simple scaling.
For z=1 the map Eq. �1� reduces to a piecewise linear map
for which it was shown analytically and numerically that
diffusion is normal and that the diffusion coefficient is a
fractal function of the slope a �30–32,36,37,40�, see the up-
per curve in Fig. 5. For z=3 and over a larger range of a,
K�a� as obtained from simulations is presented in Fig. 6�a�.

FIG. 2. The generalized diffusion coefficient K, Eq. �3�, for the
map Eq. �1� as a function of the map’s nonlinearity z for different
values of the prefactor a in the anomalous diffusive region z�2.
The semilogarithmic scale is chosen in order to magnify the irregu-
lar fine structure. The values for a from bottom to top are a
=2.78,3.14,4 ,5 ,9.8. The curves consist of 100, 130, 200, 254, 450
points, respectively.

FIG. 3. The generalized diffusion coefficient K as a function of
z for different values of a. The parameter values from bottom to top
�at z=2� are a=3.14,4 ,5. The curves consist of 296, 360, 435
points, respectively. The inset shows several representative values
of K around z=2 for a=5. Lines are guides for the eyes only.
Different symbols from top to bottom correspond to simulations
with 106 trajectories and the different computation times n=102

�circles�, 103 �squares�, 104 �rhombuses�, 105 �triangles� indicating
ultraslow convergence of K towards zero at z=2. Also the curve
calculated with 107 trajectories, each of the length of 104 time steps,
is shown. In the inset it coincides with the curve calculated with 106

trajectories, each of the length of 104 time steps.
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Magnifications of the initial region, see Figs. 6�b� and 6�c�,
show a self-similar-like behavior of K on finer and finer
scales indicating a fractal structure.

A qualitative explanation for the fractality of all these
curves can be given in terms of turnstile dynamics, which
has successfully been applied in order to understand the frac-
tality of the normal diffusion coefficient in piecewise linear

maps. Here we outline the basic idea of this approach only,
for technical details we refer to Refs. �30,31�. The key ingre-
dient of this method is the orbit generated by iterations of the
critical point xc=1/2 of the map M restricted onto the unit
interval, xn=Mn�xc� mod 1. If this orbit is periodic it defines
a Markov partition with certain partition parts representing
coupling regions �turnstiles� where, in the associated periodi-
cally continued map, particles can jump from one unit inter-
val to another one. Specific parameter values define Markov
partitions with specific turnstile couplings which, in more
physical terms, generate specific sequences of forward- and
backward scattering of particles that start nearby the critical
point. It turns out that these Markov partitions are topologi-
cally highly unstable under parameter variation, in the
present case both for varying z and a.

In Fig. 6�a� three parameter values are identified repre-
senting Markov partitions that correspond to two local
minima and a local maximum of K�a� thus highlighting a
specific fine structure in the whole curve. Higher-order Mar-
kov partitions can now be constructed �generated by higher-
order iterations of the critical point� which are of the same
type as the initial three identified in Fig. 6�a�, however, yield-
ing new sets of parameter values. Such higher-order param-
eter triples are shown in Figs. 6�b� and 6�c�. They identify
the same type of fine structure on finer and finer scales. A

FIG. 4. �Color online� The generalized diffusion coefficient K as
a function of z for the fixed height of the map h=�3 as defined in
the text. Different curves correspond to simulations with 106 trajec-
tories and different computation times, from bottom to top on the
right hand side of the figure n=102 ,103 ,104. Note the inverse order
of the curves at the point z=2 marked by the vertical dashed line.
Curves consist of 854, 646, 650 points, respectively. Several values
of K for n=105 are also shown �circles�. The data indicate clear
convergence in time and the formation of irregularities. Addition-
ally, several representative values of K calculated for 107 trajecto-
ries, each of the length of 104 time steps, are shown �squares�. They
coincide with corresponding values of K calculated with 106 trajec-
tories, each of the length of 104 time steps. The inset shows a
magnified region of the curve calculated for n=102. The dashed box
marks a region that appears to be self-similar to the whole region
shown in the inset indicating the existence of an underlying fractal
pattern. The curve was calculated for 2	107 trajectories and con-
sists of 200 points.

FIG. 5. The generalized diffusion coefficient K as a function of
parameter h for different values of z. From top to bottom it is z
=1,2.5,3 ,3.5,4. For clarity the curves are shifted vertically by 1.5,
1, 0.6, 0.4, 0.2, respectively.

FIG. 6. �Color online� �a� The generalized diffusion coefficient
K over a large range of the parameter a at z=3. Note that K�3,a�
=0 for 1�a�4. The dashed line represents the CTRW approxima-
tion Eq. �28�. The dashed-dotted line is the modified CTRW Eqs.
�31� and �34�. �b� and �c� show magnifications of the initial region
of �a� demonstrating the existence of irregularities on finer scales.
The dashed line in �b� shows the modified CTRW Eqs. �32� and
�34�. The sets of symbols included in �a� to �c� correspond to spe-
cific turnstile parameter values �see Sec. III for explanations�. The
inset in �a� depicts the development of a discontinuity in the GDC
around a=20. The different lines correspond to different iteration
times, from bottom to top at left n=103 �circles�, 104 �squares�, 105

�rhombuses�, 106 �triangles�, thus yielding a higher numerical pre-
cision. The curve with 107 trajectories and 104 time steps, which
coincides with the one calculated with 106 trajectories and 104 time
steps, shows that we gain convergence with respect to the number
of trajectories. The data in �a� consists of 1198 points.
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similar analysis can be performed for other local peaks of
K�a� qualitatively explaining the fractal structure of the
GDC. More quantitatively, one may wish to calculate some
fractal dimension for these curves. However, this is a hard
task even if analytical formulas for a diffusion coefficient are
available �40� and is left for further studies.

We conclude this section with an unexpected detail of the
GDC. For the piecewise linear map at z=1 the diffusion
coefficient as a function of slope of the map is continuous
�32�. For z=3, however, numerical results suggest that the
dependence of K on a is discontinuous. In the inset of Fig. 6
we have magnified a small region of K around a=20 �analo-
gous behavior is found around a=12,28,36, . . .�. Note that
for a�20 particles can jump for the first time from the first
unit interval to the fourth one. Increasing the numerical pre-
cision by increasing the computation time, K�a� near a=20
gradually approaches a step function, which suggests that a
discontinuity develops. Similar discontinuities have already
been reported for Lyapunov exponents as functions of a bias
in piecewise linear maps �41�. More complicated ones are
known to exist for diffusion coefficients of nonlinear maps
exhibiting bifurcation scenarios �33� and have recently been
highlighted in research on transport in polygonal billiard
channels �42�. An explanation why for our model the GDC is
discontinuous for z=3 while it is continuous for z=1 may be
sought in the completely different character of the PDF of
the map for z=3, which develops nonintegrable singularities
at all marginally stable fixed points. Details of this peculiar
behavior will be discussed later, see Fig. 8 and the analysis
after Eq. �52�. Note that at suspected points of discontinuity
of the GDC like a=20 the critical point is getting mapped
right onto these singular regions of the PDF at the very first
iteration. Simultaneously, the orbit of the critical point exhib-
its a transition from forward to backward scattering under
variation of a, which leads to a local maximum of the GDC
in terms of turnstile dynamics. For z=3 this change in the
microscopic scattering process is drastically amplified by the
singular behavior of the PDF probably leading to a disconti-
nuity in the GDC. In contrast, for z=1 the PDF is not singu-
lar but a nondifferentiable step function �31�, thus the GDC
is locally maximal but still continuous. It would be valuable
to have a mathematical proof of this conjectured discontinu-
ity phenomenon.

The discontinuity at a=20 is furthermore a boundary
point of the specific fine structure identified in Fig. 6, which
was previously discussed in terms of turnstile dynamics. As
we have just emphasized, this parameter value is determined
by a specific periodic orbit of the critical point of the map.
However, as was outlined before, one can now construct in-
finitely many higher-order iterates of the same type of peri-
odic orbits yielding new sets of parameter values. These pa-
rameter values are related to the same type of structure and,
hence, identify the same type of discontinuity on finer and
finer scales. Furthermore, such parameter values are typically
densely distributed on the parameter axis �30,31�. This leads
us to conjecture that K�a� shown in Fig. 6 is discontinuous
on a dense set of parameter values �probably being of mea-
sure zero�. Note that the argument carries over to K�z� in Fig.
4, where a careful study of the largest point of irregularity at
z�3.4 reveals the same type of discontinuity.

So far we have focused on the fine structure of the GDC
only. The next section proceeds with an understanding of its
coarse functional form. As far as we know there is only one
analytical result in the literature trying to predict the whole
parameter dependence of the GDC of this map �11�. How-
ever, as we will show the respective calculation needs to be
modified in order to match to computer simulation results.
This necessitates to briefly review the whole approach by
explaining our corrections.

IV. CONTINUOUS TIME RANDOM WALK THEORY FOR
MAPS

The CTRW theory of Montroll, Weiss, and Scher �27� has
become a standard tool to model diffusion in intermittent
maps like Eq. �1� �11,17�. This approach assumes that diffu-
sion can be decomposed into two stochastic processes char-
acterized by waiting times and jumps. Thus one has two
sequences of independent identically distributed random
variables, namely a sequence of positive random waiting
times T1 ,T2 ,T3 , . . . with PDF w�t�, 
0

�w�t�dt=1, and a se-
quence of random jumps 
1 ,
2 ,
3 , . . . with a PDF ��x�,

−�

� ��x�dx=1. For example, if a particle starts at point x=0
at time t0=0 and makes a jump of length 
n at time tn=T1
+T2+ ¯ +Tn, its position is x=0 for 0� t�T1= t1 and x
=
1+
2+ ¯ +
n for tn� t� tn+1. The probability that at least
one jump is performed within the time interval �0, t� is then

0

t dt�w�t�� while the probability for no jump during this time
interval reads ��t�=1−
0

t dt�w�t��. The master equation for
the PDF P�x , t� to find a particle at position x and time t is
then

P�x,t� = �
−�

�

dx���x − x���
0

t

dt�w�t − t��P�x�,t�� + ��t�
�x� .

�6�

It has the following probabilistic meaning: The PDF to find a
particle at position x at time t is equal to the PDF to find it at
point x� at some previous time t� multiplied with the transi-
tion probability to get from �x� , t�� to �x , t� integrated over all
possible values of x� and t�. The second term accounts for
the probability to remain at the initial position x=0. It is easy
to check that this equation yields a normalized PDF P�x , t�.
The most convenient representation of this equation is ob-
tained in terms of the Fourier-Laplace transform of the PDF,

P̃
ˆ �k,s� = �

−�

�

dxeikx�
0

�

dte−stP�x,t� , �7�

where the hat stands for the Fourier transform and the tilde
for the Laplace transform. Respectively, this function obeys
the Fourier-Laplace transform of Eq. �6�, which is called the
Montroll-Weiss equation �27�,

P̃
ˆ �k,s� =

1 − w̃�s�
s

1

1 − �̂�k�w̃�s�
. �8�

The Laplace transform of the MSD can be readily obtained
by differentiating the Fourier-Laplace transform of the PDF,
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�x2̃�s�� = �
−�

�

dx x2P̃�x,s� = − � �2P̃
ˆ �k,s�
�k2

�
k=0

. �9�

In order to calculate the MSD within this theory, it thus
suffices to know ��x� and w�t� generating the stochastic pro-
cess. For one-dimensional maps of the type of Eq. �1�, using
the symmetry of the map the waiting time distribution can be
calculated from the approximation

xn+1 − xn �
dxt

dt
= axt

z, xt � 1, �10�

where we have introduced the continuous time t�0. Solving
this equation for initial condition x0 yields

xt = � 1

x0
z−1 − a�z − 1�t�−1/�z−1�

. �11�

We now define that a particle makes a jump when it leaves
the unit interval. Note that this definition is different from the
one of Ref. �11�, which used the interval �− 1

2 , 1
2
�. That the

unit interval is the right choice for calculating the parameter-
dependent random walk diffusion coefficient was shown for
z=1 in Refs. �30,31,36,43,44�. From Eq. �11� one can then
obtain the time t that a particle spends on the unit interval
before making a jump according to the condition xt=1. The
waiting time thus becomes a function of the injection point
x0,

t�x0� =
1

a�z − 1�� 1

x0
z−1 − 1� . �12�

Accordingly, the waiting time PDF w�t� is related to the yet
unknown PDF of injection points,

w�t� � Pin�x0��dx0

dt
� . �13�

Making the assumption that the PDF of injection points is
uniform, Pin�1, the waiting time PDF is calculated to

w�t� = a�1 + a�z − 1�t�−z/�z−1� �14�

for long enough times t, where normalization is used to ob-
tain the prefactor.

If jumps between neighboring cells only are taken into
account, the jump PDF and its Fourier transform may be
assumed as �17�

��x� = 
��x� − 1�, �̂�k� = cos�k� . �15�

Combining Eq. �9� with Eq. �15� leads to the Laplace trans-
form �11�

�x2̃� =
w̃�s�

s�1 − w̃�s��
. �16�

For the following calculations it is useful to define

� ª

1

z − 1
, z � 1 �17�

Note that for z�2, � is identical with � defined in Eq. �4�.
For ��2 the Laplace transform of Eq. �14� reads

w̃�s� = ��bs��ebs��− �,bs� = 1 − �bs��ebs��1 − �,bs� ,

�18�

with bª� /a and the incomplete Gamma function ��a ,x�
ª
x

�dte−tta−1.
For �=1 the Laplace transform of the waiting time distri-

bution is

w̃�s� = 1 −
2s

a
e2s/aE1�2s

a
� , �19�

where E1�x� is the exponential integral, E1�x�ª−ei�−x�
=
x

�dt e−t

t .
Here we are only interested in the long time behavior of

the MSD, which corresponds to taking the limit s→0 in Eqs.
�18� and �19� with � being constant. For 0���1, taking the
lowest order of the expansion we get ��1−� ,bs����1−��
and

w̃�s� � 1 − �bs����1 − �� . �20�

Equation �16� then yields

�x2̃� =
1

��1 − ��b�s−1−� �21�

and its inverse Laplace transform is

�x2� =
a� sin����

2��1+� t�, 0 � � � 1. �22�

Similarly, for the normal diffusive case ��1 we get from
Eq. �18� as the small s-asymptotics of the waiting time dis-
tribution

w̃�s� � 1 −
bs

� − 1
. �23�

Using Eq. �16� and the inverse Laplace transform yields

�x2� =
� − 1

b
t, � � 1. �24�

In the remaining case �=1, the expansion of the exponential
integral is ei�−x�=ln�x�+ �̃, where �̃ is Euler’s constant. For
small s Eq. �19� reads

w̃�s� � 1 + bs ln�bs� �25�

and Eq. �16� gives

�x2�˜ =
b−1s−2

ln�1/bs�
−

1

s
. �26�

The inverse Laplace transform of the first term can be ob-
tained by applying Karamata’s Tauberian theorem �45�,
which relates the Laplace transform of a function given in

the form f�s��A
��1+��

s�+1 L�1/s� for s→0 and ��−1 to the
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inverse F�t��At�L�t� for t→�. The function L must meet

the requirement of being slowly varying,
L�ux�

L�x� →1 for u�0

as x→�. In our case we have �=1, ��2�=1 and the function
L�1/s�= 1

ln�1/bs� satisfies the above condition. For the MSD

we thus get

�x2� =
at

ln�at�
, � = 1. �27�

In summary, we obtain for the GDC

K =	
a� sin����

��1+� , 0 � � � 1

0, � = 1

a
� − 1

�
, � � 1 
 �28�

with �= 1
z−1 . For �=1 we get K=0 because of the logarithmic

term in Eq. �27�.
Now we compare this result with our numerical simula-

tions. As an example, K as a function of a determined by Eq.
�28� is shown in Fig. 6�a�, where z=3. For z�2, the differ-
ence to the result of Ref. �11� is by a factor of 2. This yields
approximately the right slope for small a, however, it does
not reproduce the trivial value of K�4�=0 when particles
cannot escape from the unit interval anymore. Hence further
modifications are necessary.

V. MODIFIED CTRW THEORY

The easiest way to modify standard CTRW theory is by
varying either the waiting time or the jump PDF. However,
the waiting time distribution is straightforwardly determined
by the model as a power law for all intermittent values of z.
This suggests to change the jump PDF Eq. �15� only, which
in a first attempt one may write as

��x� =
p

2

��x� − 1� + �1 − p�
�x� . �29�

Here the second term reflects the fact that the particle can
stay on the unit interval with probability �1− p�. By assuming
that the density of particles is uniform on the unit interval, p
is determined by the size of the escape region, p�a�=2��a�
with �= 1

2 −xc, where xc is the solution of the equation xc
+axc

z =1. For normal diffusion it is well known that Krw
= p�a� provides a random walk approximation for the diffu-
sion coefficient which is asymptotically correct in case of
nearest neighbor jumps, p�a��1 �30,31,36,43�. For farther
than nearest neighbor jumps this approximation is straight-
forwardly generalized by weighting the integer jump dis-
tance squared with the respective probability, based on the
escape region, to perform such a jump �44�. Assuming that
one knows about the power law time dependence of the
MSD Eq. �2� for this map, one can apply the same approxi-
mation to anomalous diffusion. In Fig. 7 the result is shown
for K�z� at a=5. As one can see, this simple argument indeed
roughly reproduces the coarse functional form of K�z� and
yields the exact value at z=1.

Accordingly, the modification of standard CTRW theory
Eq. �29� works for nearest neighbor jumps only. We thus
further amend the jump pdf Eq. �29� by introducing a typical
jump length l,

��x� =
p

2

��x� − l� + �1 − p�
�x� , �30�

with Fourier transform �̂�k�= p cos�lk�+1− p. This jump
length we define either by the actual mean displacement

l1 = ��M�x� − x�� �31�

or, under the simplifying assumption of integer jumps, by the
coarse-grained displacement

l2 = ���M�x���� , �32�

where the square brackets hold for the largest integer less
than the argument. Here the averages, denoted by curly
brackets, are performed starting from a uniform initial en-
semble of walkers with respect to the conditional probability
density that particles leave the unit interval. The latter en-
semble averages are then averaged over time. Repeating the
calculations from the previous section with Eq. �30�, we ob-
tain the MSD,

FIG. 7. �Color online� K as a function of z for a=5. The bold
black line depicts again the computer simulation results from Fig. 3.
The thin line that is on top at z=2 represents the simple random
walk approximation Eq. �36� for i=2. The dashed line corresponds
to the modified CTRW approximation Eqs. �32� and �34�. The thin
line that is in the middle at z=2 displays the first term of the TGK
formula Eq. �53�. The inset reveals the existence of logarithmic
corrections in the MSD by plotting n� / �x2� with respect to ln n for
a=3.14 and different z close to the transition point at z=2. The
dashed lines correspond to z=1.5,1.9,1.95 from bottom to top, the
dashed-dotted lines to z=2.5,2.1,2.05 from top to bottom. The
thick solid line represents z=2, the thin solid line is proportional to
ln n as a guide for the eye.
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�x2� = pli
2	

a� sin����
��1+� t�, 0 � � � 1

at

ln�at�
, � = 1

� − 1

�
at , � � 1,


 �33�

i=1,2, where the typical jump length li is given by Eqs. �31�
and �32�. Hence our final CTRW expression for the GDC
reads �46�

K = pli
2	

a� sin����
��1+� , 0 � � � 1

0, � = 1

a
� − 1

�
, � � 1. 
 �34�

Fig. 6�a� shows the CTRW approximation Eq. �34� with
jump length l1, Eq. �31�, which describes the coarse depen-
dence of the GDC very well over a large range of param-
eters. The CTRW result with integer jump length l2, Eq. �32�
with Eq. �34�, is shown in Fig. 6�b�. It gives an asymptoti-
cally exact approximation of the GDC for small values of a,
however, it also holds well for larger parameters. A quanti-
tative comparison moreover indicates �within numerical ac-
curacy� that this combination yields results which exactly
correspond to our numerical findings for K at all integer
values of h=M� 1

2
��0, which for z=3 are equivalent to a

=4,12,20, . . .. This generalizes results obtained previously
for the normal diffusion coefficient at z=1 �31,43�.

We now focus on K as a function of z. Figure 7 shows the
modified CTRW approximation Eqs. �32� and �34� in com-
parison with simulation results. In the strongly anomalous
regime of large z the approximation reproduces the GDC
from simulations very well, however, for smaller values of z
there are obvious deviations. Let us first explain the problem
for z→1, the region around z=2 will be discussed in the
following section.

Let us recall that according to Eqs. �2� and �4�, for z�2
the map exhibits normal diffusion in the long-time limit. One
can further split this regime into 3/2�z�2, where the MSD
shows transient anomalous diffusion which becomes normal
for long times while for 1�z�3/2 it represents purely nor-
mal dynamics �14�. However, in the latter case it is well
known that the waiting time distribution is exponential �31�,

w�t� = �̃e−�̃t, �35�

where �̃ is the escape rate, and not a power law such as the
CTRW approximation Eq. �14�. In fact, in the limit of z
→1 Eq. �34� leads to K=apli

2, whereas the correct random
walk result for normal diffusion reads �31,43�

K = pli
2. �36�

Note that for z→1 and by assuming a uniform density on the
unit interval, in case of l2�2 this equation yields K= p,
whereas for l2�2 we get K= l2

2 thus recovering the two
simple random walk results mentioned earlier. Equation �36�

is indeed straightforwardly obtained from CTRW theory if
one repeats the calculations with the exponential waiting
time distribution Eq. �35� and �̃=1, i.e., by assuming that on
average a particle leaves the unit cell after one time-discrete
jump. We thus conclude that the CTRW result Eq. �34� gives
only a reliable approximation for the GDC if ��2, whereas
for ��2 the simple random walk result for normal diffusion
Eq. �36� should be used. This is in line with Fig. 7.

VI. SUPPRESSION OF THE GDC AT A DYNAMICAL
TRANSITION

Let us now understand the behavior of K�z� around z=2,
where the map exhibits a dynamical transition �15,47� from
normal to anomalous diffusion, see Eqs. �2� and �4�. Inter-
estingly, this transition is clearly visible in the strength of the
GDC. We now explain this phenomenon in detail.

As mentioned in Sec. III, around the transition point there
are significant deviations between CTRW theory and the
simulation results. These differences are displayed in Fig. 7.
At z=2 the CTRW approximation forms a nondifferentiable
little wedge with K�2�=0 at the minimum, whereas the simu-
lations yield K�2��0. We recall that by increasing the com-
putation time there is some slow convergence of the simula-
tion data towards the CTRW solution, see the inset of Fig. 3,
but that we were not able to achieve quantitative agreement
with the CTRW prediction of K�2�=0.

This very slow convergence of the simulation results as
well as the logarithmic term in the MSD at z=2, see Eq. �33�,
suggest that the deviations between simulations and CTRW
theory are due to logarithmic corrections in the MSD for
parameter values around z=2. Curiously, such terms are not
present in Eq. �33� for z�2 ���1�. By refining our CTRW
analysis, we will now show that such logarithmic terms in-
deed exist. However, for z�2 they hold for large but finite
times only, whereas for z=2 they persist in the limit of infi-
nite time. As is obvious from Eqs. �33� and �34�, for z=2 the
surviving logarithmic term leads to a full suppression of the
GDC, whereas close to the transition point finite-time loga-
rithmic corrections yield a gradual suppression of the
strength of diffusion.

We start again from the exact expression for the Laplace
transform of the waiting time PDF w̃�s�, Eq. �18�. Combin-
ing this equation with the jump PDF Eq. �30� and Eqs. �8�
and �9� we obtain the Laplace transform of the MSD,

�x2�˜ = pli
2b−�s−1−�ebs�−1�1 − �,bs� −

pli
2

s
. �37�

We immediately drop the second term, since its inverse
Laplace transform is simply constant. Let us focus now on
the limits s→0 and �→1. In case of 0���1 the � func-
tion in Eq. �37� can be expanded to

��1 − �,bs� = ��1 − �� −
�bs�1−�

1 − �
− �

j=1

�
�− 1� j�bs� j+1−�

�j + 1 − ��j!
.

�38�

From this equation it follows that as � approaches 1 from
below one may consider not only the first term as in Eq. �20�
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but also the second one, since both terms are divergent for
�→1−. All other terms are nonsingular and can be safely
neglected. We further expand the second term of Eq. �38� to

�bs�1−�

1 − �
=

e�1−��ln�bs�

1 − �
=

1

1 − �
+ ln�bs�

+ �
j=2

�
�1 − �� j−1

j!
�ln�bs�� j . �39�

Note that here we have obtained a series of logarithmic terms
which, as we shall see, provides the logarithmic corrections
we are looking for. By imposing the condition that ��1
−��ln�bs���1, we may keep only the first two terms of Eq.
�39�,

�bs�1−�

1 − �
�

1

1 − �
+ ln�bs� . �40�

Finally, we expand the first term of Eq. �38� to

��1 − �� =
1

1 − �
− �̃ + �

j=2

�
�1 − �� j

j!
�

0

�

dte−t�ln t� j , �41�

where �̃ is again Euler’s constant. Because we are interested
in the small � limit, we keep only the first term of this ex-
pansion. In summary, we obtain for the Laplace transform of
the MSD Eq. �37� in the limits of ��1−��ln�bs���1 and �
→1−,

�x2�˜ = pli
2b−�s−1−� 1

ln�1/bs�
. �42�

Inversion of the Laplace transform yields as the final result

�x2� =
pli

2t�

b���1 + ��ln�t/b�
, t � tcr �43�

with tcrªbe1/�1−��. For t� tcr and 0���1 one can drop the
second term in the � function expansion Eq. �38�, and the
asymptotic CTRW result Eq. �33� is recovered. Interestingly,
tcr diverges when �→1−, and at �=1 one thus arrives at the
asymptotic t / ln t dependence of Eq. �33�.

Analogous corrections are obtained for 1�� near the dy-
namical transition point, �→1+. By applying the same argu-
ments as above we get

�x2� =
pli

2t

b���1 + ��ln�t/b�
, t � t̃cr, �44�

where t̃crªbe1/��−1�. In the long time limit we again recover
the CTRW asymptotics Eq. �33� �48�.

These analytical findings are in agreement with results
from computer simulations. In the inset of Fig. 7, n� / �x2� is
shown as a function of ln n close to the transition point at
z=2 for different values of z and a=3.14. The logarithmic
corrections are less obvious if z is sufficiently different from
2, where n� / �x2� quickly converges to 1/K. However, the
logarithmic corrections are getting significant when z ap-
proaches the dynamical transition value. We have thus iden-
tified the precise dynamical origin of the suppression of the
GDC at z=2.

Dynamical transitions are quite ubiquitous in intermittent
maps and have been widely discussed in the literature in
terms of the time dependence of the MSD. However, it ap-
pears that so far no attention has been paid to a possible
critical behavior of the associated GDC. Our results lead us
to conjecture that suppression and enhancement of the GDC
are typical for dynamical transitions in anomalous dynamics
altogether �18�.

VII. TIME-FRACTIONAL EQUATION FOR
SUBDIFFUSION

The great success of the CTRW approach is related to the
fact that it not only predicts the power � but also the form of
the coarse grained PDF P�x , t� of displacements �17�. Corre-
spondingly the anomalous diffusion process generated by our
model is not described by an ordinary diffusion equation but
by a fractional generalization of it. Starting from the
Montroll-Weiss equation and making use of the expressions
for the jump and waiting time PDFs Eqs. �14� and �15�, we
rewrite Eq. �8� in the long-time and -space asymptotic form

s�P̃
ˆ

− s�−1 = −
pli

2

2cb�k2P̃
ˆ �45�

with c=��1−�� and b=� /a. For the initial condition

P�x ,0�=
�x� of the PDF we have P̂�k ,0�=1. It is now help-
ful to recall the definition of the Caputo fractional derivative
of a function G

��G

�t� ª

1

��1 − ���0

t

dt��t − t��−��G

�t�
�46�

and its Laplace transform �49,50�,

�
0

�

dte−st�
�G

�t� = s�G̃�s� − s�−1G�0� . �47�

Noticing that the left part of Eq. �45� precisely coincides
with the Laplace transform of the Caputo derivative of the
PDF and turning back to real space, we arrive at the time-
fractional diffusion equation

��P�x,t�
�t� = D

�2P

�x2 �48�

with D given by the modified CTRW theory Eqs. �3� and
�34�. Time-fractional diffusion equations of such a form have
already been extensively studied by mathematicians �51�.
Note that in application to our model another version of such
an equation was proposed in Ref. �24�, which uses a
Riemann-Liouville fractional derivative. It can be easily
shown that both forms of time-fractional diffusion equations
are equivalent under rather weak assumptions �52�. Yet two
other forms of subdiffusive fractional equations �however,
not with applications to maps� were proposed in Refs. �5,53�.
Again, after some recasting these equations yield Eq. �48�
�54�.

The solution of Eq. �48� is expressed in terms of an M
function of Wright type �49�,
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P�x,t� =
1

2�Dt�/2
M��,

�

2
� �49�

with �ª �x� /�Dt�/2, where we use the representation of the
M function

M�z,�� =
1

�
�
i=1

�
�− z�i−1

�i − 1�!
���i�sin��i�� . �50�

This solution gives exactly the same asymptotics that was
obtained in Ref. �17� for small and large values of �,

P�x,t� � t−�/2�1 − a1� + a2�2, � � 1

���−1�/�2−�� exp�− b1�2/�2−��� , � � 1,
�

�51�

where a1, a2, b1 are some constants that are given explicitly
in Ref. �17�.

Similar to the modified CTRW approximation of the
parameter-dependent GDC we now find that the analytical
PDF Eq. �49� describes only the coarse scale of the PDF
obtained from simulations but not its fine structure. This mis-
match can be understood related to the fact that our model
consists of a periodic lattice defined by specific elementary
cells. Any elementary cell develops a characteristic “micro-
scopic” PDF, characterized by the map Eq. �1� restricted onto
the unit interval, which exhibits singularities at the margin-
ally stable fixed points. The inset of Fig. 8 schematically
depicts such a PDF of an elementary cell after a large num-
ber of iterations. Precisely this functional form yields the
building block for the PDF of the periodically continued
map, see the main part of Fig. 8. If one eliminates the fine
structure by averaging over whole unit intervals, one obtains

a coarse-grained PDF that is in excellent agreement with the
analytical solution of the fractional diffusion equation Eq.
�48�, see Fig. 8.

Such an interplay between the “microscopic” PDF of a
single scatterer and the “macroscopic” PDF of the spatially
extended system was already reported for the normal diffu-
sive model at z=1 �31,37,44� and was recently also studied
in billiards �55�. However, in case of anomalous diffusion the
PDF exhibits a further remarkable property: Figure 8 shows
that the oscillatory structure of the whole PDF is bounded by
two different functions. The upper curve is of M function
type and connects all local maxima of the microscopic PDF.
These maxima are situated in regions of the map where the
dynamics is regular, due to the marginally stable fixed points.
The lower curve, on the other hand, is Gaussian and is de-
termined by all local minima of the microscopic PDF. These
minima are generated in regions of the map being far away
from the marginally stable fixed points, where the dynamics
is locally most strongly chaotic �56�. Figure 8 thus nicely
exemplifies the microscopic origin of anomalous diffusion in
terms of intermittency.

VIII. TAYLOR-GREEN-KUBO APPROACH AND FRACTAL
FUNCTIONS

We now turn back to the parameter dependence of the
GDC. In Sec. V we have shown that an amended CTRW
theory correctly describes the coarse dependence of the mod-
el’s GDC, whereas the fractal fine structure is not captured
by this approach. This reflects the fact that CTRW theory is a
purely stochastic approach involving a randomness assump-
tion between jumps, see the approximations involved as out-
lined in Secs. IV and V, whereas the origin of the fractality of
the GDC lies in the existence of long-range deterministic
dynamical correlations, see the analysis in Sec III.

This motivates us to propose an alternative approach for
analyzing the GDC, which is based on the Taylor-Green-
Kubo �TGK� formula �57,58� for diffusion in maps. This
theory has successfully been applied to the fractal diffusion
coefficient of the normal diffusive map at z=1, where it
could partly be worked out analytically �31�, to a nonlinear
map with a complicated bifurcation scenario �36� and to nor-
mal diffusion in billiards �36�. An advantage of this analysis
is that it systematically incorporates dynamical correlations.
A disadvantage is that, in contrast to CTRW theory, for the
map under consideration we could implement it only numeri-
cally.

The basic idea is to generalize the TGK formula for maps
to anomalous diffusion. Following the usual derivation
�36,57�, the first step is to transform the MSD in Eq. �2� into
sums over increments, or velocities, vkªxk+1−xk,

��xn − x0�2� =��
k=0

n−1

vk�
l=0

n−1

vl��n → �� . �52�

For normal diffusion the second step requires to define the
ensemble average expressed by the angular brackets in terms
of the invariant PDF obtained for the map restricted onto the
unit interval. In case of the map Eq. �1� this still works for

FIG. 8. �Color online� Main figure: The oscillatory structure
shows the PDF obtained from simulations of the map Eq. �1� for
z=3 and a=8. The simulated PDF was computed from an ensemble
of 107 trajectories after n=103 iterations. The crosses �	� represent
the simulated PDF coarse-grained over unit intervals. The continu-
ous line in the middle yields the analytical solution of the fractional
diffusion equation Eq. �49� with the same z while D is taken from
simulations. The upper and the lower curves correspond to fits with
an M function form, calculated with the same z but for different D,
and a Gaussian form, respectively. More explanations are provided
in the text, see Sec. VII below. The inset depicts schematically the
simulated PDF for the map Eq. �1� modulo 1.
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z�2, where the dynamics of the spatially extended map is
normal diffusive. However, for z�2 it is well known that the
map of the elementary cell does not possess a nontrivial in-
variant PDF anymore. Mathematical analysis �29� shows that
in this case there exist two physically relevant invariant mea-
sures, one which is concentrated on the marginally stable
fixed points and one that lies in between on the interval �0,1�.
The first measure has still nice, so-called SRB properties and
yields a PDF in form of a 
 distribution on the marginally
stable fixed points. The second one, however, is not normal-
izable anymore and hence is called an infinite invariant mea-
sure. In other words, if one starts a computer simulation from
an ensemble of points uniformly distributed on the unit in-
terval, the underlying stochastic process is not stationary and
the PDF of an elementary cell, computed by a histogram
method, does not converge in time to a well-defined invariant
PDF �14,18�.

Consequently, in contrast to normal diffusion Eq. �52�
cannot further be simplified by using time-translational in-
variance, and for the GDC Eq. �3� we have to stop at

K = lim
n→�

1

n����
k=0

n−1

vk
2� + 2��

k=0

n−1

�
l=1

n−1

vkvk+l�� . �53�

In numerical simulations we find that the first term alone is
already proportional to n�. If the system is ergodic, as for z
�2 in our model, this term boils down to n�v0

2�, and by
neglecting any higher-order terms in Eq. �53� we recover the
random walk result for normal diffusion �31,36,43�. For z
�2 the situation is again more complicated. Here only gen-
eralized ergodic theorems may hold �28,29�, which is inti-
mately related to the existence of infinite invariant measures
as outlined above. Whether in this case a CTRW result such
as Eq. �34� can be extracted from the first term is a nontrivial
open question.

However, considering the first term only as an approxima-
tion of K for all z, the numerical results are depicted in Fig.
9. The comparison of this approximation with the previous

simulation results shows that this term provides a first little
step beyond a modified CTRW approach, since it reproduces
the major irregularities of K as a function of a and even
follows the suspected discontinuities discussed in Sec. III.
However, our numerical precision is not sufficient to con-
clude whether it yields exact values for K at integer heights.

Equation �53� thus provides a suitable starting point for a
systematic evaluation of the fractal structure of the GDC.
Since the series expansion in Eq. �53� is exact, working out
further terms one should recover more and more structure in
the GDC on fine scales �33,36�. Interestingly, the second
term in Eq. �53� can be understood as a velocity autocorre-
lation function that, in contrast normal diffusion, depends on
two time scales. The existence of a second time scale points
to the phenomenon of aging in dynamical systems �24,26�.
In our case this can be understood as a consequence of infi-
nite invariant measures.

Here we do not further pursue these questions but focus
instead onto a direct link between the GDC and fractal func-
tions as provided by the TGK formula, see Refs. �31,33,36�
for normal diffusion. As was shown in Ref. �36�, Eq. �53�
also holds if the velocities vk are replaced by the integer
velocities jkª �xk+1�− �xk�. It is now useful to start from K
expressed again by Eq. �52�, trivially rewritten as

K = lim
n→�

1

n���
k=0

n−1

jk�
l=0

n−1

jl� . �54�

The two sums suggest to define the jump function

Jn�x� ª �
k=0

n

jk, �55�

which satisfies the recursion relation �31�

Jn�x� = j0�x� + Jn−1„M�x�… . �56�

The jump function gives the integer value of the displace-
ment of a particle after n time steps, which started at some
initial position x�x0. It thus contains essential information
about the microscopic scattering process of a particle by
showing how sensitively the displacement depends on initial
conditions. Eqs. �54� and �55� imply

K = lim
n→�

1

n� �Jn−1
2 �x�� . �57�

Figure. 10 displays the product of jump functions Jn
2�x�,

which governs the anomalous diffusion process, for a repre-
sentative parameter value. Clearly, as time evolves the struc-
ture of this function is getting more complicated. The GDC,
in turn, is determined by the cumulative function

Tn
2�x� ª �

0

x

dyJn
2�y� , �58�

where we fix the integration constants by the condition that
Tn

2�0�=0 and by requiring that the whole function is continu-
ous. Integration of Eq. �56� would yield a recursive func-
tional equation for Tn

2�x�, which is of the same type as the
one derived in Ref. �33�. The solutions of such equations are

FIG. 9. �Color online� Comparison of the first term of the
anomalous TGK formula Eq. �53� �lower line� with the computer
simulation results from Fig. 6�a�.
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generalized de Rham, respectively, generalized Takagi, func-
tions �31,33�. However, at present such generalized de Rham
equations cannot be solved analytically, hence we do not
work out the details but instead compute Tn

2�x� directly from
simulations, according to the definition Eqs. �55� and �58�.
Results for the first four iterations of Tn

2�x� are shown in Fig.
11. With respect to the construction of Tn

2�x�, it may not come
too much as a surprise that in the limit of n→� this function
exhibits a fractal structure. Interestingly, the GDC is obtained
by integrating over this structure. If one starts from a uni-
form ensemble of initial conditions the result reads

K = lim
n→�

1

n�Tn
2�1� . �59�

This equation relates the GDC to a fractal function represent-
ing the microscopic scattering process of our model. The
numerical result for the GDC Eq. �59� is in good agreement

with the one employing the MSD. In the light of Fig. 11 and
Eq. �59�, it may not be too surprising anymore that under
parameter variation a highly nontrivial GDC is obtained
from this model.

IX. CONCLUSIONS

In this paper we have studied subdiffusion generated by a
paradigmatic one-dimensional intermittent map. In contrast
to previous works here we focused onto the parameter de-
pendence of the GDC, which is an anomalously diffusive
generalization of the diffusion coefficient known for normal
diffusion. Computer simulations suggested that this GDC is a
fractal function of control parameters. This finding was cor-
roborated by a qualitative explanation of the fractal structure
in terms of complicated sequences of forward and backward
scattering �turnstile dynamics�, which are topologically un-

FIG. 10. The first four itera-
tions of the jump function Jn

2�x�
defined by Eq. �55� for z=3, a=8,
n=0,1 ,2 ,3 based on a uniform
ensemble of N=103 initial condi-
tions. Note that there emerges a
complicated fine structure.

FIG. 11. The first four itera-
tions of the generalized de Rham–
type function Tn

2�x� as defined by
Eq. �58�, which is obtained by nu-
merically integrating Jn

2�x� de-
picted in Fig. 10. The parameter
values are the same as in Fig. 10.
Note that there emerges a fractal
structure.
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stable under parameter variation. Our analysis furthermore
led us to conjecture that the GDC is a discontinuous function
of control parameters.

In trying to understand the coarse functional form of the
GDC, we applied standard CTRW theory to our model. By
suitably amending previous calculations, we arrived at ana-
lytical approximations that enabled us to reproduce the
whole coarse functional form of the GDC yielding asymp-
totically exact results in the limit of large and small param-
eter values. However, there are clear deviations between this
theory and simulations around a dynamical transition from
normal to anomalous diffusion. By refining our amended
theory, we were able to explain these deviations in terms of
logarithmic corrections leading to ultraslow convergence of
our simulation results and eventually yielding a full suppres-
sion of the GDC right at the transition point. These findings
were confirmed by simulations of the MSD.

We then studied in detail the PDF of our model. We first
derived a time-fractional subdiffusion equation from CTRW
theory. The coarse-grained PDF of our model turned out to
be in excellent agreement with the non-Gaussian solution of
our fractional diffusion equation. On a fine scale, however,
the simulation results yielded an oscillatory structure reflect-
ing the microscopic details of the intermittent scattering pro-
cess. This structure was generated by the invariant density of
the single scatterers hence revealing an interesting interplay
between microscopic scattering and macroscopic diffusion.

A more detailed understanding of the GDC was finally
provided in terms of an anomalous TGK formula, which
again is a generalization of the TGK formula for normal
diffusion. The structure of this formula points at intimate
relations to infinite invariant measures, aging, and general-
ized de Rham–type fractal functions. All these terms define
very active topics of research. We thus hope that, along these
lines, in future work more detailed relations between math-
ematical infinite ergodic theory and the physics of anomalous
diffusive processes can be established.

In the present paper we have only studied a one-
dimensional subdiffusive map, however, we expect these
findings to be typical for spatially extended, low-
dimensional, anomalous deterministic dynamical systems al-
together. Further studies may also focus on the relation be-
tween the anomalous TGK formula and CTRW theory, on a
spectral analysis of the Frobenius-Perron operator of this
model, and on analyzing a superdiffusive map by similar
methods.
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