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The objective of the present work is to propose a method for nonfeedback anticontrol of chaos with
perturbations of minimum power for a preset control goal. The noted Lorenz system is employed as the test
model for chaotification with the target state specified by a prescribed positive value of the largest Lyapunov
exponent (LLE), X>0. Periodic and quasiperiodic perturbations are used as control signals, and the signals
parameters are optimized using a genetic algorithm under restriction of minimum power. Performance of the
optimized signals in triggering chaos at an ordered state, fixed point or periodic, as well as further enhancing
chaoticity at a chaotic state is explored. The present numerical experiments reveal the following interesting
physics about chaotification. In general, the power for chaotification increases with the preset value of \ and
quasiperiodic signals can achieve the control goal with a lower power than periodic ones. Given the same
increment of LLE from that of the uncontrolled state (\,), i.c., AN=N =\, the further enhancement of
chaoticity in a chaotic state needs a higher control power than the triggering of chaos from an ordered state.
The minimum power required for chaotification of an ordered state increases relatively slowly for lower X but
increases drastically as the preset target LLE reaches a certain critical value. Most strikingly, the numerical
experiments demonstrate that this critical value of X corresponds to LLE of the nearest chaotic state in the
neighborhood of the uncontrolled state. Robustness of applying the present method in the presence of external

noise is also demonstrated.
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I. INTRODUCTION

Chaotic behavior is usually detrimental to the perfor-
mance of a dynamical system; therefore, numerous studies
have been performed in order to suppress chaos and lead the
dynamical system under control into an ordered state. How-
ever, there are a number of situations in which chaotification
is both advantageous and desirable, for example, pulse com-
bustion [1] and secure communication [2]. More recently,
chaotic mixing in microfluidics [3] involving highly stable
laminar flows has attracted a great deal of attention. These
considerations provide strong motivation for recent investi-
gations on chaotification of nonlinear systems. In the litera-
ture, the triggering of chaos in an ordered state or the en-
hancement of the existing chaoticity of a system is generally
referred to as anticontrol of chaos or chaotification.

A number of methods for anticontrol of chaos have been
realized by applying feedback schemes to systems with the
state variables accessible during the system evolution. Yang
et al. [4] proposed a method to sustain chaos in low-
dimensional maps where only chaotic transients exist, and
the concept was experimentally verified on a magneto-
mechanical ribbon system [5]. Feedback control of chaotic
saddles in two-dimensional maps to convert transient chaos
into sustained chaos has been reported [6]. The global topol-
ogy of the basin boundary saddle manifold structure can be
used to design parameter control algorithms for sustaining

*Corresponding author. Electronic address: cysoong @fcu.edu.tw

1539-3755/2007/75(3)/036206(10)

036206-1

PACS number(s): 05.45.Gg, 05.45.Pq, 02.60.Pn, 87.23.Kg

chaos in parameter regimes where a crisis occurs [7,8]. The
application of maintaining chaos in a high-dimensional sys-
tem was developed [9]. Tsubone and Saito [10] proposed an
occasional proportional feedback method that causes chaoti-
fication of a piecewise-linear circuit, and then verified the
results through experimental implementations [11]. Chaotifi-
cation of discrete-time systems has also been studied
[12—14]. A similar case of chaotifying a continuous-time sys-
tem by time-delay feedback control has also been investi-
gated [15]. Chen er al. [16] studied anticontrol of chaos ap-
plying periodically impulsive inputs on a continuous time
system. Konishi [17] proposed a feedback controller for gen-
erating chaos in an autonomous system. A piecewise-linear
controller for chaos generation was proposed and applied in
chaos generation [18-20]. Recently, feedback control was
applied to the anticontrol of chaos in a rigid body system
[21].

In applications of feedback control schemes it is generally
necessary to measure the system state variables, thereby gen-
erating a control signal that is then applied to the signal to an
accessible system parameter. In practice, it is relatively dif-
ficult to implement this class of schemes to some high-speed
systems such as chaotic circuits and fast optoelectrical sys-
tems. Compared to feedback control techniques for inducing
and enhancing chaotic behavior of nonlinear systems of
small time scales, nonfeedback methods have the advantages
of speed and flexibility. Furthermore, on-line monitoring and
processing are not required. Of course, in order to find ap-
propriate signals for control, the nature of the system dynam-
ics must be understood a priori. This class of control ap-
proaches is suitable for cases in which no real-time data or
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only highly limited measurements of the system state are
available. A number of studies on nonfeedback anticontrol of
chaos have been carried out with various control signals, for
example, constant perturbations [22,23], weak noise signals
[24,25], and weak periodic perturbations [26-28]. A few
studies have also demonstrated the dual function of suppress-
ing and inducing chaos with applications of weak periodic
perturbations to the nonlinear dynamic systems [29,30].

The nonfeedback methods proposed in literature used
control signals that had been assigned somewhat intuitively
or arbitrarily rather than sought out based on optimization of
the signal parameters. In the case of using a periodic pertur-
bation as the control signal, with the frequency fixed a pri-
ori, the amplitude for achieving the control goal can be
found by simply varying its value within a range. The signal
determined in this manner is not optimal in any sense. Addi-
tionally, for a multiparameter control signal, the method for
determining the proper combination of the parameter values
is a problem. The approach used in finding a signal able to
work efficiently in achieving a preset control target seems
significant and this motivates the present study.

The objective of the present work is to propose a method
for nonfeedback anticontrol of chaos with perturbations of
minimum power for a preset control goal. With this method-
ology, we can define the control target of a chaotic state with
a prescribed positive value of the largest Lyapunov exponent

(LLE), A >0. Periodic perturbations of single frequency with
high harmonics as well as quasiperiodic signals of multiple
noncommensurate frequencies are considered and then tested
on a nonlinear continuous time system, i.e., the Lorenz sys-
tem. The signals are of minimum power with parameters
found by an optimization procedure based on a genetic algo-
rithm (GA) originally proposed for chaos suppression
[31,32]. This GA is chosen as the optimization approach
since it has better global searching when compared with
calculus-based methods such as steepest descent technique.
The method can be implemented to trigger chaos in paramet-
ric regions of ordered states, either fixed-point or periodic,
and to enhance chaoticity of systems in a chaotic state. The
effectiveness of chaos triggering and enhancement is inves-
tigated, as is switching control between ordered and chaotic
states. The robustness of the present method’s application in
the presence of external noise is also investigated.

II. OPTIMIZATION OF SIGNALS FOR ANTICONTROL
OF CHAOS

A. Control signals
Weak perturbations in the form of finite Fourier series of
N modes have a general form as follows:
N
u(t) = 2 [a, cos(w,t+ @) + b, sin(w,t+¢,)], (1)

n=1
where the parameters a, and b, are the amplitudes, w, the
frequency, and ¢, the phase shift of the nth mode. In general,
the ratio of two modes, w;/wy, is not integer. A signal with
multiple noncommensurate frequencies as mentioned above
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is defined as a quasiperiodic signal. For w,=nw and ¢,=¢,
the signal is expressed in the form of

N
u(t) =, [a, cos(nwt + ¢) + b, sin(nwt + ¢)], (2)

n=1

which is a periodic signal of frequency w with higher har-
monic modes nw. The power of the control signal, both pe-
riodic and quasiperiodic, can be defined in terms of the am-
plitudes, viz.,

N

=23 @) ®

n=1

B. Optimization of the control signals

In the present GA-based method, the amplitudes a, and
b, the frequencies w, (or ) and the phase angles ¢, (or ¢)
play the role of gene to form the chromosome or individual,
and the values of the parameters are optimized towards the
maximum fitness by using the GA. Each member of the cur-
rent population is evaluated by a fitness function defined a
priori and the value assigns each individual a probability of
being reproduced as a member in next generation. The GA
used to optimize the control signals is described below.

To evaluate the performance or appropriateness of the in-
dividuals in the GA procedure, a fitness function, f, proposed
previously [31] is applied. It is defined based on the consid-
eration of minimum power of the control signal and close-
ness of the controlling state to the target characterized by the
largest Lyapunov exponent, viz.,

1

== % 4
AN +P )

f
where AN*=|\=X\|/max|\-X|, P*=P/P,, and \ and X are
the current and prescribed target values of the LLE of the
system state, P stands for the power of the signal and P,, for
the maximum power in the current population. The function
f is maximized as AN" and P" approach minimum values.
The LLE can be determined by using the algorithm proposed
in Ref. [33]. For the system at a regular state, the target LLE

X can be set as a positive value for the final state of chaotic
motion, while for an existing chaotic state, the value of the

target X can be set higher to enhance the chaoticity in system
behavior.

The GA evolution used in the present work consists of the
procedures of proportionate or roulette wheel selection,
arithmetic crossover, nonuniform mutation and elitism strat-
egy. The operators of crossover and mutation are applied to
the intermediate population to generate new offspring. Then
each member of the offspring is evaluated by calculating its
fitness function. To improve the convergence rate, an elitism
strategy is employed, i.e., 50% of the individuals with higher
fitness values are selected from the pool of the parents as
well as the offspring to form a new population. The iteration
continues until the best individual is found. Evolution with a
large population usually needs more time to converge, but

036206-2



TRIGGERING AND ENHANCING CHAOS WITH A...

PHYSICAL REVIEW E 75, 036206 (2007)

TABLE 1. System states simulated and the neighboring (nearest) chaotic state of each case described by
the system parameter R and the largest Lyapunov exponent (\).

System state simulated

Nearest chaotic state

State No. (J) R N1 (LLE) Attractor” R,. e (LLE)
1 20 —-0.1548 FP 24.7 0.740
2 160 2X1074=0 P 166.6 1.697
3 28 0.906 SA
4 100 -6X107*=0 P 101.32 1.5076

FP, fixed point; P, periodic; SA, strange attractor (chaotic state).

that with a small population size may not converge to a sat-
isfactory result. According to our previous experiences, a
population size of N,=200 with a crossover parameter p,
=0.7 and a mutation probability p,,=0.4 is appropriate. More
detailed description of the GA procedure and the other pa-
rameters employed in the GA evolution can be found in our
previous work [31].

The GA evolution for optimization of the control signals

terminates when the preset stopping criterion, |\,—X|/|\|
<, is met, where the parameter A, denotes the LLE of the
best individual in the current population, and & is a pre-
scribed tolerance. In the present work, tests on a couple of
cases and the results thereof revealed that the powers of the
signals found with tolerances of e=1072 and 10~* were very
close. Therefore in order to save computational time for
simulation, this study uses a tolerance of e= 1072,

III. TEST MODEL

In this section, we present a series of numerical experi-
ments to demonstrate the effectiveness of the proposed
method under various conditions. A noted three-mode non-
linear dynamical system, the Lorenz system [34] for atmo-
spheric convection flow, is considered as the test model.
Considering control via parameter modulation, the major
system parameter R can be expressed as R=Ry[1+u(z)] with
u(t) denoting the control signal, i.e.,

X=Pr(y-x), y=-xz+Ro[l+u(®]x-y,

=xy-bz. (5)

The parameters in the present GA method are set as follows:
the genes of chromosomes are encoded by using floating-
point numbers. To designate control signals of different
modes at various conditions, the notation F' 1? ;—K is used for
periodic signals of harmonic modes and F7,—K for quasip-
eriodic signals of multiple frequencies, where the subscript /
is the mode number and the subscript J is an index for de-
noting states at different values of R. The integer K desig-
nates various signals with the same values of / and J. The
simulations are performed with a C-language code based on
the fourth-order Runge-Kutta integration scheme.

In this study, the system parameters Pr (where Pr is the
Prandtl number) and b are fixed as Pr=10 and »=8/3
through the whole analysis. Table I lists four states, showing

their system parameter R and largest Lyapunov exponent
A1 o- The table also shows the neighboring chaotic state of
each case, as characterized by the system parameter R, and
the LLE \,,.. The first three cases are the fixed point (FP)
state at R = 20, the periodic (P) state at R=160, and the
chaotic state or strange attractor (SA) at R=28. In Lorenz
system dynamics, there are numerous periodic windows
along the variation of system parameter R, and so one more
periodic state at R=100 is included in the analysis of mini-
mum power required.

IV. RESULTS AND DISCUSSION
A. Anticontrol of chaos with periodic perturbation signals

The fixed-point state at R=20 (denoted by J=1) and the
periodic attractor at R=160 (denoted by J=2) are considered
for study in the triggering of chaos. The value of LLE at the
originally uncontrolled states R=20 and R=160 are A,
=-0.1548 and \;(=2X10"*=~0, respectively. The perfor-
mance of applying GA-optimized weak perturbations for an-
ticontrol of chaos is investigated. It is noted that at R=20, the
single-point phase diagram and the blank spectrum for the
fixed-point attractor are trivial. By applying a GA-optimized
weak perturbation F3 | —1 (P=2.31X 107) found for the tar-
get LLE X=0.1, the system behavior turns into a chaotic one.
Similarly at R=160, the uncontrolled Lorenz system lies at a
periodic state shown in Fig. 1(a) can be chaotified by apply-
ing the optimized low-power signal, F5,-1 (P=1.11
X 107°).

The procedures of the optimized signals and the simula-
tion can be addressed by using the case of R=160 as a typi-
cal example. From the data of the uncontrolled state in Fig.
1(a), it is found that the relatively strong energy-contained
modes are of frequencies w=5.36 and 15.96. The perturba-
tion frequency and phase shift of the initial individuals are
set in the ranges of w €[15.0,19.0] and ¢ € [, 7]. In ad-
dition, since the optimization procedure may not converge
with too small a range of amplitudes a; and b;, the ampli-
tudes of the initial individuals are specified in an interval of
[0,5 X 107%]. The integrations are performed within the time
period ¢ € [0,500] with a time step At=5 X 107> and an initial
condition (xy,y,29)=(0.1,0.1,0.1). The control signal is ap-
plied to the system at the time instant £=50. The control
target is set to be a chaotic state with a specified LLE, say

A=0.1.A larger value of x corresponding to a higher level of
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chaoticity usually leads to a signal of higher power.
The optimized signals of various modes determined by
the present approach for R=20 are shown in Table II. The

TABLE II. The amplitudes, frequencies, phases and powers of
optimized periodic perturbation signals of harmonic modes for an-
ticontrol of the Lorenz system at R=20.

Power
Signal Amplitude, frequency and phase (Target state)
Fil—l a;=0.01409400; b;=0.01849650 P=2.70% 107
®0=8.10110000; ¢=-2.85644565 (SA, x=0.1)
Fg’l -1 a;=0.00056323; b;=0.01969174 P=231%X10"*
a,=0.00027923; b,=0.00863233 (SA, X=0.1)
©0=8.08435065; ¢=-2.97670011
Fgl—l a;=0.01852897; b;=0.01047457 P=246X107*
a,=0.00515417; b,=0.00201504 (SA, X=0.1)
a3=0.00301954; b3=0.00016828
0=8.09187666; ¢=2.95501125
Fil—l a;=0.01894770; b;=0.01121813 P=249x 107
a,=0.00149047; b,=0.00175995 (SA, X=0.1)
a3=0.00031107; b3=0.00060468
a,4=0.00100617; b,=0.00255947
w=8.08375543; ¢=-3.10609291
Fgl—l a;=0.01880835; b;=0.01682818 P=335x10"*
a,=0.00153102; b,=0.00051326 (SA, x=0.1)

a3=0.00146064; b;=0.00082813
a,=0.00342857; b,=0.00367725
as;=0.00111160; b5=0.00040954
w=8.13261557; ¢=-2.91623735

data reveal that the power of the control signals found by the
present method are quite low. The power is not necessarily
reduced with additional Fourier modes. Furthermore, in a
similar result as the performance in suppressing chaos
[31,32], the results also demonstrated that the GA-based
method is very effective and 2-mode signals seem quite ap-
propriate from the perspective of low power and simplicity.
In practical applications, it is beneficial in saving computa-
tion costs. As an illustrative example, Fig. 1 shows that the
present GA-optimized signals of extremely low power effec-
tively destabilize the periodic state at R=160.

To further check the present chaotification method with
perturbation signal optimization, we also perform the nu-
merical experiments with the signal frequency w given a
priori but the amplitudes and phase shifts of the signals op-
timized by GA. For chaotification of the periodic state at R
=160 with a 2-mode periodic model, Fig. 2 presents the cor-
relation of the minimum control power required versus the
preset value of the frequency. After a series of 20 simulations
(scanning w from 1 to 20) with five parameters to be deter-
mined, it is found that the lowest power required is P
~1X 107 at an w around 18. Optimizing all six signal pa-
rameters generates a signal F Z ,—1 of frequency w
=18.630809 13 and power P=1.11X10"° (in Table III),
which is very close to that mentioned above but needs a
significantly shorter searching time. This fact demonstrates
the effectiveness of the present optimization procedure.

In the previous nonfeedback methods, the proper control
signal was found by scanning one specific parameter. In a
work concerned with the control of the Lorenz system [35],
Gaussian noise in the form of D 7(zr) was added to each of the
equations and employed as the control signal for chaotifica-
tion. They varied the signal strength D from a small value
(0.001) and found that, at a state around R=24, the system
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FIG. 2. Minimum control power correlation with the signal fre-
quency under the conditions of R=160, Pr=10, »=8/3 with the
target LLE, N=0.1. The control signals employed are of two-mode
(N=2) and periodic with the signal frequency preset.

behavior turns chaotic as the parameter D is raised up to the
value of 0.2 or the power P=2X 1072 (P=D?/2). In a simi-
lar situation, using our GA-optimized perturbation under the
restriction of minimum power to chaotify the state at R=24

to the target of X=0.1, the required signal power is only P
=5.632X 107", Obviously, the present method of GA optimi-
zation has the merit of attaining the appropriate control sig-
nal to achieve the control goal under a specified restriction.

In order to demonstrate further enhancing the chaoticity
of a chaotic system, the Lorenz system at R=28 (denoted by
J=3) with the LLE \;,=0.906 and the LLE of the target

state \=1.5 is considered. The perturbation signal F’ ; ;=1 of
P=5.14X 1073 is found and employed in the simulation. The
present control strategy can achieve the specified level of

chaos by presetting a desired LLE of the control target, A.

B. Anticontrol of chaos with quasiperiodic
perturbation signals

In this section, anticontrol of chaos by using quasiperiodic
signals is explored. The control signal consists of multiple
noncommensurate frequencies. The signal parameters are
sought by GA-based optimization towards maximum fitness.
From the present simulations, it was found that in general,
the power of the GA-optimized quasiperiodic signals is even
lower than the periodic signal of the same number of modes.
For example, the controlling power of the signal Fg —1is
only 36.2% of the signal F;] —1. In addition, it is seen that
the power of quasiperiodic signals slightly decreases with an
increase in the number of modes, though the powers are of
the same order. Figure 3 presents an example of chaotifica-
tion of the fixed-point state at R=20 by applying an opti-
mized quasiperiodic signal. Initially, the system is brought to
a fixed-point state at R=20 at the time instant t=30 and then,
at =50, the quasiperiodic signal Fg ,—1 is applied. The sys-
tem is chaotified with the time series and power spectrum
shown in Fig. 3.

PHYSICAL REVIEW E 75, 036206 (2007)

TABLE III. The amplitudes, frequencies, phases and powers of
optimized periodic perturbation signals of two harmonic modes for
anticontrol of the Lorenz system.

Power
Signal Amplitude, frequency and phase (Target state)
F£1—2 a;=0.00143764; b;=0.02550090 P=3.42Xx107*
a,=0.00517612; b,=0.00219985 (Chaos, A=0.5)
®=7.98582994; ¢=1.23867537
Fg,l -3 a;=0.03844844; b;=0.00095879 P=8.20X107*
a,=0.00365806; b,=0.01215993 (SA, X=0.75)
w=17.83274335; ¢=0.35609177
F§1—4 a,=0.00163317; b;=0.00500134 P=1.98X1073
a,=0.00091720; b,=0.00332062 (P-1, )::0)
w=8.51275713; ¢=2.75576785
FL =5 a;=0.00129526; b;=0.00015212  P=8.98x 107
a,=0.00029457; b,=0.00009077 (P-1, X\=—0.15)
w=8.69950751; ¢=-2.72441691
F{z—l a,=0.00001430; b;=0.00130940 P=1.11X107°
a,=0.00001545; b,=0.00070668 (SA, x=0.1)
®w=18.63080913; ¢=-1.76149793
F£2—2 a,=0.00358462; b;=0.00088352 P=6.82X107°
a,=0.00008091; b,=0.00002439 (SA, \=2.0)
®w=18.95210579; ¢=2.57769180
F£2—3 a,=0.00135269; b,;=0.00037122 P=1.16Xx10"°
a,=0.00057204; b,=0.00015552 (SA, X=0.5)
w=18.54721313; ¢=-2.83780196
F£2—4 a;=0.00055599; b;=0.00107361 P=1.44X107°
a,=0.00072216; b,=0.00094739 (SA, \=1.0)
w=17.61008734; ¢=-1.55830369
FZZ—S a;=0.00056057; b;=0.00143612 P=3.45x107°
a,=0.00192868; b,=0.00089087 (P-15, A=—0.1)
w=17.42733980; ¢=3.07295689
F§2—6 a,=0.00025313; b;=0.00156317 P=227x107%
a,=0.00126755; b,=0.00064794  (P-6, A=—0.15)
0=16.32067634; ¢=3.10936150
Fbi=1  a;=0.00005705; b;=0.09830647  P=5.14x107
a,=0.00010337; b,=0.00276817 (SA, X=1.5)

®w=19.56588959; ¢=2.98970451

C. Switching control

To demonstrate the ability of state switching by the opti-

mized perturbation signals, switching control with a se-
quence of successive chaotification and stabilization on the
Lorenz system at R=20 (fixed point) is performed. The se-
quential control for alternatively changing the system state is
performed by employing periodic signals including the

above mentioned F5,—1 (X=0.1) and another four signals,
F5 -2 (X=05), F} -3 (\=0.75), F5,-4 (\=0, for a
period-1, or P-1 state), FQI—S (N\=—0.15, P-1). The ampli-
tudes, frequencies, phase shifts and powers of the above four
signals are listed in Table III. The system lies initially at a
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FIG. 3. The fixed-point attractor at Pr=10, »=8/3, and R=20
can be destabilized to a chaotic state by applying the control signal
FzQ_l—l optimized for X=0.1, (a) the time series of x and (b) power
spectrum.

fixed-point state until the signal Fg ,—1 is applied to the
system at the time r=1000. Then the system state becomes

strange attractor (SA) chaotic with LLE N=0.1. At r=2000,
the control signal is replaced by Fgl —4 and thus the system
is stabilized to a P-1 state. Subsequently, the system dynam-
ics varies with the alternation of the control signals F’ 5 =2,
F;l -5, and F£1—3 every 1000 time units. Finally, at ¢
=6000, the control signal is removed and the system returns
to the original fixed-point state. The sequence of the switch-
ing control, FP—SA —P-1—-SA —P-1—-SA—FP, is illus-
trated in Fig. 4 with the state variable x of the Poincaré
section y=—7 plotted versus time. Figure 5 shows the switch-
ing control of the Lorenz system at R=160 (periodic state)
by alternately applying control signals F. ; ,=3 (A=0.5),
F},-5 (\=-0.1, P-15), F4,~-4 (\=1.0), F5,-6 (\=-0.15,
P-6) and F},~2 (N=2.0) as listed in Table IIL. The switching
sequence of this process is P-3—SA—P-15—SA—P-6
— SA —P-3. The results shown in Figs. 4 and 5 demonstrate
the robustness and effectiveness of the present approach used
in switching control and anticontrol of chaos with signals
optimized in a searching range around the resonant fre-
quency.

Figure 6 is a demonstration of the switching control by
using optimized quasiperiodic signals. The switching signals

include the previous Fg,—l (A=0.1) and another four sig-
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FIG. 4. Switching control of Lorenz system at Pr=10, 6=8/3,
and R=20. Control is activated in the time period t=1000 to ¢
=6000 and sequentially switched signals F;l—l (X=0.1), F£1—4
(A=0, P-1), F} -2 (x=0.5), F§,-5 (\=-0.15, P-1), F} -3 (\
=0.75) every 1000 time units.

nals: F§,-2 (x=0.5), F$,-3 (A=0.75), F$,—4 (\=-0.05,
P-1) and Fgl—S (A=-0.1, P-1). The amplitudes, frequen-
cies, phase shifts and powers of the four signals above are
listed in Table IV. The system is initially at a fixed-point
state of R=20 until the signal Fgl —1 is applied to the system
at the time instant t=1000. The system behavior shows a

chaotic state of the LLE X=0.1. At r=2000, the control sig-
nal changes to F,—4 and thus the system behavior is of a
P-1 orbit. The control signal is sequentially changed to F 2Q,1
-2, F$,-5, and F -3 every 1000 time units. Finally, at ¢
=6000, the control signal is removed and the system returns
to the fixed-point state. This switching sequence FP— SA
—P-1-SA—P-1-SA—FP is shown in Fig. 6 with the
state variable x of the Poincaré section y=—7 plotted versus
time.

70 T T T T T T
60 +P-3 ~SA P-15 ~SA P-6 ~SA P-34
50 L (4 =0.5) A41=1.0) 1=2.0)

- e

10 F : e, st i

20 1 1 1 I 1 1
0 1 2 3 4 5 6

Dimensionless time, t

7x10°3

FIG. 5. Switching control of Lorenz system at Pr=10, b=8/3,
and R=160. Control is activated in the time period t=1000 to ¢

=6000 and sequentially switched signals F§~2—3 (x=0.5), F;z—S
(A\=-0.1, P-15), F5,-4 (A=1.0), F},-6 (\=-0.15, P-6), and
F5,=2 (X\=2.0) every 1000 time units.
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'2 T T T T T T
SA P-1
(1=0.5)

FP SA P-1

SA FP
A=0.1 ]

3 (1=0.75)

4+

-8 L 1 1 1 L 1
0 1 2 3 4 5 6

Dimensionless time, t

FIG. 6. Switching control of Lorenz system with Pr=10, b
=8/3, and R=20. Control is activated in the time period #=1000 to
t=6000 and sequentially switched signals FZQ,I -1 (x=0.1), FZQJ—4
(X\=-0.05, P-1), F§,-2 (A=0.5), F -5 (\=-0.1, P-1), F§ -3
(x=0.75) every 1000 time units.

D. Variation of power of genetic algorithm optimized signals
with prescribed target largest Lyapunov exponent

To explore the influence of the preset control target on the
power of the optimized signal, we use 2-mode (N=2) signals
for anticontrol of chaos in the Lorenz system with the target

X~0(1072) to O(1). Four uncontrolled states with the re-

TABLE IV. The amplitudes, frequencies, phases and powers of
optimized two-mode quasiperiodic perturbation signals for anticon-
trol of the Lorenz system at R=20.

Power
Signal Amplitude, frequency and phase (Target state)
Fgl—l a,=0.00805496, b;=0.00289911 P=8.37X107°
a,=0.00955858, b,=0.00166354 (SA, X=0.1)
®=7.89232154, w,=8.38585304
¢ =2.76843313, ¢,=1.76859132
Fgl—z a,=0.01332743; b;=0.00080929 P=1.55x10*
a,=0.00842025; b,=0.00775758 (SA, X=0.5)
®1=7.52960518; w,=8.28617950
@ =-2.03017694; ¢,=-1.37042605
Fg] -3 a;=0.00608584; b;=0.04643994 P=1.10x1073
a,=0.00028648; b,=0.00005405 (SA, X=0.75)
w=7.85371980; w,=8.47923787
¢1=3.01448452; ¢,=—0.87394181
FzQ,1—4 a,=0.00023200; b;=0.00020265 P=124X107
a>=0.00001331; b,=0.00496459 (P-1, X\=—-0.05)
0=7.85672381; w,=8.55283827
¢;=-0.62476023; ¢,=0.99146064
F%—S a;=0.00003696; b;=0.00005075 P=5.69 X 107°
a>=0.00096300; b,=0.00323395 (P-1, \=-0.1)

0,=8.49236738; ,=8.61693953
@1 =—0.74683038; ¢,=1.97524126

PHYSICAL REVIEW E 75, 036206 (2007)

101 T
Signal Uncontrolled State
P QP R Attractor
10 == 20 Fp .
Q %E 12680 SF’A
- 100 P
s 177 =4 1
o T X 71
105 7
E |
£ § A= 1.697 i
g W
= Jne=1.508
10-° .
<
10_11 Ll TR R R | IR
102 10 100 101
Target LLE, 4
(a
10—
Signal Uncontrolled State
P QP R Attractor
-1 - 4
L= v
o A A 160
- 107 <-4 100 |
]
3
o
a 105 o
£ ) .
5 =
E 107 -
=
=
10-9 -
10-11 — ) . PR | i
102 101 100 101
A=A~ A,

(b)

FIG. 7. (Color online) Powers of the GA-optimized periodic and
quasiperiodic signals required for chaotification of the Lorenz sys-
tem at R=20, 28, 100, and 160 with the influences of (a) the target
LLE, \; and (b) the differences between the LLEs of uncontrolled
and the target states, A)\z)t—)\l’o. Signal: P, periodic; QP, quasi-
periodic. Attractors: FP, fixed point; SA, strange attractor; P,
periodic.

lated data listed in Table I are studied. In Fig. 7(a), the pow-
ers of the optimized control signals are plotted versus the
preset LLE X for the target state. It shows that, in general, the
powers of the GA-optimized signals increase with an in-
crease in the value of . This is reasonable since leading the
system to a more chaotic state with a higher LLE requires a
stronger signal.

For R=20, as \ is raised over 0.7, the signal power re-
quired rises dramatically. It is interesting to note that the
Lorenz system enters a chaotic regime at R=24.7 with the
LLE around 0.74, which is the nearest chaotic state in the

neighborhood of R=20. As the target value of X is far below
the LLE of this nearest chaotic state, the applied weak per-
turbation simply perturbs the system towards a state of cha-
otic behavior by destabilizing the system via resonance with
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one of the modes at its original state and the power required
can be lowered. Increasing the value of the preset target LLE

x simply implies more profound chaotification and the power
of the signal required for chaotification of the system in-

creases gradually until X approaches that of the nearest cha-
otic state, 0.74. With a value beyond this one, the system is
not only disturbed to a chaotic state but also to one of excess
chaoticity and, therefore, the power needed to achieve this
control goal increases drastically.

For the case of the periodic state of R=160, the abrupt

rise of the required control power in the region of X between
1 and 2 can be observed. From Table I, it is observed that the
nearest chaotic state immediately out of the periodic window,
145=R=166, is R=166.6 with corresponding LLE=1.697.
This result demonstrates that the power of the optimal per-

turbation abruptly increases as the value of the target LLE X
reaches 1.7. Similarly this behavior is also found in the case
of R=100, for which A\ ,=1.5076 and obviously, the mini-

mum control power required increases drastically at A=15.

It is found from the correlation of GA-optimized control
power versus target LLE in Fig. 7(a) that the destabilization
and chaotification of ordered states (R=20, 100, and 160) are
characterized by a region of slow-varying power followed by
fast growth. However, the case of enhancing chaoticity of a
chaotic state shows a different trend. To address this point,
the ascending trend of the required control power with the
preset target LLE for the chaotic state R=28 is also exam-
ined. However, there is no slow-varying region in the corre-
lation of the minimum power versus the target LLE. Further
increasing the chaoticity of a chaotic state needs more power
just like that described above.

By comparing the performance of the periodic and quasi-
periodic signals, we found that these two kinds of GA-
optimized signals have quite similar trends in variation of
power with LLE. However, for the cases of chaotifying an
ordered state, e.g., R=20, 100 or 160, the quasiperiodic sig-
nals generally perform more efficiently since they need rela-
tively lower power to achieve the control goal. For higher
values of the prescribed target LLE, the quasiperiodic signals
may need relatively higher powers than periodic signals to
reach the control goal. At R=28, the present results show
that quasiperiodic signals need slightly lower control power
to further enhance the chaoticity of the original state. Plots of

power of the optimized signals versus A)\zi—)\l,o (the dif-

ference between the LLE of the target, X and that of the
originally uncontrolled state, N, ) are shown in Fig. 7(b).
The data reveal that, for chaotification based on the same
increment in the system LLE A\, the control power needed
for enhancement of chaoticity in the chaotic state is highest,
that needed for chaotification of the periodic state is lowest,
and that needed for the fixed-point state is somewhere in
between.

E. Chaotification with the presence of background noise

To examine the robustness of the present method of anti-
control of chaos, the signals found by GA under noise-free
conditions are used to perform chaotification at various
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FIG. 8. Effects of background noise on control effectiveness. (a)
Signal F;l—l (power P=2.31X 1074, target X=0.1) applied to
fixed-point state at R=20; (b) signal F§3— 1 (power P=5.14
X 1073, target A=1.5) applied to chaotic state at R=28; (c) signal
ng—l (power P=1.11X 107, target A=0.1) applied to periodic
state at R=160. (d) Example of improvement in control
effectiveness—in the same case of (c), using a GA-optimized signal
(P=1.58 X 107%) searched under a low-level noise result in an en-
hanced robustness.

states. A white Gaussian noise of strength o is added to the
right-hand side of each of the three equations simultaneously.
For small noise, the method performs well. Here we consider
external noise of strength in the range of 10°°<o=1. In Fig.
8(a), for inducing chaos at a fixed-point state, R=20, the
variation of LLE of the achieved state with the noise strength
o is presented. The GA-optimized control signal F. §,1 —1 with

the power P=2.31X10"* for the target A=0.1 is applied.
Clearly, the final state drifts a little in the presence of the
external noise. However, in this case, the anticontrol of chaos
with F ;1—1 works well until the background noise reaches
the level of o~0.1. Beyond this value, the control loses its
effectiveness in retaining LLE close to that of the target state
and breakdowns with a noise a little higher. Besides the large
external disturbance, the breakdown of the controllability is
partly attributed to the strong inherent stability of the fixed-
point state, which renders the chaotification difficult.

In the case of further enhancing the chaoticity to A=1.5at
a chaotic state of R=28, the optimized signal Fg’ s—lisofa
power P=5.14X 1073. From Fig. 8(b), it is observed that the
system at the chaotic state can be further chaotified with the
noise level in the range considered and the LLE of the
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achieved state is approximately 1.4 which deviates a little
from the originally expected value of 1.5.

In Fig. 8(c), the case of R=160 is taken as an illustrative
example of chaotifying a periodic state in the presence of an
external disturbance. The GA-optimized signal to chaotify

the state to that of N=0.1 is Fg’z—l and is of a power P
=1.11X 107%. The chaotification can be reached in the range
of o considered, while the LLE of the target state drifts to a
value around 0.2 rather than the original target of 0.1. The
deviation from the prescribed LLE of the target due to the
presence of the external noise can be reduced using a signal
found while considering a small noise. For example, with
consideration of a low-level noise, o=107°, a signal of
power P=1.58X 107 (0=18.966 423 94, ¢=-2.223 256 09)
can be found for the case of periodic state R=160. This
signal is only of a little higher power, as shown in Fig. 8(d),

it performs quite well in achieving the target state of A
=0.1 even with the noise of o~ O(1072).

V. CONCLUDING REMARKS

In the present work, we have demonstrated the effective-
ness of using very weak periodic and quasiperiodic signals
optimized by a GA to chaotify a nonlinear system at either an
ordered or a chaotic state. With a preset target LLE for the
target state, the control abilities of the present GA-optimized
signals in chaos triggering, enhancing and switching control
have been demonstrated. Based on the results of these nu-
merical experiments, the following interesting physics about
chaotification can be summarized.

(1) In use of periodic signals of high harmonics, the
power of the optimized signal is not necessarily reduced with
an increasing number of harmonic modes, while using qua-
siperiodic signals of multiple incommensurable frequencies
has the trend of reducing signal power with an increase in the
number of the modes. However, the GA-optimized signals of
low-mode (2-mode) are favorable for their simplicity and
effectiveness.

(2) Although the differences are within one order of mag-
nitude, the power of a quasiperiodic signal needed to reach
the control goal is generally lower than a periodic one with
the same number of modes.

PHYSICAL REVIEW E 75, 036206 (2007)

(3) To destabilize an ordered (fixed-point or periodic)
state, the power required for chaotification varies relatively
slowly at comparatively lower LLEs but increases drastically
as the preset value of the target LLE reaches a certain critical
value. Most strikingly, the present numerical experiments

demonstrate that this critical value of X corresponds to the
LLE of the nearest chaotic state in the neighborhood of the
uncontrolled state.

(4) In the case of enhancing the chaoticity of a chaotic
state, required control power increases as preset target LLE
increases. Unlike that for triggering chaos in ordered states
however, there is no obvious slow-varying region appearing
in the correlation of minimum power versus target LLE. Per-
forming chaotification with GA-optimized weak perturba-
tions demonstrates that further enhancing the chaoticity of a
chaotic state needs more control power than triggering chaos
in an ordered state, either fixed-point or periodic state.

(5) Based on the same increment in the system LLE,

AN=X —\1,0, the control power needed to enhance chaoticity
at a chaotic state is higher than that needed to chaotify an
ordered state. This fact combined with the above findings (3)
and (4) implies that higher power is needed to lead a nonlin-
ear dynamic system to be overchaotified.

(6) In the robustness study, we found that, in general, the
GA-optimized signals of minimum power work well even
with the condition of strong background noise. In the cases
covered in this study, we also found that the LLE of the
achieved state may drift a little in the presence of external
noise. Nonetheless, this situation can be improved using a
signal found by the present GA-based method while consid-
ering a small noise. Our test case demonstrated that, although
the power increases a little, the signal found by the GA op-
timization with consideration of a low-level noise is more
robust in performing chaotification in a quite noisy environ-
ment.
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